MATH 251: ABSTRACT ALGEBRA I HOMEWORK \#1

Problem 1 (DF 0.1.5). Determine whether the following functions f are well-defined:
(a) $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined by $f(a / b)=a$;
(b) $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(a / b)=a^{2} / b^{2}$.

Problem 2. For $a, b \in \mathbb{R}$, define $f_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}+a x+b$. Prove that for every a, b, the map $f_{a, b}$ is neither injective nor surjective.
Problem 3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps. Suppose that $g \circ f: A \rightarrow C$ is injective. Show that f is injective. Is g necessarily injective? Give a proof or a counterexample.

Problem 4. Let X be a set. For subsets $A, B, C \subset X$ we define

$$
A \oplus B=(A \backslash B) \cup(B \backslash A) \quad \text { and } \quad A \odot B=A \cap B
$$

Prove that:
(a) $A \oplus B=B \oplus A$;
(b) $A \oplus \emptyset=A$;
(c) $A \odot A=A$;
(d) $A \odot(B \oplus C)=(A \odot B) \oplus(A \odot C)$.

Problem 5 (DF 0.1.7). Let $f: A \rightarrow B$ be a surjective map of sets. Prove the relation

$$
a \sim b \quad \Longleftrightarrow \quad f(a)=f(b)
$$

is an equivalence relation whose equivalence classes are the fibers of f.
Problem 6 (DF 0.2.1(a)-(c)). For each of the following pairs of integers a and b, determine their greatest common divisor $\operatorname{gcd}(a, b)$, their least common multiple $\operatorname{lcm}(a, b)$, and write their greatest common divisor in the form $a x+b y$ for some integers x and y.
(a) $a=20, b=13$.
(b) $a=69, b=372$.
(c) $a=792, b=275$.

Problem 7 (DF 0.2.7). If p is a prime, prove that there do not exist nonzero integers a and b such that $a^{2}=p b^{2}$ (i.e., \sqrt{p} is not a rational number).

