A sparse multifrontal solver using hierarchically
semi-separable frontal matrices

Pieter Ghysels

Lawrence Berkeley National Laboratory

Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB),
Frangois-Henry Rouet (LBNL)

2014 CBMS-NSF Conference:
Fast direct solvers for elliptic PDEs
June 23-29, 2014, Dartmouth College

Introduction

Consider solving
Ax=b or MTTA=M1b

with a preconditioned iterative method (CG, GMRES, etc.)

» Fast convergence if good preconditioner M &~ A is available

1. Cheap to construct, store, apply, parallelize
2. Good approximation of A

Contradictory goals — trade-off

» Standard design strategy
» Start with a direct factorization (like multifrontal LU)
» Add approximations to make it cheaper (cf. 1)
while (hopefully/provably) affecting little (2)

» Approximation idea: use low-rank approximation

The multifrontal method [Duff & Reid '83]

chetgreltel i
05 07 2% 150 17 % i
oo 104 2% L% 20
02 0l 22 12 14
ol o3 e2lellel3

ALy
>

4
5
> Nested dissection reordering defines an
elimination tree 1 3
4 4
- SCOTCH graph partitioner 5
» Bottom-up traversal of the e-tree 2
3

» At each frontal matrix, partial
factorization and computation of a

o Elimination tree
contribution block (Schur complement)

» Parent nodes “sum” the contribution
blocks of their children: extend-add

Low-rank property

v

In many applications, frontal matrices exhibit some low-rank
blocks (“data sparsity”)

v

Compression with SVD, Rank-Revealing QR,. ..

- SVD: optimal but too expensive
- RRQR: QR with column pivoting

v

Exact compression or with a compression threshold &

v

Recursively, diagonal blocks have low-rank subblocks too
- What to do with off-diagonal blocks?

Low-rank representations

Most low-rank representations belong to the class of #-matrices
[Bebendof, Bérm, Hackbush, Grasedyck,...]. Embedded in both dense and
sparse solvers:

Hierarchically Hierarchically Block-low rank (BLR)
Off-Diag. Low Rank Semiseparable (HSS) [Amestoy et al.]
(HODLR) [Chandrasekaran, Dewilde, Simple 2D
[Ambikasaran, Cecka, Gu, Li, Xia,...] partitioning. Recently
Darve...] Nested basis. in MUMPS.

Also: H? (includes HSS and FMM), SSS. ..
Choice: simple representations apply to broad classes of problems but
provide less gains in memory/operations than specialized/complex ones.

HSS/HBS representation

The structure is represented by a tree:

(VU By @ () B ©
U,Vi U, Vo Uy, Vi Us, Vs
D, D, Dy Ds

» Number of leaves depends on the problem (geometry) and
number of processors to be used.

» Building the HSS structure and all the usual operations
(multiplying. ..) consist of traversals of the tree.

Embedding low-rank techniques in a multifrontal solver

1. Choose which frontal matrices are compressed (size, level. . .)
2. Low-rankness: weak interactions between “distant” variables
= need suitable ordering/clustering of each frontal matrix

» Geometric setting (3D grid): 2D plane separator

> Need clusters with small diameters
» Hierarchical formats, merged clusters need small diameter too

Split domain into squares and order with Morton ordering

11f12]15]16 9+10| 13+14
o103 14 H-11+12H-15+-16
314 | 7TR8 142 | 546
12 51 +3+4 |+7+8

» Algebraic: add some kind of halo to (complete) graph of
separator variables and call a graph partitioner (METIS)
[Amestoy et al., Napov]

Embedding HSS kernels in a multifrontal solver

HSS for frontal matrices:

Fully structured: HSS on the whole frontal
matrix. No dense matrix.

Partial+: HSS on the whole frontal matrix.
Dense frontal matrix.

Partially structured: HSS on the Fi1, F1o
and Fp1 parts only. Dense frontal matrix,
dense CB = Fyy — F21F1_11F12 in stack.

More complicated
Kiowsw s40y

v

Partially structured can do regular extend-add

v

In partially structured, HSS compression of dense matrix
After HSS compression, ULV factorization of Fi1 block
- Compared to classical LU in dense case

v

v

Low rank Schur complement update

HSS compression via randomized sampling

[Martinsson '11, Xia '13]

HSS compression of a matrix A.
Ingredients:
» R" and R random matrices with d columns
> d = r + p with r estimated max rank; p = 10 in practice
» S" = AR" and §¢ = AT R¢ samples of matrix A
Can benefit from a fast matvec

v

Interpolative Decomposition: A = A(:, J) X
A is linear combination of selected columns of A
Two sided ID: ST = ST (:, J)X and S'T = S"T(:, J)X",

v

A= X A(IS, INXT

HSS compression via randomized sampling — 2

Algorithm (symmetric): from fine to coarse do

» Leaf node 7:
1. Sample: Sioc = S(/;,:) — DR(I,:)
2. 1D: Sioc = Ur Sioc(Jr,2)
3. Update: S; = Sioc(Jr, 1)
R, = UT R(I,,")
L =1(J::)

» Inner node 7 with children vy, vs:

51/1 - A(IV17 /Vz) RVz
51/2 - A(/Vz’ IVI) Rl/1:|
2. ID: Sioc = Ur Sioc(Jr, 1)

3. Update: S; = Sioc(Jr, 1)

= UI [RVI; RVz]

= [hy 1,](J7,)

1. Sample: Sjoc =

=9

HSS compression via randomized sampling — 3

>

If A# AT, do this for columns as well (simultaneously)

/
Bases have special structure: U, =Tl lE]
-

Extract elements from frontal matrix:
D; = A(l;,1I;) and By, ,, = A(h,, L,)
Frontal matrix is combination of separator and HSS children

Extracting element from HSS matrix requires traversing the
HSS tree and multiplying basis matrices

Limiting number of tree traversals is crucial for performance

Benefits:

>

>

Extend-add operation is simplified: only on random vectors
Gains in complexity: O(r?Nlog N) iso O(rN?) for
non-randomized algorithm. log N due to extracting elements
from HSS matrix

Randomized sampling — extend-add

Assembly in regular multifrontal: F, = A, <> CB,, <}> CB,.
Sample:
Sp = FpRp = (Ap % CBq ‘% CBe,)Rp = ApRp $ Yo $ Yo

» | 1D extend-add (only along rows); much simpler

> Y, and Y., samples of CB of children.

» R, =Ry | Re, (+random rows for missing indices)
Stages:

» Build random vectors from random vectors of children

» Build sample from samples of CB of children

» Multiply separator part of frontal matrix with random vectors:

ApRp
» Compression of F, using S, and R,

HSS ULV factorization

» Exploit structure of U; (from ID) to introduce zero's

B I C[-E a7 o
oon (] n=[F o~ au-]

HSS ULV factorization

» Exploit structure of U; (from ID) to introduce zero's
B / C[-E AT ~Jo
wnf] an[E e e

95} Dy UiBioVy | Wi BioVy
Q| | VB V) D; T BV W,

HSS ULV factorization

» Exploit structure of U; (from ID) to introduce zero's

B I C[-E a7 o
o-n (] n=[F o~ au-]

95} Dy UiBioVy | Wi BioVy
Q| | VB V) D; T BV W,

» Take (full) LQ decomposition

Ly
Ly 0] Q- Wi, Q5 B2V Q1| [@
WT:{[]] N [Wi2Q5] [L122 5] [1 Qz}

WT;2 2
[B2aV Q] [We2Q3]

__m
|!
L L]

HSS ULV factorization

Exploit structure of U, (from ID) to introduce zero's

B I C[-E a7 o
v fl] a=[E nr o e =]

v

1951 D, BV | | W BiaVy
Q| | VBV D, BV W,
» Take (full) LQ decomposition

Ly
W, = [[LT 0] Qr] | e e e

WT;2 QZ:|

[B2,1 V| Q7] 2[W2;2Q§‘]
Rows for L, can be eliminated, others are passed to parent
At root node:

LU solve of reduced D

vy

|!
L L]

HSS ULV factorization

Exploit structure of U, (from ID) to introduce zero's

B I C[-E a7 o
v fl] a=[E nr o e =]

v

>
Q Dy BV | | wm Bio V"
Q| |UV:B21 V) D> T BV W
» Take (full) LQ decomposition

Ly
(LAt I i s [
[B2,1 V| Q7] [Wa2 Q5]

Rows for L, can be eliminated, others are passed to parent
At root node:

LU solve of reduced D
ULV-like: €2, not orthonormal,
forward /backward solve phases

vy

v

Low rank Schur complement update

Schur Complement update
Fa Fi2

Faz — FarFii Fia = Fop — UgBg Vi Fii' UkBig V|

v

Fi' via ULV solve
VI F U — O(rN?)

Dy is reduced HSS matrix O(r x r)

v

Foo — Uquk(\N/kTD_l Uk)qu VqT

VID0 — o)
Fop — W T v, o ~ O(rN)

v

Ug and V;: traverse g subtree

v

Cheap multiply with random vectors

Numerical example — general matrices

» GMRES(30) with right preconditioner
» Multifrontal with HSS vs ILUTP from SuperLU

_ T _ T
» b=(1,1,...)", x =(0,0,...)
» Stopping criterium: ||rgl2/||bll2 < 107°
» HSS compression tolerance: 10~°

fill-ratio factor (s) its

Matrix descr N rank HSS ILU HSS ILU HSS ILU
add32 circuit 4,690 0 2.1 1.3 0.01 0.01 1 2
mchIn85ks17 car tire 84,180 948 13.5 12.3 133.8 216.1 4 39
mhd500 plasma 250, 000 100 11.6 15.6 2.5 7.9 2 8
poli large economics 15,575 64 4.8 1.6 0.04 0.02 1 2
stomach bio eng. 213, 360 92 12.1 2.9 13.8 18.7 2 2
tdr190k accelerator 1,100, 242 596 14.1 - 629.2 - 7 -
torso3 bio eng. 259, 156 136 22.6 2.4 86.7 63.7 2 2
utm5940 tokamak 5,940 123 6.7 8.0 0.1 0.16 3 15
wang4 device 26, 068 385 45.3 23.1 4.4 6.4 3 4

Numerical example — tdr190k

> tdr190k: Maxwell equations in the frequency domain
» GMRES(30) convergence

tdr190k : accelerator cavity structure

10 ‘ ‘ ‘ ‘
‘‘‘‘‘ HSS(1.0e-4)
4 HSS(1.0e-5)
10 ?_\’./- % HSS(1.0e-6)[}
Tmomiay Nmim e, ia
1071+ -------------- i CE|
+
oL
8 afx+
0 10 Ezik]
= * *
g 1%+
210 % G :
Sl
IS TS
10 s +]
x +
) E +
10°F % *]
107 ‘ ‘ : ‘
L ~ - 0 80 100

Iterations

Parallel implementation

We have a serial code (StruMF [Napov 11-121)
» Some performance issues

- Currently generates random vectors for all nodes in e-tree
- How to estimate the rank? Currently guess and start over
when too small

Parallel implementation is a work in progress
» Distributed memory HSS compression of dense matrix
- MPI, BLACS, PBLAS, BLAS, LAPACK
» Shared memory multifrontal code

- OpenMP task parallelism for tree traversal for both elimination
tree and HSS tree
- Next step is parallel dense algebra

Parallel HSS compression — MPI code

> Topmost separator of a 3D problem,
generated with exact multifrontal method

k 100 200 300

N || 10,000 | 40,000 | 90,000

MPI processes / cores 64 256 1024

Nodes 4 16 64

Levels 6 7 8

Tolerance le-3 le-3 1-e3

Non-randomized (s) 8.3 51.5 | 1934

Randomized (s) 2.9 16.0 37.2

Dense LU ScaLAPACK (s) 4.2 57.6 175.9

» On 1024 cores

» achieved 5.3TFlops/s
» very good flop balance: min / max = 0.93
» 17% communication overhead

Task based parallel tree traversal — OpenMP

Postorder (leaf to root) tree traversal: handle siblings in parallel,
wait for children

void traverse(node* p) {
if (p—>left)
#pragma omp task
traverse(p->left);
if (p->right)
#pragma omp task
traverse(p->right);
#pragma omp taskwait
process(p->data) ;

3

» Run-time system schedules tasks to cores (work-stealing)
» Root node will be handled sequentially: scaling bottleneck

» Nested trees: node of nested dissection tree contains HSS tree

Task based parallel tree traversal — OpenMP

» HSS Compression of dense frontal matrix
TN 1 (N 1 1 W A 1 [[[

» Multifrontal

Blue: E-tree node, Red: HSS compression, Green: ULV-fact

» Extraction of elements from HSS matrix forms bottleneck
» Considering other runtime task schedulers

» Intel TBB, StarPU, Quark
» The Quark scheduler from PLASMA could allow integration of
PLASMA parallel (tiled) BLAS/LAPACK

Conclusions

» Developing an algebraic preconditioner for general
nonsymmetric matrices (from PDEs)
» HSS is restricted format, large gains possible for certain
applications, not for all
» Graph partitioning difficulties
- Separator not always just a plane/line, not always a single piece
- Bad for rank structure
» Some performance issues need to be addressed
» Separate distributed and shared memory codes
- How to combine in a hybrid MPI+X code?
» Prepare for next generation NERSC supercomputer
- Intel MIC based, > 60 cores

Conclusions

» Developing an algebraic preconditioner for general
nonsymmetric matrices (from PDEs)
» HSS is restricted format, large gains possible for certain
applications, not for all
» Graph partitioning difficulties
- Separator not always just a plane/line, not always a single piece
- Bad for rank structure
» Some performance issues need to be addressed
» Separate distributed and shared memory codes
- How to combine in a hybrid MPI+X code?
» Prepare for next generation NERSC supercomputer
- Intel MIC based, > 60 cores

Thank you! Questions?

