A sparse multifrontal solver using hierarchically semi-separable frontal matrices

Pieter Ghysels

Lawrence Berkeley National Laboratory

Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB), François-Henry Rouet (LBNL)

2014 CBMS-NSF Conference: Fast direct solvers for elliptic PDEs June 23–29, 2014, Dartmouth College

Introduction

Consider solving

$$Ax = b$$
 or $M^{-1}A = M^{-1}b$

with a preconditioned iterative method (CG, GMRES, etc.)

- Fast convergence if good preconditioner $M \approx A$ is available
 - 1. Cheap to construct, store, apply, parallelize
 - 2. Good approximation of A

Contradictory goals \rightarrow trade-off

- Standard design strategy
 - Start with a direct factorization (like multifrontal LU)

- Add approximations to make it cheaper (cf. 1) while (hopefully/provably) affecting little (2)
- Approximation idea: use low-rank approximation

The multifrontal method [Duff & Reid '83]

- Nested dissection reordering defines an elimination tree
 - SCOTCH graph partitioner
- Bottom-up traversal of the e-tree
- At each frontal matrix, partial factorization and computation of a contribution block (Schur complement)
- Parent nodes "sum" the contribution blocks of their children: extend-add

Low-rank property

- In many applications, frontal matrices exhibit some low-rank blocks ("data sparsity")
- Compression with SVD, Rank-Revealing QR,...
 - SVD: optimal but too expensive
 - RRQR: QR with column pivoting
- Exact compression or with a compression threshold ε
- Recursively, diagonal blocks have low-rank subblocks too

- What to do with off-diagonal blocks?

Low-rank representations

Most low-rank representations belong to the class of \mathcal{H} -matrices [Bebendof, Börm, Hackbush, Grasedyck,...]. Embedded in both dense and sparse solvers:

Hierarchically Off-Diag. Low Rank (HODLR) [Ambikasaran, Cecka, Darve...]

Hierarchically Semiseparable (HSS) [Chandrasekaran, Dewilde, Gu, Li, Xia,...] Nested basis.

Block-low rank (BLR) [Amestoy et al.] Simple 2D partitioning. Recently in MUMPS.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Also: \mathcal{H}^2 (includes HSS and FMM), SSS... Choice: simple representations apply to broad classes of problems but provide less gains in memory/operations than specialized/complex ones.

HSS/HBS representation

The structure is represented by a tree:

- Number of leaves depends on the problem (geometry) and number of processors to be used.
- Building the HSS structure and all the usual operations (multiplying...) consist of traversals of the tree.

Embedding low-rank techniques in a multifrontal solver

- 1. Choose which frontal matrices are compressed (size, level...)
- 2. Low-rankness: weak interactions between "distant" variables
 - \implies need suitable ordering/clustering of each frontal matrix
 - ► Geometric setting (3D grid): 2D plane separator
 - Need clusters with small diameters
 - Hierarchical formats, merged clusters need small diameter too

Split domain into squares and order with Morton ordering

$9+10 \\ +11+12$	$13+14 \\ +15+16$
1+2 + 3+4	5+6 +7+8

 Algebraic: add some kind of halo to (complete) graph of separator variables and call a graph partitioner (METIS) [Amestoy et al., Napov]

Embedding HSS kernels in a multifrontal solver

HSS for frontal matrices:

More complicated

More memory

Fully structured: HSS on the whole frontal matrix. No dense matrix. Partial+: HSS on the whole frontal matrix. Dense frontal matrix. Partially structured: HSS on the F_{11} , F_{12}

and F_{21} parts only. Dense frontal matrix, dense $CB = F_{22} - F_{21}F_{11}^{-1}F_{12}$ in stack.

- Partially structured can do regular extend-add
- In partially structured, HSS compression of dense matrix
- After HSS compression, ULV factorization of F_{11} block
 - Compared to classical LU in dense case
- Low rank Schur complement update

HSS compression via randomized sampling

[Martinsson '11, Xia '13]

HSS compression of a matrix A.

Ingredients:

- R^r and R^c random matrices with d columns
- d = r + p with r estimated max rank; p = 10 in practice
- S^r = AR^r and S^c = A^TR^c samples of matrix A
 Can benefit from a fast matvec
- Interpolative Decomposition: A = A(:, J) X
 A is linear combination of selected columns of A
- ► Two sided ID: $S^{cT} = S^{cT}(:, J^c)X^c$ and $S^{rT} = S^{rT}(:, J^r)X^r$,

$$A = X^{c} A(I^{c}, I^{r}) X^{rT}$$

HSS compression via randomized sampling - 2

Algorithm (symmetric): from fine to coarse do

► Leaf node
$$\tau$$
:
1. Sample: $S_{loc} = S(I_{\tau}, :) - DR(I_{\tau}, :)$
2. ID: $S_{loc} = U_{\tau} S_{loc}(J_{\tau}, :)$
3. Update: $S_{\tau} = S_{loc}(J_{\tau}, :)$
 $R_{\tau} = U_{\tau}^{T} R(I_{\tau}, :)$
 $I_{\tau} = I_{\tau}(J_{\tau}, :)$

► Inner node
$$\tau$$
 with children ν_1 , ν_2 :
1. Sample: $S_{loc} = \begin{bmatrix} S_{\nu_1} - A(I_{\nu_1}, I_{\nu_2}) R_{\nu_2} \\ S_{\nu_2} - A(I_{\nu_2}, I_{\nu_1}) R_{\nu_1} \end{bmatrix}$
2. ID: $S_{loc} = U_{\tau} S_{loc}(J_{\tau}, :)$
3. Update: $S_{\tau} = S_{loc}(J_{\tau}, :)$
 $R_{\tau} = U_{\tau}^T [R_{\nu_1}; R_{\nu_2}]$
 $I_{\tau} = [I_{\nu_1}I_{\nu_2}](J_{\tau}, :)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

HSS compression via randomized sampling - 3

- If $A \neq A^T$, do this for columns as well (simultaneously)
- Bases have special structure: $U_{\tau} = \Pi_{\tau} \begin{vmatrix} I \\ E_{\tau} \end{vmatrix}$
- Extract elements from frontal matrix: $D_{\tau} = A(I_{\tau}, I_{\tau})$ and $B_{\nu_1, \nu_2} = A(I_{\nu_1}, I_{\nu_2})$
- Frontal matrix is combination of separator and HSS children
- Extracting element from HSS matrix requires traversing the HSS tree and multiplying basis matrices
- Limiting number of tree traversals is crucial for performance

Benefits:

- Extend-add operation is simplified: only on random vectors
- ► Gains in complexity: O(r²N log N) iso O(rN²) for non-randomized algorithm. log N due to extracting elements from HSS matrix

Randomized sampling - extend-add

Assembly in regular multifrontal: $F_p = A_p \Leftrightarrow CB_{c_1} \Leftrightarrow CB_{c_2}$. Sample:

$$S_{\rho} = F_{\rho}R_{\rho} = (A_{\rho} \Leftrightarrow CB_{c_{1}} \Leftrightarrow CB_{c_{2}})R_{\rho} = A_{\rho}R_{\rho} \downarrow Y_{c_{1}} \downarrow Y_{c_{2}}$$

- 1D extend-add (only along rows); much simpler
- Y_{c_1} and Y_{c_2} samples of CB of children.

► $R_p = R_{c_1} \ddagger R_{c_2}$ (+random rows for missing indices) Stages:

- Build random vectors from random vectors of children
- Build sample from samples of CB of children
- Multiply separator part of frontal matrix with random vectors: $A_p R_p$
- Compression of F_p using S_p and R_p

• Exploit structure of U_{τ} (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Exploit structure of U_{τ} (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \rightarrow \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$
$$\begin{bmatrix} \Omega_{1} & \\ \Omega_{2} \end{bmatrix} \begin{bmatrix} D_{1} & U_{1}B_{1,2}V_{2}^{T} \\ U_{2}B_{2,1}V_{1}^{T} & D_{2} \end{bmatrix} = \begin{bmatrix} W_{1} & B_{1,2}V_{2}^{T} \\ B_{2,1}V_{1}^{T} & W_{2} \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Exploit structure of U_{τ} (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \rightarrow \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$
$$\begin{bmatrix} \Omega_{1} & \\ \Omega_{2} \end{bmatrix} \begin{bmatrix} D_{1} & U_{1}B_{1,2}V_{2}^{T} \\ U_{2}B_{2,1}V_{1}^{T} & D_{2} \end{bmatrix} = \begin{bmatrix} W_{1} & B_{1,2}V_{2}^{T} \\ B_{2,1}V_{1}^{T} & W_{2} \end{bmatrix}$$

Take (full) LQ decomposition

$$W_{\tau} = \begin{bmatrix} \begin{bmatrix} L_{\tau} & 0 \end{bmatrix} Q_{\tau} \\ W_{\tau;2} \end{bmatrix} \to \begin{bmatrix} L_{1} & B_{1,2}V_{2}^{T}Q_{2}^{*} \\ & L_{2} \\ B_{2,1}V_{1}^{T}Q_{1}^{*} \end{bmatrix} \begin{bmatrix} Q_{1} & \\ & Q_{2} \end{bmatrix}$$

• Exploit structure of U_{τ} (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \rightarrow \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$
$$\begin{bmatrix} \Omega_{1} & & \\ \Omega_{2} \end{bmatrix} \begin{bmatrix} D_{1} & U_{1}B_{1,2}V_{2}^{T} \\ U_{2}B_{2,1}V_{1}^{T} & D_{2} \end{bmatrix} = \begin{bmatrix} W_{1} & B_{1,2}V_{2}^{T} \\ B_{2,1}V_{1}^{T} & W_{2} \end{bmatrix}$$

Take (full) LQ decomposition

$$W_{\tau} = \begin{bmatrix} \begin{bmatrix} L_{\tau} & 0 \end{bmatrix} Q_{\tau} \\ W_{\tau;2} \end{bmatrix} \to \begin{bmatrix} L_{1} & B_{1,2}V_{2}^{T}Q_{2}^{*} \\ L_{2} \\ B_{2,1}V_{1}^{T}Q_{1}^{*} \end{bmatrix} \begin{bmatrix} Q_{1} & D_{2} \\ W_{2;2}Q_{2}^{*} \end{bmatrix} \begin{bmatrix} Q_{1} & D_{2} \end{bmatrix}$$

 \blacktriangleright Rows for L_{τ} can be eliminated, others are passed to parent

At root node:

LU solve of reduced \tilde{D}

• Exploit structure of U_{τ} (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \rightarrow \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$
$$\begin{bmatrix} \Omega_{1} & \\ \Omega_{2} \end{bmatrix} \begin{bmatrix} D_{1} & U_{1}B_{1,2}V_{2}^{T} \\ U_{2}B_{2,1}V_{1}^{T} & D_{2} \end{bmatrix} = \begin{bmatrix} W_{1} & B_{1,2}V_{2}^{T} \\ B_{2,1}V_{1}^{T} & W_{2} \end{bmatrix}$$

Take (full) LQ decomposition

$$W_{\tau} = \begin{bmatrix} \begin{bmatrix} L_{\tau} & 0 \end{bmatrix} Q_{\tau} \\ W_{\tau;2} \end{bmatrix} \rightarrow \begin{bmatrix} L_{1} & B_{1,2}V_{2}^{\top}Q_{2}^{*} \\ L_{2} \\ \begin{bmatrix} B_{2,1}V_{1}^{\top}Q_{1}^{*} \end{bmatrix} \begin{bmatrix} W_{2;2}Q_{2}^{*} \end{bmatrix} \begin{bmatrix} Q_{1} & Q_{2} \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ Rows for L_{τ} can be eliminated, others are passed to parent
- At root node:

LU solve of reduced \tilde{D}

 ULV-like: Ω_τ not orthonormal, forward/backward solve phases

Low rank Schur complement update

Schur Complement update

$$F_{22} - F_{21}F_{11}^{-1}F_{12} = F_{22} - \overbrace{U_q B_{qk} V_k^T}^{F_{21}} F_{11}^{-1} \overbrace{U_k B_{kq} V_q^T}^{F_{12}}$$

• F_{11}^{-1} via ULV solve

 $V_k^T F_{11}^{-1} U_k \to \mathcal{O}(rN^2)$

$$\begin{split} \bullet \quad \tilde{D}_k \text{ is reduced HSS matrix } \mathcal{O}(r \times r) \\ F_{22} - U_q B_{qk} (\tilde{V}_k^T \tilde{D}^{-1} \tilde{U}_k) B_{kq} V_q^T \\ \quad \tilde{V}_k^T \tilde{D}^{-1} \tilde{U}_k \to \mathcal{O}(r^3) \\ F_{22} - \Psi \Phi^T \qquad \Psi, \Phi \sim \mathcal{O}(rN) \end{split}$$

U_q and V_q: traverse q subtree
 Cheap multiply with random vectors

Numerical example – general matrices

- GMRES(30) with right preconditioner
- Multifrontal with HSS vs ILUTP from SuperLU
- $b = (1, 1, ...)^T$, $x_0 = (0, 0, ...)^T$
- Stopping criterium: $||r_k||_2/||b||_2 \le 10^{-6}$
- HSS compression tolerance: 10^{-6}

				fill-ratio		factor (s)		its	
Matrix	descr	N	rank	HSS	ILU	HSS	ILU	HSS	ILU
add32	circuit	4,690	0	2.1	1.3	0.01	0.01	1	2
mchln85ks17	car tire	84, 180	948	13.5	12.3	133.8	216.1	4	39
mhd500	plasma	250,000	100	11.6	15.6	2.5	7.9	2	8
poli large	economics	15, 575	64	4.8	1.6	0.04	0.02	1	2
stomach	bio eng.	213, 360	92	12.1	2.9	13.8	18.7	2	2
tdr190k	accelerator	1,100,242	596	14.1	-	629.2	-	7	-
torso3	bio eng.	259, 156	136	22.6	2.4	86.7	63.7	2	2
utm5940	tokamak	5,940	123	6.7	8.0	0.1	0.16	3	15
wang4	device	26,068	385	45.3	23.1	4.4	6.4	3	4

Numerical example – tdr190k

- tdr190k: Maxwell equations in the frequency domain
- GMRES(30) convergence

Parallel implementation

We have a serial code (StruMF [Napov 11'-12'])

- Some performance issues
 - Currently generates random vectors for all nodes in e-tree
 - How to estimate the rank? Currently guess and start over when too small

Parallel implementation is a work in progress

- Distributed memory HSS compression of dense matrix
 - MPI, BLACS, PBLAS, BLAS, LAPACK
- Shared memory multifrontal code
 - OpenMP task parallelism for tree traversal for both elimination tree and HSS tree

- Next step is parallel dense algebra

Parallel HSS compression – MPI code

 Topmost separator of a 3D problem, generated with exact multifrontal method

k	100	200	300
N	10,000	40,000	90,000
MPI processes / cores	64	256	1024
Nodes	4	16	64
Levels	6	7	8
Tolerance	1e-3	1e-3	1-e3
Non-randomized (s)	8.3	51.5	193.4
Randomized (s)	2.9	16.0	37.2
Dense LU ScaLAPACK (s)	4.2	57.6	175.9

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On 1024 cores

- achieved 5.3TFlops/s
- very good flop balance: min / max = 0.93
- 17% communication overhead

Task based parallel tree traversal – OpenMP

Postorder (leaf to root) tree traversal: handle siblings in parallel, wait for children

```
void traverse(node* p) {
    if (p->left)
        #pragma omp task
        traverse(p->left);
    if (p->right)
        #pragma omp task
        traverse(p->right);
    #pragma omp taskwait
    process(p->data);
}
```

- Run-time system schedules tasks to cores (work-stealing)
- Root node will be handled sequentially: scaling bottleneck
- Nested trees: node of nested dissection tree contains HSS tree

Task based parallel tree traversal – OpenMP

HSS Compression of dense frontal matrix

Blue: E-tree node, Red: HSS compression, Green: ULV-fact

- Extraction of elements from HSS matrix forms bottleneck
- Considering other runtime task schedulers
 - ► Intel TBB, StarPU, Quark
 - The Quark scheduler from PLASMA could allow integration of PLASMA parallel (tiled) BLAS/LAPACK

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Conclusions

- Developing an algebraic preconditioner for general nonsymmetric matrices (from PDEs)
- HSS is restricted format, large gains possible for certain applications, not for all
- Graph partitioning difficulties
 - Separator not always just a plane/line, not always a single piece

- Bad for rank structure
- Some performance issues need to be addressed
- Separate distributed and shared memory codes
 - How to combine in a hybrid MPI+X code?
- Prepare for next generation NERSC supercomputer
 - Intel MIC based, > 60 cores

Conclusions

- Developing an algebraic preconditioner for general nonsymmetric matrices (from PDEs)
- HSS is restricted format, large gains possible for certain applications, not for all
- Graph partitioning difficulties
 - Separator not always just a plane/line, not always a single piece
 - Bad for rank structure
- Some performance issues need to be addressed
- Separate distributed and shared memory codes
 - How to combine in a hybrid MPI+X code?
- Prepare for next generation NERSC supercomputer
 - Intel MIC based, > 60 cores

Thank you! Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●