MATH 251: ABSTRACT ALGEBRA I HOMEWORK \#2

Problem 1 (DF 0.3.4). Compute the remainder when 37^{100} is divided by 29 .
Problem 2 (DF 0.3.13-14). Let $n \in \mathbb{Z}_{>1}$ and let $a \in \mathbb{Z}$. Prove that $\operatorname{gcd}(a, n)=1$ if and only if there exists $c \in \mathbb{Z}$ such that $a c \equiv 1(\bmod n)$.
Problem 3. Let X be a set and let $*$ be a binary operation on X. Suppose that:
(i) $a * b=b * a$ for all $a, b \in X$, and
(ii) $a * b=a$ for all $a, b \in X$.

Show that X can have at most one element.
Problem 4. Determine which of the following are groups. Justify your answer.
(a) The set $G=\mathbb{R} \backslash\{0\}$ under the binary operation $*$ defined by $a * b=a / b$ for $a, b \in G$;
(b) The set $G=\mathbb{R}$ under the binary operation $*$ defined by $a * b=a+b+a b$ for $a, b \in G$;
(c) The set $G=\left\{z \in \mathbb{C}: z^{n}=1\right.$ for some $\left.n \in \mathbb{Z}_{>0}\right\}$ under multiplication.

Problem 5 (DF 1.1.12). Find the orders of the following elements of the multiplicative $\operatorname{group}(\mathbb{Z} / 12 \mathbb{Z})^{\times}: \overline{1}, \overline{-1}, \overline{5}, \overline{7}, \overline{-7}, \overline{13}$.
Problem 6 (DF 1.1.20). Let G be a group and let $x \in G$. Show that x and x^{-1} have the same order.
Problem 7. Prove that if G is a finite group with even order, then there must be an element $a \neq e$ such that $a=a^{-1}$.

