MATH 251: ABSTRACT ALGEBRA I HOMEWORK #1

Problem 1 (DF 0.1.5). Determine whether the following functions f are well-defined:

- (a) $f : \mathbb{Q} \to \mathbb{Z}$ defined by f(a/b) = a;
- (b) $f: \mathbb{Q} \to \mathbb{Q}$ defined by $f(a/b) = a^2/b^2$.

Problem 2. For $a, b \in \mathbb{R}$, define $f_{a,b} : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 + ax + b$. Prove that for every a, b, the map $f_{a,b}$ is neither injective nor surjective.

Problem 3. Let $f : A \to B$ and $g : B \to C$ be maps. Suppose that $g \circ f : A \to C$ is injective. Show that f is injective. Is g necessarily injective? Give a proof or a counterexample.

Problem 4. Let X be a set. For subsets $A, B, C \subset X$ we define

$$A \oplus B = (A \setminus B) \cup (B \setminus A)$$
 and $A \odot B = A \cap B$.

Prove that:

(a) $A \oplus B = B \oplus A$; (b) $A \oplus \emptyset = A$; (c) $A \odot A = A$; (d) $A \odot (B \oplus C) = (A \odot B) \oplus (A \odot C)$.

Problem 5 (DF 0.1.7). Let $f : A \to B$ be a surjective map of sets. Prove the relation

 $a \sim b \iff f(a) = f(b)$

is an equivalence relation whose equivalence classes are the fibers of f.

Problem 6 (DF 0.2.1(a)–(c)). For each of the following pairs of integers a and b, determine their greatest common divisor gcd(a, b), their least common multiple lcm(a, b), and write their greatest common divisor in the form ax + by for some integers x and y.

(a) a = 20, b = 13.(b) a = 69, b = 372.(c) a = 792, b = 275.

Problem 7 (DF 0.2.7). If p is a prime, prove that there do not exist nonzero integers a and b such that $a^2 = pb^2$ (i.e., \sqrt{p} is not a rational number).

Date: 29 August 2007; due Wednesday, 5 September 2007.