
A sparse multifrontal solver using hierarchically
semi-separable frontal matrices

Pieter Ghysels

Lawrence Berkeley National Laboratory

Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB),
François-Henry Rouet (LBNL)

2014 CBMS-NSF Conference:
Fast direct solvers for elliptic PDEs

June 23–29, 2014, Dartmouth College

Introduction

Consider solving

Ax = b or M−1A = M−1b

with a preconditioned iterative method (CG, GMRES, etc.)
I Fast convergence if good preconditioner M ≈ A is available

1. Cheap to construct, store, apply, parallelize
2. Good approximation of A

Contradictory goals → trade-off

I Standard design strategy
I Start with a direct factorization (like multifrontal LU)
I Add approximations to make it cheaper (cf. 1)

while (hopefully/provably) affecting little (2)
I Approximation idea: use low-rank approximation

The multifrontal method [Duff & Reid ’83]

I Nested dissection reordering defines an
elimination tree

- SCOTCH graph partitioner
I Bottom-up traversal of the e-tree
I At each frontal matrix, partial

factorization and computation of a
contribution block (Schur complement)

I Parent nodes “sum” the contribution
blocks of their children: extend-add

5

5
4

1
4
5

3
4

2
3

Elimination tree

Low-rank property

I In many applications, frontal matrices exhibit some low-rank
blocks (“data sparsity”)

I Compression with SVD, Rank-Revealing QR,. . .
- SVD: optimal but too expensive
- RRQR: QR with column pivoting

I Exact compression or with a compression threshold ε
I Recursively, diagonal blocks have low-rank subblocks too

- What to do with off-diagonal blocks?

Low-rank representations
Most low-rank representations belong to the class of H-matrices
[Bebendof, Börm, Hackbush, Grasedyck,. . .]. Embedded in both dense and
sparse solvers:

Hierarchically
Off-Diag. Low Rank
(HODLR)
[Ambikasaran, Cecka,
Darve. . .]

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

Hierarchically
Semiseparable (HSS)
[Chandrasekaran, Dewilde,
Gu, Li, Xia,. . .]
Nested basis.

Block-low rank (BLR)
[Amestoy et al.]
Simple 2D
partitioning. Recently
in MUMPS.

Also: H2 (includes HSS and FMM), SSS. . .
Choice: simple representations apply to broad classes of problems but
provide less gains in memory/operations than specialized/complex ones.

HSS/HBS representation

The structure is represented by a tree:

7

3

1 2

6

4 5

B1,2

B2,1

B4,5

B5,4

B3,6

B6,3

U1,V1
D1

U2,V2
D2

U4,V4
D4

U5,V5
D5

U3,V3 U6,V6

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

I Number of leaves depends on the problem (geometry) and
number of processors to be used.

I Building the HSS structure and all the usual operations
(multiplying. . .) consist of traversals of the tree.

Embedding low-rank techniques in a multifrontal solver

1. Choose which frontal matrices are compressed (size, level. . .)
2. Low-rankness: weak interactions between “distant” variables

=⇒ need suitable ordering/clustering of each frontal matrix
I Geometric setting (3D grid): 2D plane separator

I Need clusters with small diameters
I Hierarchical formats, merged clusters need small diameter too

Split domain into squares and order with Morton ordering

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1+2
+3+4

5+6
+7+8

9+10
+11+12

13+14
+15+16

I Algebraic: add some kind of halo to (complete) graph of
separator variables and call a graph partitioner (METIS)
[Amestoy et al., Napov]

Embedding HSS kernels in a multifrontal solver

HSS for frontal matrices:

M
or

e
co

m
pl

ica
te

d M
ore m

em
ory

Fully structured: HSS on the whole frontal
matrix. No dense matrix.
Partial+: HSS on the whole frontal matrix.
Dense frontal matrix.
Partially structured: HSS on the F11,F12
and F21 parts only. Dense frontal matrix,
dense CB = F22 − F21F −1

11 F12 in stack.

F21

F12F11

F22

I Partially structured can do regular extend-add
I In partially structured, HSS compression of dense matrix
I After HSS compression, ULV factorization of F11 block

- Compared to classical LU in dense case
I Low rank Schur complement update

HSS compression via randomized sampling
[Martinsson ’11, Xia ’13]

HSS compression of a matrix A.
Ingredients:

I R r and Rc random matrices with d columns
I d = r + p with r estimated max rank; p = 10 in practice
I Sr = AR r and Sc = AT Rc samples of matrix A

Can benefit from a fast matvec
I Interpolative Decomposition: A = A(:, J) X

A is linear combination of selected columns of A
I Two sided ID: Sc T = Sc T (:, Jc)X c and Sr T = Sr T (:, J r)X r ,

A = X cA(Ic , I r)X r T

HSS compression via randomized sampling – 2

Algorithm (symmetric): from fine to coarse do

I Leaf node τ :
1. Sample: Sloc = S(Iτ , :)− D R(Iτ , :)
2. ID: Sloc = Uτ Sloc(Jτ , :)
3. Update: Sτ = Sloc(Jτ , :)

Rτ = UT
τ R(Iτ , :)

Iτ = Iτ (Jτ , :)

I Inner node τ with children ν1, ν2:
1. Sample: Sloc =

[
Sν1 − A(Iν1 , Iν2) Rν2

Sν2 − A(Iν2 , Iν1) Rν1

]
2. ID: Sloc = Uτ Sloc(Jτ , :)
3. Update: Sτ = Sloc(Jτ , :)

Rτ = UT
τ [Rν1 ; Rν2]

Iτ = [Iν1 Iν2](Jτ , :)

HSS compression via randomized sampling – 3

I If A 6= AT , do this for columns as well (simultaneously)

I Bases have special structure: Uτ = Πτ

[
I

Eτ

]
I Extract elements from frontal matrix:

Dτ = A(Iτ , Iτ) and Bν1,ν2 = A(Iν1 , Iν2)
I Frontal matrix is combination of separator and HSS children
I Extracting element from HSS matrix requires traversing the

HSS tree and multiplying basis matrices
I Limiting number of tree traversals is crucial for performance

Benefits:
I Extend-add operation is simplified: only on random vectors
I Gains in complexity: O(r2N logN) iso O(rN2) for

non-randomized algorithm. logN due to extracting elements
from HSS matrix

Randomized sampling – extend-add

Assembly in regular multifrontal: Fp = Ap l↔ CBc1 l↔ CBc2 .
Sample:
Sp = FpRp = (Ap l↔ CBc1 l↔ CBc2)Rp = ApRp l Yc1 l Yc2

I l 1D extend-add (only along rows); much simpler
I Yc1 and Yc2 samples of CB of children.
I Rp = Rc1 l Rc2 (+random rows for missing indices)

Stages:
I Build random vectors from random vectors of children
I Build sample from samples of CB of children
I Multiply separator part of frontal matrix with random vectors:

ApRp
I Compression of Fp using Sp and Rp

HSS ULV factorization
I Exploit structure of Uτ (from ID) to introduce zero’s

Uτ = Πτ

[
I

Eτ

]
, Ωτ =

[
−Eτ I

I 0

]
ΠT
τ → ΩτUτ =

[
0
I

]

I [
Ω1

Ω2

] [
D1 U1B1,2V T

2
U2B2,1V T

1 D2

]
=
[

W1 B1,2V T
2

B2,1V T
1 W2

]
I Take (full) LQ decomposition

Wτ =
[[

Lτ 0
]

Qτ
Wτ ;2

]
→

L1
[W1;2Q∗

1] [B1,2V T
2 Q∗

2]
L2

[B2,1V T
1 Q∗

1] [W2;2Q∗
2]

 [Q1
Q2

]
I Rows for Lτ can be eliminated, others are passed to parent
I At root node:

LU solve of reduced D̃
I ULV-like: Ωτ not orthonormal,

forward/backward solve phases

U1B2;1V2
T

U2B1;2V1
T

D1

D2

W1;1

W1;2

W2;1

W2;2

B2;1V2
T

B1;2V1
T

B2;1V2
TQ2

B1;2V1
TQ1

W1;2,1

L1

L2

W2;2,1

HSS ULV factorization
I Exploit structure of Uτ (from ID) to introduce zero’s

Uτ = Πτ

[
I

Eτ

]
, Ωτ =

[
−Eτ I

I 0

]
ΠT
τ → ΩτUτ =

[
0
I

]
I [

Ω1
Ω2

] [
D1 U1B1,2V T

2
U2B2,1V T

1 D2

]
=
[

W1 B1,2V T
2

B2,1V T
1 W2

]

I Take (full) LQ decomposition

Wτ =
[[

Lτ 0
]

Qτ
Wτ ;2

]
→

L1
[W1;2Q∗

1] [B1,2V T
2 Q∗

2]
L2

[B2,1V T
1 Q∗

1] [W2;2Q∗
2]

 [Q1
Q2

]
I Rows for Lτ can be eliminated, others are passed to parent
I At root node:

LU solve of reduced D̃
I ULV-like: Ωτ not orthonormal,

forward/backward solve phases

U1B2;1V2
T

U2B1;2V1
T

D1

D2

W1;1

W1;2

W2;1

W2;2

B2;1V2
T

B1;2V1
T

B2;1V2
TQ2

B1;2V1
TQ1

W1;2,1

L1

L2

W2;2,1

HSS ULV factorization
I Exploit structure of Uτ (from ID) to introduce zero’s

Uτ = Πτ

[
I

Eτ

]
, Ωτ =

[
−Eτ I

I 0

]
ΠT
τ → ΩτUτ =

[
0
I

]
I [

Ω1
Ω2

] [
D1 U1B1,2V T

2
U2B2,1V T

1 D2

]
=
[

W1 B1,2V T
2

B2,1V T
1 W2

]
I Take (full) LQ decomposition

Wτ =
[[

Lτ 0
]

Qτ
Wτ ;2

]
→

L1
[W1;2Q∗

1] [B1,2V T
2 Q∗

2]
L2

[B2,1V T
1 Q∗

1] [W2;2Q∗
2]

 [Q1
Q2

]

I Rows for Lτ can be eliminated, others are passed to parent
I At root node:

LU solve of reduced D̃
I ULV-like: Ωτ not orthonormal,

forward/backward solve phases

U1B2;1V2
T

U2B1;2V1
T

D1

D2

W1;1

W1;2

W2;1

W2;2

B2;1V2
T

B1;2V1
T

B2;1V2
TQ2

B1;2V1
TQ1

W1;2,1

L1

L2

W2;2,1

HSS ULV factorization
I Exploit structure of Uτ (from ID) to introduce zero’s

Uτ = Πτ

[
I

Eτ

]
, Ωτ =

[
−Eτ I

I 0

]
ΠT
τ → ΩτUτ =

[
0
I

]
I [

Ω1
Ω2

] [
D1 U1B1,2V T

2
U2B2,1V T

1 D2

]
=
[

W1 B1,2V T
2

B2,1V T
1 W2

]
I Take (full) LQ decomposition

Wτ =
[[

Lτ 0
]

Qτ
Wτ ;2

]
→

L1
[W1;2Q∗

1] [B1,2V T
2 Q∗

2]
L2

[B2,1V T
1 Q∗

1] [W2;2Q∗
2]

 [Q1
Q2

]
I Rows for Lτ can be eliminated, others are passed to parent
I At root node:

LU solve of reduced D̃

I ULV-like: Ωτ not orthonormal,
forward/backward solve phases

U1B2;1V2
T

U2B1;2V1
T

D1

D2

W1;1

W1;2

W2;1

W2;2

B2;1V2
T

B1;2V1
T

B2;1V2
TQ2

B1;2V1
TQ1

W1;2,1

L1

L2

W2;2,1

HSS ULV factorization
I Exploit structure of Uτ (from ID) to introduce zero’s

Uτ = Πτ

[
I

Eτ

]
, Ωτ =

[
−Eτ I

I 0

]
ΠT
τ → ΩτUτ =

[
0
I

]
I [

Ω1
Ω2

] [
D1 U1B1,2V T

2
U2B2,1V T

1 D2

]
=
[

W1 B1,2V T
2

B2,1V T
1 W2

]
I Take (full) LQ decomposition

Wτ =
[[

Lτ 0
]

Qτ
Wτ ;2

]
→

L1
[W1;2Q∗

1] [B1,2V T
2 Q∗

2]
L2

[B2,1V T
1 Q∗

1] [W2;2Q∗
2]

 [Q1
Q2

]
I Rows for Lτ can be eliminated, others are passed to parent
I At root node:

LU solve of reduced D̃
I ULV-like: Ωτ not orthonormal,

forward/backward solve phases

U1B2;1V2
T

U2B1;2V1
T

D1

D2

W1;1

W1;2

W2;1

W2;2

B2;1V2
T

B1;2V1
T

B2;1V2
TQ2

B1;2V1
TQ1

W1;2,1

L1

L2

W2;2,1

Low rank Schur complement update
Schur Complement update

F22 − F21F −1
11 F12 = F22 −

F21︷ ︸︸ ︷
UqBqkV T

k F −1
11

F12︷ ︸︸ ︷
UkBkqV T

q

I F −1
11 via ULV solve

V T
k F −1

11 Uk → O(rN2)

I D̃k is reduced HSS matrix O(r × r)

F22 − UqBqk(Ṽ T
k D̃−1Ũk)BkqV T

q

Ṽ T
k D̃−1Ũk → O(r3)

F22 −ΨΦT Ψ,Φ ∼ O(rN)
I Uq and Vq: traverse q subtree
I Cheap multiply with random vectors

F11 F12

F21 F22

k q

Numerical example – general matrices
I GMRES(30) with right preconditioner
I Multifrontal with HSS vs ILUTP from SuperLU
I b = (1, 1, . . .)T , x0 = (0, 0, . . .)T

I Stopping criterium: ‖rk‖2/‖b‖2 ≤ 10−6

I HSS compression tolerance: 10−6

fill-ratio factor (s) its
Matrix descr N rank HSS ILU HSS ILU HSS ILU
add32 circuit 4, 690 0 2.1 1.3 0.01 0.01 1 2
mchln85ks17 car tire 84, 180 948 13.5 12.3 133.8 216.1 4 39
mhd500 plasma 250, 000 100 11.6 15.6 2.5 7.9 2 8
poli large economics 15, 575 64 4.8 1.6 0.04 0.02 1 2
stomach bio eng. 213, 360 92 12.1 2.9 13.8 18.7 2 2
tdr190k accelerator 1, 100, 242 596 14.1 - 629.2 - 7 -
torso3 bio eng. 259, 156 136 22.6 2.4 86.7 63.7 2 2
utm5940 tokamak 5, 940 123 6.7 8.0 0.1 0.16 3 15
wang4 device 26, 068 385 45.3 23.1 4.4 6.4 3 4

Numerical example – tdr190k

I tdr190k: Maxwell equations in the frequency domain
I GMRES(30) convergence

Parallel implementation

We have a serial code (StruMF [Napov 11’-12’])
I Some performance issues

- Currently generates random vectors for all nodes in e-tree
- How to estimate the rank? Currently guess and start over
when too small

Parallel implementation is a work in progress
I Distributed memory HSS compression of dense matrix

- MPI, BLACS, PBLAS, BLAS, LAPACK
I Shared memory multifrontal code

- OpenMP task parallelism for tree traversal for both elimination
tree and HSS tree

- Next step is parallel dense algebra

Parallel HSS compression – MPI code

I Topmost separator of a 3D problem,
generated with exact multifrontal method

k 100 200 300
N 10,000 40,000 90,000

MPI processes / cores 64 256 1024
Nodes 4 16 64
Levels 6 7 8

Tolerance 1e-3 1e-3 1-e3
Non-randomized (s) 8.3 51.5 193.4

Randomized (s) 2.9 16.0 37.2
Dense LU ScaLAPACK (s) 4.2 57.6 175.9

I On 1024 cores
I achieved 5.3TFlops/s
I very good flop balance: min /max = 0.93
I 17% communication overhead

Task based parallel tree traversal – OpenMP
Postorder (leaf to root) tree traversal: handle siblings in parallel,
wait for children

void traverse(node* p) {
if (p->left)

#pragma omp task
traverse(p->left);

if (p->right)
#pragma omp task

traverse(p->right);
#pragma omp taskwait
process(p->data);

}

I Run-time system schedules tasks to cores (work-stealing)
I Root node will be handled sequentially: scaling bottleneck
I Nested trees: node of nested dissection tree contains HSS tree

Task based parallel tree traversal – OpenMP
I HSS Compression of dense frontal matrix

 0

 1

 2

 3

 4

 5

 0 0.5 1 1.5 2 2.5 3

th
re

a
d
 I
D

time (s)

I Multifrontal

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6

th
re

a
d
 I
D

time (s)

Blue: E-tree node, Red: HSS compression, Green: ULV-fact

I Extraction of elements from HSS matrix forms bottleneck
I Considering other runtime task schedulers

I Intel TBB, StarPU, Quark
I The Quark scheduler from PLASMA could allow integration of

PLASMA parallel (tiled) BLAS/LAPACK

Conclusions
I Developing an algebraic preconditioner for general

nonsymmetric matrices (from PDEs)
I HSS is restricted format, large gains possible for certain

applications, not for all
I Graph partitioning difficulties

- Separator not always just a plane/line, not always a single piece
- Bad for rank structure

I Some performance issues need to be addressed
I Separate distributed and shared memory codes

- How to combine in a hybrid MPI+X code?
I Prepare for next generation NERSC supercomputer

- Intel MIC based, > 60 cores

Thank you! Questions?

Conclusions
I Developing an algebraic preconditioner for general

nonsymmetric matrices (from PDEs)
I HSS is restricted format, large gains possible for certain

applications, not for all
I Graph partitioning difficulties

- Separator not always just a plane/line, not always a single piece
- Bad for rank structure

I Some performance issues need to be addressed
I Separate distributed and shared memory codes

- How to combine in a hybrid MPI+X code?
I Prepare for next generation NERSC supercomputer

- Intel MIC based, > 60 cores

Thank you! Questions?

