MATH 251: ABSTRACT ALGEBRA I HOMEWORK #2

Problem 1 (DF 0.3.4). Compute the remainder when 37¹⁰⁰ is divided by 29.

Problem 2 (DF 0.3.13–14). Let $n \in \mathbb{Z}_{>1}$ and let $a \in \mathbb{Z}$. Prove that gcd(a, n) = 1 if and only if there exists $c \in \mathbb{Z}$ such that $ac \equiv 1 \pmod{n}$.

Problem 3. Let X be a set and let * be a binary operation on X. Suppose that:

- (i) a * b = b * a for all $a, b \in X$, and
- (ii) a * b = a for all $a, b \in X$.

Show that X can have at most one element.

Problem 4. Determine which of the following are groups. Justify your answer.

- (a) The set $G = \mathbb{R} \setminus \{0\}$ under the binary operation * defined by a * b = a/b for $a, b \in G$;
- (b) The set $G = \mathbb{R}$ under the binary operation * defined by a * b = a + b + ab for $a, b \in G$;
- (c) The set $G = \{z \in \mathbb{C} : z^n = 1 \text{ for some } n \in \mathbb{Z}_{>0}\}$ under multiplication.

Problem 5 (DF 1.1.12). Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/12\mathbb{Z})^{\times}$: $\overline{1}, \overline{-1}, \overline{5}, \overline{7}, \overline{-7}, \overline{13}$.

Problem 6 (DF 1.1.20). Let G be a group and let $x \in G$. Show that x and x^{-1} have the same order.

Problem 7. Prove that if G is a finite group with even order, then there must be an element $a \neq e$ such that $a = a^{-1}$.

Date: 5 September 2007; due Wednesday, 12 September 2007.