Communication Complexity of the Fast Multipole Method and its Algebraic Variants

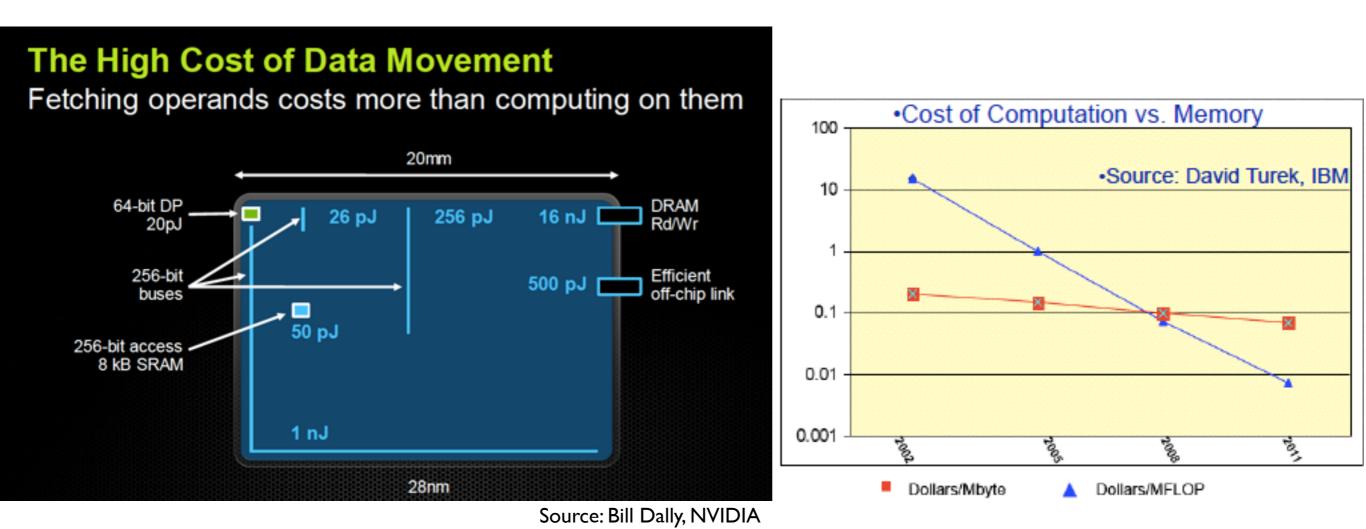
Rio Yokota & David Keyes

2014 CBMS-NSF Conference: Fast Direct Solvers for Elliptic PDEs June 23–29, 2014, Dartmouth College

Computational Complexity $\mathcal{O}(N^2) \rightarrow \mathcal{O}(N)$

Given a problem of size *N*, how many arithmetic operations does the algorithm perform?

Communication Complexity $\mathcal{O}(P) \rightarrow \mathcal{O}(\log P)$ Given a problem on *P* parallel processes, how much data does the algorithm have to send?



Communication Complexity of FMM

SIAM J. SCI. COMPUT. Vol. 19, No. 2, pp. 635–656, March 1998

© 1998 Society for Industrial and Applied Mathematics 019

PROVABLY GOOD PARTITIONING AND LOAD BALANCING ALGORITHMS FOR PARALLEL ADAPTIVE N-BODY SIMULATION*

SHANG-HUA TENG[†]

A massively parallel adaptive fast-multipole method on heterogeneous architectures

Ilya Lashuk*, Aparna Chandramowlishwaran*, Harper Langston*, Tuan-Anh Nguyen*, Rahul Sampath*, Aashay Shringarpure*, Richard Vuduc* Lexing Ying[†] Denis Zorin[‡] and George Biros*

Richard Vuduc*, Lexing Ying[†], Denis Zorin[‡], and George Biros*

* Georgia Institute of Technology, Atlanta, GA 30332

[†] University of Texas at Austin, Austin, TX 78712

[‡] New York University, New York, NY 10002 ilashuk@cc.gatech.edu, aparna@cc.gatech.edu, harper@cc.gatech.edu,

tuananh.nguyen@gatech.edu rahul.sampath@gmail.com, aashay.shringarpure@gmail.com, richie@cc.gatech.edu, lexing@math.utexas.edu, dzorin@cs.nyu.edu, gbiros@acm.org

$$\log P - 1$$

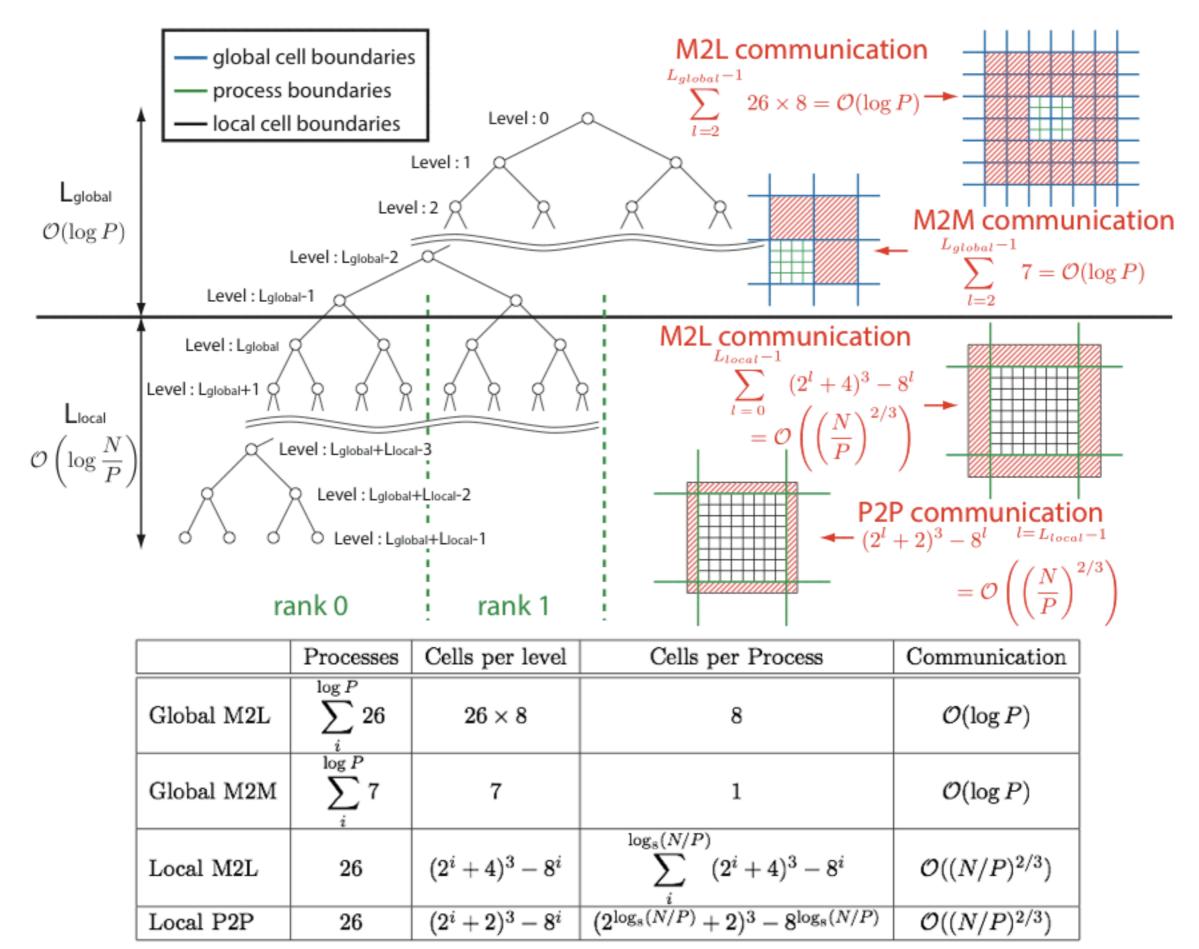
 $2^i = \mathcal{O}(P)$

 $\log P - 1$

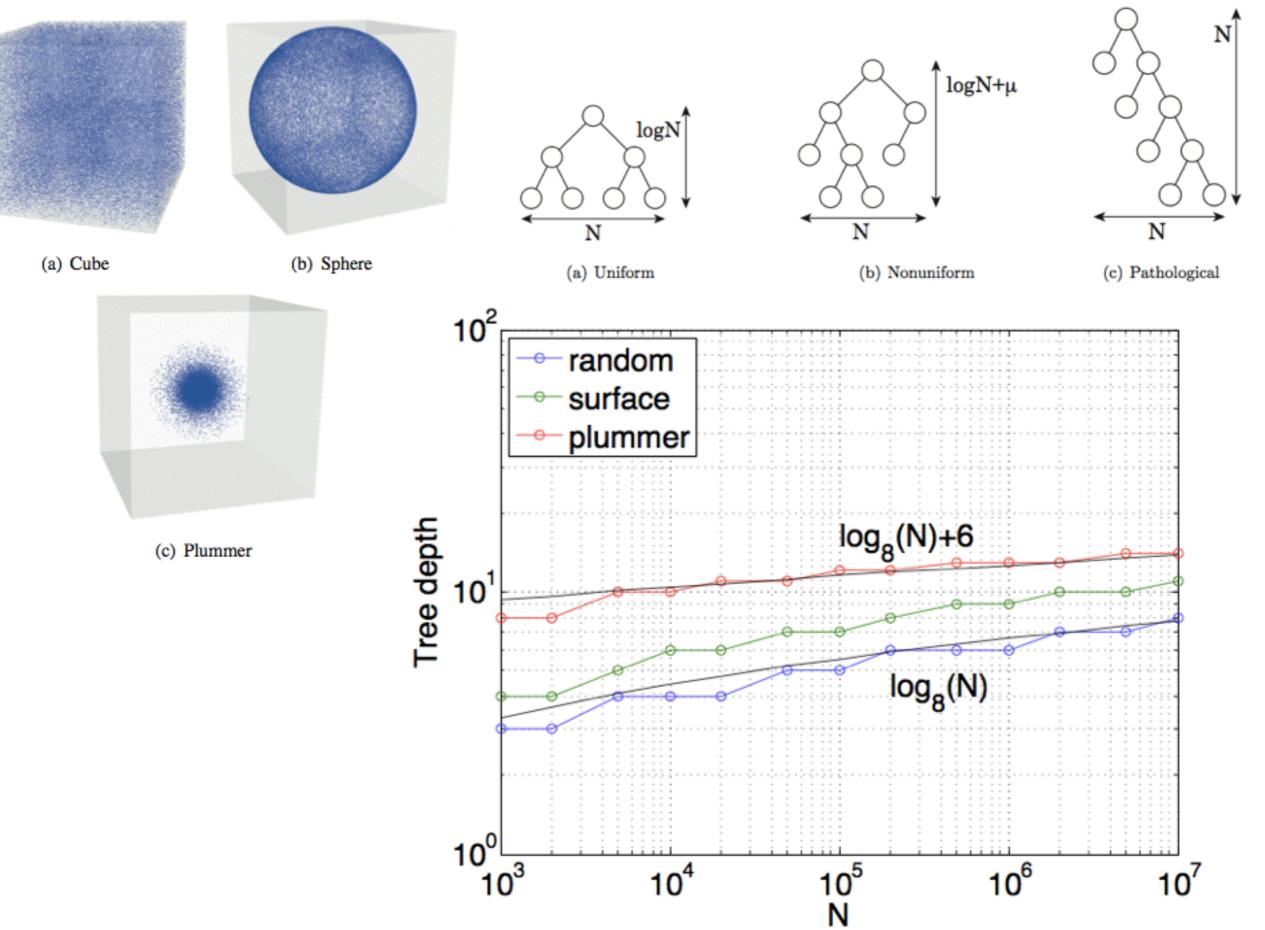
 $\lim_{i \to \infty} \min(2^{\log P - i - 1}, 2^i) = \mathcal{O}(\sqrt{P})$

Reference	Processes		Data per Process		Communication complexity	
Teng	$\mathcal{O}(P)$		$O((N/P)^{2/3}(\log N + \mu)^{1/3})$		$\mathcal{O}\left(P(N/$	$(P)^{2/3}(\log N + \mu)^{1/3})$
Lashuk et al.	$\mathcal{O}(\sqrt{1})$	P)	$\mathcal{O}\left((N/P)^{2/3} ight)$		O	$\left(\sqrt{P}(N/P)^{2/3}\right)$
Ibeid et al.	Global	Local	Global	Local	G	lobal + Local
ibeiu et at.	$\mathcal{O}(\log P)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}\left((N/P)^{2/3}\right)$	\mathcal{O} (lo	$\log P + (N/P)^{2/3}$

Uniform Case



Nonuniform Case



Nonuniform Case

	Processes	Cells per level	Cells per Process	Communication
Global M2L	$\sum_{i}^{\log P} 26$	26 imes 8	8	$\mathcal{O}(\log P)$
Global M2M	$\sum_{i}^{\log P} 7$	7	1	$\mathcal{O}(\log P)$
Local M2L	26	$(2^i+4)^3-8^i$	$\sum_{i}^{\log_8(N/P)} (2^i + 4)^3 - 8^i$	$\mathcal{O}((N/P)^{2/3})$
Local P2P	26	$(2^i+2)^3-8^i$	$(2^{\log_8(N/P)}+2)^3 - 8^{\log_8(N/P)}$	$\mathcal{O}((N/P)^{2/3})$

	Processes	Cells per level	Cells per Process	Communication
Global M2L	$\sum_{i}^{\log P} \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(\log P)$
Global M2M	$\sum_{i}^{\log P} \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(\log P)$
Local M2L	$\mathcal{O}(1)$	$\mathcal{O}(4^i)$	$\sum_{i}^{\log_8(N/P)} \mathcal{O}(4^i)$	$\mathcal{O}((N/P)^{2/3})$
Local P2P	$\mathcal{O}(1)$	$\mathcal{O}(4^i)$	$\mathcal{O}(4^{\log_8(N/P)})$	$\mathcal{O}((N/P)^{2/3})$

	Algebraic Case (Mat-Vec)						
$y = \left(\sum_{(i,j)\in D} A_{ij}\right)x + \left(\sum_{(i,j)\in L} U_i S_{ij} V_j^t\right)x = \sum_{\substack{(i,j)\in D\\\text{Dense mat-vecs}\\\text{operations}}} A_{ij} x_j + \sum_{i\in I} U_i \sum_{\substack{(i,j)\in L\\\text{Upsweep}\\\text{Coupling phase}}} S_{ij} \underbrace{V_j^t x}_{\text{Upsweep}}$							
	Processes	Cells per level	Cells per Process	Communication]	Downsweep	
Global M2L	$\sum_{i}^{\log P} \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(\log P)$			
Global M2M	$\sum_{i}^{\log P} \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(\log P)$			
Local M2L	$\mathcal{O}(1)$	$\mathcal{O}(1)$ $\mathcal{O}(4^i)$ $\sum_i^{\log_8(N/P)} \mathcal{O}(4^i)$ $\mathcal{O}((N/P)^{2/3})$					
Local P2P	$\mathcal{O}(1)$	$\mathcal{O}(4^i)$	$\mathcal{O}(4^{\log_8(N/P)})$	$\mathcal{O}((N/P)^{2/3})$			

Matrix Operation	FMM operation	Processes	Blocks per level	Blocks per Process	Communication
Global $\sum S_{ij} \hat{x}_j$	Global M2L	$\sum_{i}^{\log P} \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(\log P)$
Global $\sum F_k^t \hat{x}_k$	Global M2M	$\sum_{i}^{\log P} \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(\log P)$
$\sum_{j=1}^{n} S_{ij} \hat{x}_j$	Local M2L	<i>O</i> (1)	$\mathcal{O}(2^{(d-1)i})$	$\sum_{i}^{\log_{2^d}(N/P)}\mathcal{O}(2^{(d-1)i})$	$\mathcal{O}((N\!/P)^{rac{d-1}{d}})$
$egin{array}{c} { m Local} \ \sum A_{ij} x_j \end{array}$	Local P2P	<i>O</i> (1)	$\mathcal{O}(2^{(d-1)i})$	$\mathcal{O}(2^{(d-1)\log_{2^d}(N/P)})$	$\mathcal{O}((N/P)^{rac{d-1}{d}})$

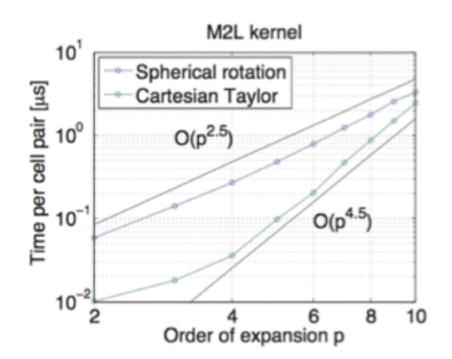
Asymptotic Constants

FMM

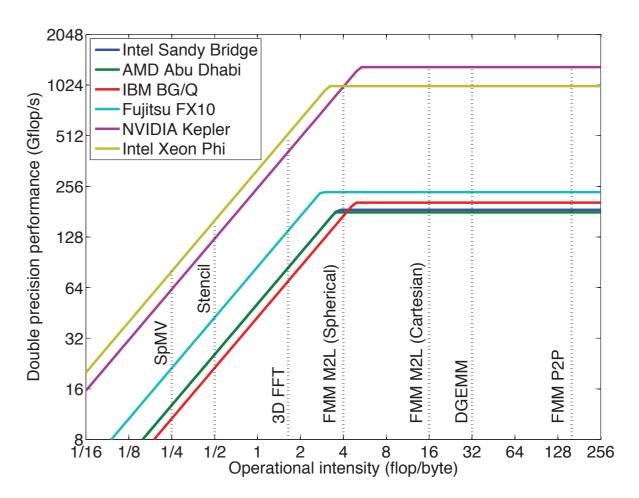
H-matrix

Type of expansion (+M2L acceleration)	Storage	Arithmetic
Cartesian Taylor	$\mathcal{O}(p^3)$	$\mathcal{O}(p^6)$
Cartesian Chebychev	$\mathcal{O}(p^3)$	$\mathcal{O}(p^6)$
Spherial harmonics	$\mathcal{O}(p^2)$	$\mathcal{O}(p^4)$
Spherial harmonics+rotation	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$
Spherial harmonics+FFT	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2 \log^2 p)$
Planewave	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$
Equivalent charges	$\mathcal{O}(p^2)$	$\mathcal{O}(p^4)$
Equivalent charges+FFT	$\mathcal{O}(p^3)$	$\mathcal{O}(p^3 \log p)$

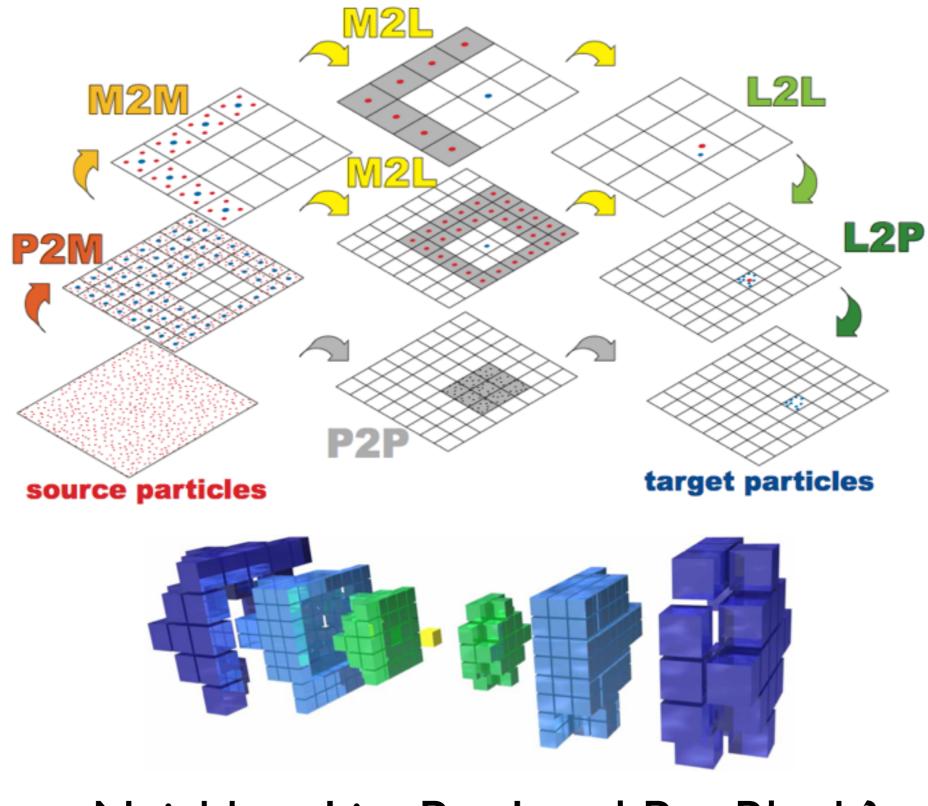
Type of low rank approximation	Reference
Rank-revealing LU	Pan (2000)
Rank-revealing QR	Gu & Eisenstat (1996)
Pivoted QR	Kong et al. (2011)
Truncated SVD	Grasedyck & Hackbusch (2003)
Randomized SVD	Liberty et al. (2007)
Adaptive cross approximation	Rjasanow (2002)
Hybrid cross approximation	Börm (2005)
Chebychev interpolation	Dutt et al. (1996)



Better complexity \neq Better performance



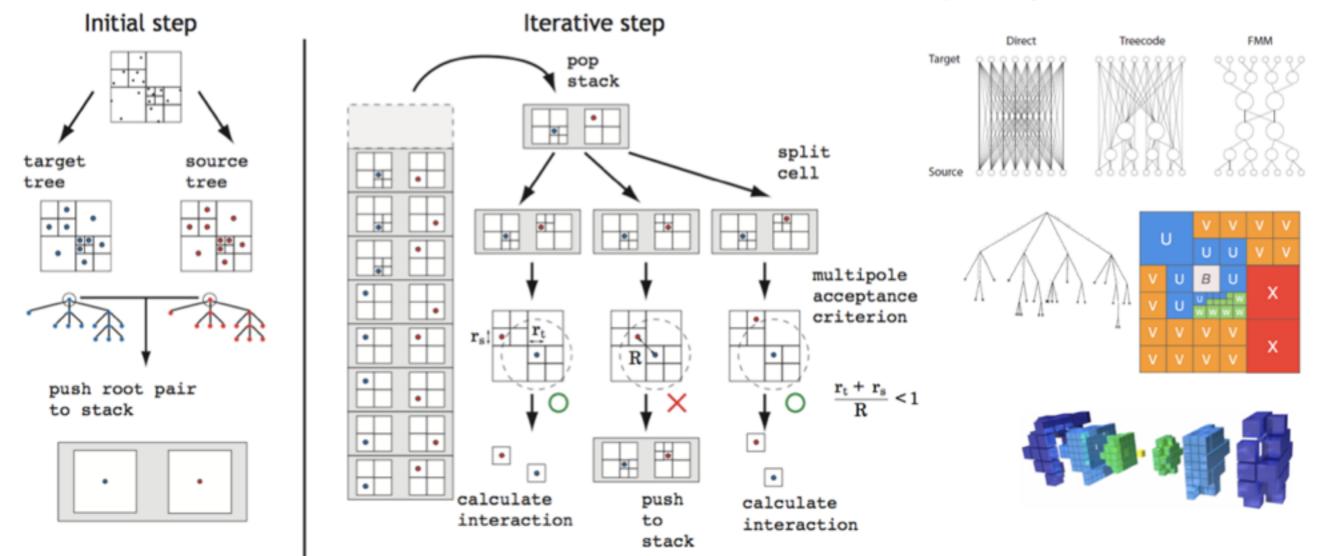
Finding Admissible Blocks



Neighbor List Per Level Per Block?

Dual Tree Traversal

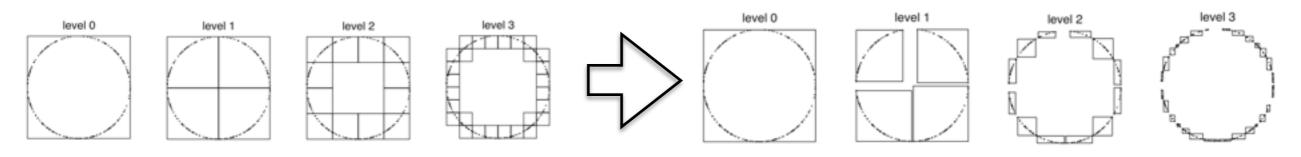
W. Dehnen, J. Comput. Phys. 179; 27-42 (2002)



No Neighbor List Needed

S.-H. Teng, SIAM J. Sci. Comput. 19; 635-656 (1998)

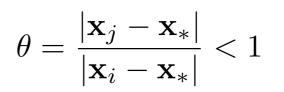
Cells don't have to be cubic



Dual Tree Traversal

- No need to explicitly form interaction lists
- The definition of well-separatedness (size of neighbor region) can be adjusted flexibly <u>without modifying the code</u>
- The resulting neighbor region and M2L interaction region naturally have a spherical shape (as opposed to the suboptimal cubic shape)
- It is applicable to <u>adaptive trees</u> without any modification
- It lends itself to <u>MPI parallelization without any modification</u> (by simply using the local essential tree as the source tree)
- It is easily extendable to <u>periodic boundary conditions</u> (by traversing all periodic image trees as the source tree)
- It can handle <u>mutual M2L interaction</u>, and can satisfy Newtons third law (M2L is neither target centric nor source centric, but completely symmetric)
- It works well with <u>task based threading</u> tools like Intel TBB, Cilk, MassiveThreads, etc., where tasks are spawned while the tree is traversed
- The cells <u>don't have to be cubic</u>. For example, high aspect ratio rectangles or hierarchical K-means is permitted.
- It can be implemented in <u>less than 100 lines of code</u>, and is therefore trivial to debug

h-p FMM



Ό

n

Ö

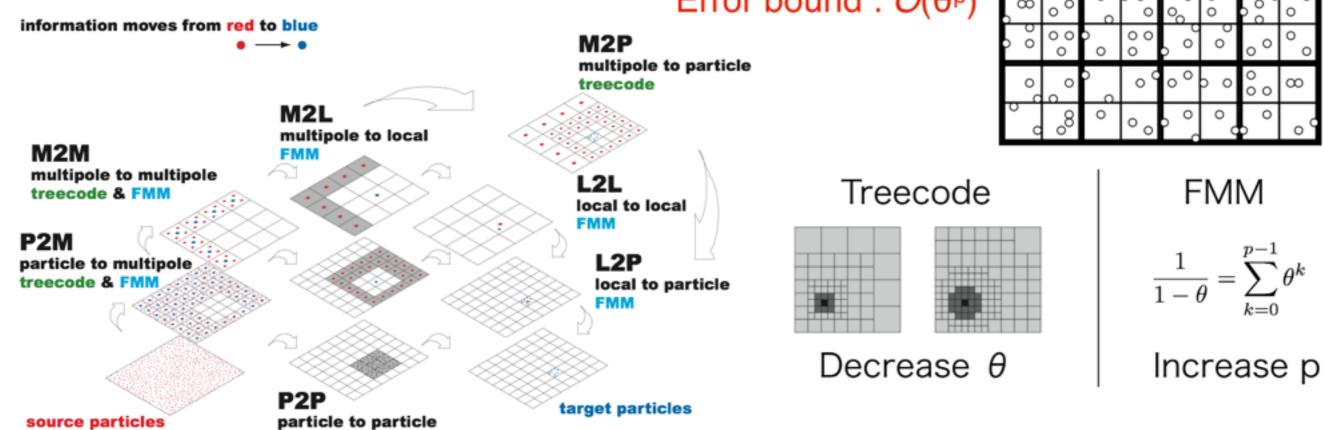
œ

C

 ∞

õ

Error bound : $O(\theta^p)$



treecode & FMM

	p=3	p=4	p = 5	p=6
$Err = 10^{-2}$	$\theta = 1.00$	$\theta = 1.18$	$\theta = 1.23$	$\theta = 1.24$
LTT = 10	time=0.016s	time=0.012s	time=0.015s	time=0.026s
$Err = 10^{-3}$	$\theta = 0.67$	$\theta = 0.78$	$\theta = 0.91$	$\theta = 0.94$
Liii = 10	time = 0.036s	time = 0.027s	time=0.024s	time = 0.038s
$Err = 10^{-4}$	heta=0.30	$\theta = 0.49$	heta=0.62	heta=0.70
LTT = 10	time = 0.22s	time=0.085s	time = 0.071s	time = 0.073s
$Err = 10^{-5}$	$\theta = 0.12$	$\theta = 0.20$	$\theta = 0.36$	$\theta = 0.45$
Liff = 10	time = 1.38s	time = 0.59s	time = 0.21s	time = 0.21s

Spatially Varying "h" or "p"

Corrected Article: "An error-controlled fast multipole method" [J. Chem. Phys. 131, 244102 (2009)]

Holger Dachsel^{a)} Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany Spatially varying rank

Journal of Computational Physics 179, 27-42 (2002) doi:10.1006/jcph.2002.7026

A Hierarchical O(N) Force Calculation Algorithm

Walter Dehnen

Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany E-mail: dehnen@mpia.de

Simples Simple

Conclusions

Reference	Processes		Data per Process		Communication complexity
Teng	O(P	$\mathcal{O}(P)$		$(P)^{2/3}(\log N + \mu)^{1/3})$	$\mathcal{O}\left(P(N/P)^{2/3}(\log N + \mu)^{1/3} ight)$
Lashuk et al.	$\mathcal{O}(\sqrt{1})$	P)	C	$\mathcal{O}\left((N/P)^{2/3}\right)$	$\mathcal{O}\left(\sqrt{P}(N/P)^{2/3}\right)$
Ibeid et al.	Global	Local	Global	Local	Global + Local
ibeiu et at.	$\mathcal{O}(\log P)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}\left((N/P)^{2/3}\right)$	$\mathcal{O}\left(\log P + (N/P)^{2/3}\right)$

- We have proved a new upper bound for the communication complexity of FMM
- The dual tree traversal allows hierarchical methods to use adaptive admissibility conditions, which results in fine grain uniformity that is easier to vectorize

Title