A sparse multifrontal solver using hierarchically semi－separable frontal matrices

Pieter Ghysels
Lawrence Berkeley National Laboratory
Joint work with：Xiaoye S．Li（LBNL），Artem Napov（ULB），
François－Henry Rouet（LBNL）
2014 CBMS－NSF Conference：
Fast direct solvers for elliptic PDEs June 23－29，2014，Dartmouth College

Introduction

Consider solving

$$
A x=b \quad \text { or } \quad M^{-1} A=M^{-1} b
$$

with a preconditioned iterative method (CG, GMRES, etc.)

- Fast convergence if good preconditioner $M \approx A$ is available

1. Cheap to construct, store, apply, parallelize
2. Good approximation of A

Contradictory goals \rightarrow trade-off

- Standard design strategy
- Start with a direct factorization (like multifrontal LU)
- Add approximations to make it cheaper (cf. 1) while (hopefully/provably) affecting little (2)
- Approximation idea: use low-rank approximation

The multifrontal method [Duff \& Reid '83]

- Nested dissection reordering defines an elimination tree
- SCOTCH graph partitioner
- Bottom-up traversal of the e-tree
- At each frontal matrix, partial factorization and computation of a contribution block (Schur complement)

Elimination tree

- Parent nodes "sum" the contribution blocks of their children: extend-add

Low-rank property

- In many applications, frontal matrices exhibit some low-rank blocks ("data sparsity")
- Compression with SVD, Rank-Revealing QR,...
- SVD: optimal but too expensive
- RRQR: QR with column pivoting
- Exact compression or with a compression threshold ε
- Recursively, diagonal blocks have low-rank subblocks too
- What to do with off-diagonal blocks?

Low-rank representations

Most low-rank representations belong to the class of \mathcal{H}-matrices [Bebendof, Börm, Hackbush, Grasedyck,...]. Embedded in both dense and sparse solvers:

Hierarchically
Off-Diag. Low Rank (HODLR)
[Ambikasaran, Cecka, Darve...]

Hierarchically
Semiseparable (HSS)
[Chandrasekaran, Dewilde, $\mathrm{Gu}, \mathrm{Li}, \mathrm{Xia}, \ldots$]
Nested basis.

Block-low rank (BLR) [Amestoy et al.]
Simple 2D partitioning. Recently in MUMPS.

Also: \mathcal{H}^{2} (includes HSS and FMM), SSS... Choice: simple representations apply to broad classes of problems but provide less gains in memory/operations than specialized/complex ones.

HSS/HBS representation

The structure is represented by a tree:

- Number of leaves depends on the problem (geometry) and number of processors to be used.
- Building the HSS structure and all the usual operations (multiplying...) consist of traversals of the tree.

Embedding low-rank techniques in a multifrontal solver

1. Choose which frontal matrices are compressed (size, level. . .)
2. Low-rankness: weak interactions between "distant" variables \Longrightarrow need suitable ordering/clustering of each frontal matrix

- Geometric setting (3D grid): 2D plane separator
- Need clusters with small diameters
- Hierarchical formats, merged clusters need small diameter too Split domain into squares and order with Morton ordering

11	12	15	16
9	10	13	14
3	4	7	8
1	2	5	6

$9+10$	$13+14$
$+11+12$	$+15+16$
$1+2$	$5+6$
$+3+4$	$+7+8$

- Algebraic: add some kind of halo to (complete) graph of separator variables and call a graph partitioner (METIS) [Amestoy et al., Napov]

Embedding HSS kernels in a multifrontal solver

HSS for frontal matrices:
Fully structured: HSS on the whole frontal matrix. No dense matrix.
Partial+: HSS on the whole frontal matrix.
Dense frontal matrix. Partially structured: HSS on the F_{11}, F_{12} and F_{21} parts only. Dense frontal matrix,
 dense $C B=F_{22}-F_{21} F_{11}^{-1} F_{12}$ in stack.

- Partially structured can do regular extend-add
- In partially structured, HSS compression of dense matrix
- After HSS compression, ULV factorization of F_{11} block
- Compared to classical $L U$ in dense case
- Low rank Schur complement update

HSS compression via randomized sampling

```
[Martinsson '11, Xia '13]
```

HSS compression of a matrix A.
Ingredients:

- R^{r} and R^{c} random matrices with d columns
- $d=r+p$ with r estimated max rank; $p=10$ in practice
- $S^{r}=A R^{r}$ and $S^{c}=A^{T} R^{c}$ samples of matrix A

Can benefit from a fast matvec

- Interpolative Decomposition: $A=A(:, J) X$
A is linear combination of selected columns of A
- Two sided ID: $S^{c T}=S^{c^{T}}\left(:, J^{c}\right) X^{c}$ and $S^{r T}=S^{r T}\left(:, J^{r}\right) X^{r}$,

$$
A=X^{c} A\left(I^{c}, I^{r}\right) X^{r T}
$$

HSS compression via randomized sampling - 2

Algorithm (symmetric): from fine to coarse do

- Leaf node τ :

1. Sample: $S_{\text {loc }}=S\left(I_{\tau},:\right)-D R\left(I_{\tau},:\right)$
2. ID: $\quad S_{\text {loc }}=U_{\tau} S_{\text {loc }}\left(J_{\tau},:\right)$
3. Update: $S_{\tau}=S_{\text {loc }}\left(J_{\tau},:\right)$
$R_{\tau}=U_{\tau}^{T} R\left(I_{\tau},:\right)$

$$
I_{\tau}=I_{\tau}\left(J_{\tau},:\right)
$$

- Inner node τ with children ν_{1}, ν_{2} :

1. Sample: $S_{\text {loc }}=\left[\begin{array}{l}S_{\nu_{1}}-A\left(I_{\nu_{1}}, I_{\nu_{2}}\right) R_{\nu_{2}} \\ S_{\nu_{2}}-A\left(I_{\nu_{2}}, I_{\nu_{1}}\right) R_{\nu_{1}}\end{array}\right]$
2. ID:

$$
S_{\text {loc }}=U_{\tau} S_{\text {loc }}\left(J_{\tau},:\right)
$$

3. Update: $S_{\tau}=S_{\text {loc }}\left(J_{\tau},:\right)$

$$
R_{\tau}=U_{\tau}^{T}\left[R_{\nu_{1}} ; R_{\nu_{2}}\right]
$$

$$
I_{\tau}=\left[I_{\nu_{1}} I_{\nu_{2}}\right]\left(J_{\tau},:\right)
$$

HSS compression via randomized sampling - 3

- If $A \neq A^{T}$, do this for columns as well (simultaneously)
- Bases have special structure: $U_{\tau}=\Pi_{\tau}\left[\begin{array}{c}I \\ E_{\tau}\end{array}\right]$
- Extract elements from frontal matrix:

$$
D_{\tau}=A\left(I_{\tau}, I_{\tau}\right) \text { and } B_{\nu_{1}, \nu_{2}}=A\left(I_{\nu_{1}}, I_{\nu_{2}}\right)
$$

- Frontal matrix is combination of separator and HSS children
- Extracting element from HSS matrix requires traversing the HSS tree and multiplying basis matrices
- Limiting number of tree traversals is crucial for performance Benefits:
- Extend-add operation is simplified: only on random vectors
- Gains in complexity: $\mathcal{O}\left(r^{2} N \log N\right)$ iso $\mathcal{O}\left(r N^{2}\right)$ for non-randomized algorithm. $\log N$ due to extracting elements from HSS matrix

Randomized sampling - extend-add

Assembly in regular multifrontal: $F_{p}=A_{p} \stackrel{\rightharpoonup}{\imath} C B_{C_{1}} \stackrel{\hat{\gamma}}{ } C B_{c_{2}}$. Sample:
$S_{p}=F_{p} R_{p}=\left(A_{p} \stackrel{\imath}{\gamma} C B_{c_{1}} \stackrel{\imath}{\imath} C B_{c_{2}}\right) R_{p}=A_{p} R_{p} \uparrow Y_{c_{1}} \uparrow Y_{C_{2}}$

- $\downarrow 1 \mathrm{D}$ extend-add (only along rows); much simpler
- $Y_{c_{1}}$ and $Y_{C_{2}}$ samples of CB of children.
- $R_{p}=R_{c_{1}} \uparrow R_{C_{2}}$ (+random rows for missing indices)

Stages:

- Build random vectors from random vectors of children
- Build sample from samples of CB of children
- Multiply separator part of frontal matrix with random vectors: $A_{p} R_{p}$
- Compression of F_{p} using S_{p} and R_{p}

HSS ULV factorization

- Exploit structure of U_{τ} (from ID) to introduce zero's

$$
U_{\tau}=\Pi_{\tau}\left[\begin{array}{c}
1 \\
E_{\tau}
\end{array}\right], \quad \Omega_{\tau}=\left[\begin{array}{cc}
-E_{\tau} & 1 \\
1 & 0
\end{array}\right] \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

HSS ULV factorization

- Exploit structure of U_{τ} (from ID) to introduce zero's

$$
\begin{gathered}
U_{\tau}=\Pi_{\tau}\left[\begin{array}{c}
\prime \\
E_{\tau}
\end{array}\right], \quad \Omega_{\tau}=\left[\begin{array}{cc}
-E_{\tau} & 1 \\
I & 0
\end{array}\right] \Pi_{\tau}^{T} \rightarrow \quad \Omega_{\tau} U_{\tau}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
\Omega_{1} & \\
& \Omega_{2}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & U_{1} B_{1,2} V_{2}^{T} \\
U_{2} B_{2,1} V_{1}^{T} & D_{2}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} & B_{1,2} V_{2}^{T} \\
B_{2,1} V_{1}^{T} & W_{2}
\end{array}\right]}
\end{gathered}
$$

HSS ULV factorization

- Exploit structure of U_{τ} (from ID) to introduce zero's

$$
U_{\tau}=\Pi_{\tau}\left[\begin{array}{c}
1 \\
E_{\tau}
\end{array}\right], \quad \Omega_{\tau}=\left[\begin{array}{cc}
-E_{\tau} & 1 \\
1 & 0
\end{array}\right] \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau}=\left[\begin{array}{c}
0 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
\Omega_{1} & \\
& \Omega_{2}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & U_{1} B_{1,2} V_{2}^{T} \\
U_{2} B_{2,1} V_{1}^{T} & D_{2}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} & B_{1,2} V_{2}^{T} \\
B_{2,1} V_{1}^{T} & W_{2}
\end{array}\right]
$$

- Take (full) $L Q$ decomposition

$$
W_{\tau}=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
L_{\tau} & 0
\end{array}\right] Q_{\tau}} \\
& W_{\tau ; 2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\left.L_{1} W_{1 ; 2} Q_{1}^{*}\right] & {\left[B_{1,2} V_{2}^{\top} Q_{2}^{*}\right]} \\
{\left[B_{2,1} V_{1}^{T} Q_{1}^{*}\right]} & {\left[W_{2 ; 2} Q_{2}^{*}\right]}
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right]
$$

HSS ULV factorization

- Exploit structure of U_{τ} (from ID) to introduce zero's

$$
U_{\tau}=\Pi_{\tau}\left[\begin{array}{c}
I \\
E_{\tau}
\end{array}\right], \quad \Omega_{\tau}=\left[\begin{array}{cc}
-E_{\tau} & I \\
I & 0
\end{array}\right] \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau}=\left[\begin{array}{c}
0 \\
I
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
\Omega_{1} & \\
& \Omega_{2}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & U_{1} B_{1,2} V_{2}^{T} \\
U_{2} B_{2,1} V_{1}^{T} & D_{2}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} & B_{1,2} V_{2}^{T} \\
B_{2,1} V_{1}^{T} & W_{2}
\end{array}\right]
$$

- Take (full) $L Q$ decomposition

$$
W_{\tau}=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
L_{\tau} & 0
\end{array}\right] Q_{\tau}} \\
& W_{\tau ; 2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\left.L_{1} W_{1 ; 2} Q_{1}^{*}\right] & {\left[B_{1,2} V_{2}^{\top} Q_{2}^{*}\right]} \\
{\left[B_{2,1} V_{1}^{\top} Q_{1}^{*}\right]} & {\left[W_{2 ; 2} Q_{2}^{*}\right]}
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right]
$$

- Rows for L_{τ} can be eliminated, others are passed to parent
- At root node:
$L U$ solve of reduced \tilde{D}

HSS ULV factorization

- Exploit structure of U_{τ} (from ID) to introduce zero's

$$
\begin{aligned}
& \quad U_{\tau}=\Pi_{\tau}\left[\begin{array}{c}
I \\
E_{\tau}
\end{array}\right], \quad \Omega_{\tau}=\left[\begin{array}{cc}
-E_{\tau} & I \\
I & 0
\end{array}\right] \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau}=\left[\begin{array}{l}
0 \\
I
\end{array}\right] \\
& \quad\left[\begin{array}{cc}
\Omega_{1} & \\
& \Omega_{2}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & U_{1} B_{1,2} V_{2}^{T} \\
U_{2} B_{2,1} V_{1}^{T} & D_{2}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} & B_{1,2} V_{2}^{T} \\
B_{2,1} V_{1}^{T} & W_{2}
\end{array}\right] \\
& \text { Take (full) } L Q \text { decomposition }
\end{aligned}
$$

$$
\left.W_{\tau}=\left[\begin{array}{cc}
{\left[L_{\tau}\right.} & 0
\end{array}\right] Q_{\tau}\right] \rightarrow\left[\begin{array}{cc}
L_{1} & \left.W_{1 ; 2} Q_{1}^{*}\right]
\end{array}\right]\left[B_{1,2} V_{2}^{\top} Q_{2}^{*}\right] \quad\left[\begin{array}{ll}
Q_{1} & \\
& W_{\tau ; 2}
\end{array}\right]
$$

- Rows for L_{τ} can be eliminated, others are passed to parent
- At root node:
$L U$ solve of reduced \tilde{D}
- ULV-like: Ω_{τ} not orthonormal, forward/backward solve phases

Low rank Schur complement update

Schur Complement update

$$
F_{22}-F_{21} F_{11}^{-1} F_{12}=F_{22}-\overbrace{U_{q} B_{q k} V_{k}^{T}}^{F_{21}} F_{11}^{-1} \overbrace{U_{k} B_{k q} V_{q}^{\top}}^{F_{12}}
$$

- F_{11}^{-1} via ULV solve

$$
V_{k}^{T} F_{11}^{-1} U_{k} \rightarrow \mathcal{O}\left(r N^{2}\right)
$$

- \tilde{D}_{k} is reduced HSS matrix $\mathcal{O}(r \times r)$

$$
\begin{gathered}
F_{22}-U_{q} B_{q k}\left(\tilde{V}_{k}^{T} \tilde{D}^{-1} \tilde{U}_{k}\right) B_{k q} V_{q}^{T} \\
\tilde{V}_{k}^{T} \tilde{D}^{-1} \tilde{U}_{k} \rightarrow \mathcal{O}\left(r^{3}\right) \\
F_{22}-\Psi \Phi^{T} \quad \Psi, \Phi \sim \mathcal{O}(r N)
\end{gathered}
$$

- U_{q} and V_{q} : traverse q subtree
- Cheap multiply with random vectors

Numerical example - general matrices

- GMRES(30) with right preconditioner
- Multifrontal with HSS vs ILUTP from SuperLU
- $b=(1,1, \ldots)^{T}, x_{0}=(0,0, \ldots)^{T}$
- Stopping criterium: $\left\|r_{k}\right\|_{2} /\|b\|_{2} \leq 10^{-6}$
- HSS compression tolerance: 10^{-6}

	fill-ratio	factor (s)		its					
	descr	N	rank	HSS	ILU	HSS	ILU	HSS	ILU
add32	circuit	4,690	0	2.1	1.3	0.01	0.01	1	2
mchln85ks17	car tire	84,180	948	13.5	12.3	133.8	216.1	4	39
mhd500	plasma	250,000	100	11.6	15.6	2.5	7.9	2	8
poli large	economics	15,575	64	4.8	1.6	0.04	0.02	1	2
stomach	bio eng.	213,360	92	12.1	2.9	13.8	18.7	2	2
tdr190k	accelerator	$1,100,242$	596	14.1	-	629.2	-	7	-
torso3	bio eng.	259,156	136	22.6	2.4	86.7	63.7	2	2
utm5940	tokamak	5,940	123	6.7	8.0	0.1	0.16	3	15
wang4	device	26,068	385	45.3	23.1	4.4	6.4	3	4

Numerical example - tdr190k

- tdr190k: Maxwell equations in the frequency domain
- GMRES(30) convergence

Parallel implementation

We have a serial code (StruMF [Napov 11'-12'])

- Some performance issues
- Currently generates random vectors for all nodes in e-tree
- How to estimate the rank? Currently guess and start over when too small

Parallel implementation is a work in progress

- Distributed memory HSS compression of dense matrix
- MPI, BLACS, PBLAS, BLAS, LAPACK
- Shared memory multifrontal code
- OpenMP task parallelism for tree traversal for both elimination tree and HSS tree
- Next step is parallel dense algebra

Parallel HSS compression - MPI code

- Topmost separator of a 3D problem, generated with exact multifrontal method

MPI processes / cores	100	200	300
	10,000	40,000	90,000
	64	256	1024
Nodes	4	16	64
Levels	6	7	8
Tolerance	$1 \mathrm{e}-3$	$1 \mathrm{e}-3$	1-e3
Non-randomized (s)	8.3	51.5	193.4
Randomized (s)	2.9	16.0	37.2
Dense LU ScaLAPACK (s)	4.2	57.6	175.9

- On 1024 cores
- achieved 5.3TFlops/s
- very good flop balance: $\min / \max =0.93$
- 17% communication overhead

Task based parallel tree traversal - OpenMP

Postorder (leaf to root) tree traversal: handle siblings in parallel, wait for children

```
void traverse(node* p) {
    if (p->left)
        #pragma omp task
            traverse(p->left);
    if (p->right)
        #pragma omp task
            traverse(p->right);
    #pragma omp taskwait
    process(p->data);
}
```

- Run-time system schedules tasks to cores (work-stealing)
- Root node will be handled sequentially: scaling bottleneck
- Nested trees: node of nested dissection tree contains HSS tree

Task based parallel tree traversal - OpenMP

- HSS Compression of dense frontal matrix

- Multifrontal

Blue: E-tree node, Red: HSS compression, Green: ULV-fact

- Extraction of elements from HSS matrix forms bottleneck
- Considering other runtime task schedulers
- Intel TBB, StarPU, Quark
- The Quark scheduler from PLASMA could allow integration of PLASMA parallel (tiled) BLAS/LAPACK

Conclusions

- Developing an algebraic preconditioner for general nonsymmetric matrices (from PDEs)
- HSS is restricted format, large gains possible for certain applications, not for all
- Graph partitioning difficulties
- Separator not always just a plane/line, not always a single piece
- Bad for rank structure
- Some performance issues need to be addressed
- Separate distributed and shared memory codes
- How to combine in a hybrid MPI+X code?
- Prepare for next generation NERSC supercomputer
- Intel MIC based, > 60 cores

Conclusions

- Developing an algebraic preconditioner for general nonsymmetric matrices (from PDEs)
- HSS is restricted format, large gains possible for certain applications, not for all
- Graph partitioning difficulties
- Separator not always just a plane/line, not always a single piece
- Bad for rank structure
- Some performance issues need to be addressed
- Separate distributed and shared memory codes
- How to combine in a hybrid MPI+X code?
- Prepare for next generation NERSC supercomputer
- Intel MIC based, > 60 cores

Thank you! Questions?

