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Introduction

Cavity structures exist in many electromagnetic applications

Figure : F16 exhaust nozzle, from: f16model.blogspot.com
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Conclusion

Geometry

Consider the 2D wave scattering from a cavity embedded in the
ground plane
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Figure : Geometry of the problem
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Formulation

Assumption: permittivity ε0, permeability µ0 are constant
everywhere
Plane wave incidence:

uinc = ei(k0 cos θx−k0 sin θy)

Total field u has the form:

u(x , y) = us(x , y) + uinc − ei(k0 cos θx+k0 sin θy)

Total field u satisfies the equation:

∆u + k2u = 0 in Ω1 ∪ R2
+

where k = ω
√
ε0µ0 is the wavenumber.
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Helmholtz Equation

The scattered wave satisfies the Helmholtz equation:{
∆us + k2us = 0 in Ω1 ∪ R2

+

us = g on Γ ∪ Γc (1)

along with the Sommerfeld radiation condition (2), where
g = −(ui + ur ), along with the Sommerfeld radiation condition

lim
r→∞

√
r
(
∂us

∂r
− ikus

)
= 0 (2)

Approach to find us: Integral formulation.
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Preliminary

Let

Φ(x,y) =
i
4

H(1)
0 (k |x− y|) (3)

ΦH(x,y) =
i
4

H(1)
0 (k |x− y|)− i

4
H(1)

0 (k |x− y′|) (4)

and SH and DH are the single layer and double layer operators
in the half-space:

SH
Γ1
σ =

∫
Γ1

ΦH(x,y)σ(y)dsy (5)

DH
Γ1
µ =

∫
Γ1

∂ΦH(x,y)

∂n(y)
µ(y)dsy. (6)
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Integral Formulation

Assume Γ1 is an artificial boundary that covers the cavity Ω1. A
natural formulation to represent the exterior field us is:

us = SH
Γ1
σ +DH

Γ1
µ, for x ∈ R2

+\Ω1 (7)

The scattered field us in Ω1 is represented by

us = SΓ1σ +DΓ1µ+DBµ+DΓµ for x ∈ Ω1 (8)
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Integral equation

Combining the boundary condition and jump condition from
layer potentials yields

µ− SΓ2σ −DΓ2µ−DBµ−DΓµ = 0, for x ∈ Γ1
σ +NΓ2σ + TΓ2µ+ TBµ+ TΓµ = 0, for x ∈ Γ1
−1

2µ+ SΓ1σ +DΓ1µ+DBµ+DΓµ = g, for x ∈ Γ ∪ B
(9)

i.e.

A =


−1/2 D D S
D −1/2 +D D S
−D −D 1−D′ S ′
T T T ′ 1 +N ′



µB
µΓ

µΓ1

σΓ1

 (10)

where

NΓσ =

∫
Γ

∂Φ(x,y)

∂n(x)
σ(y)dsy (11)

TΓµ =

∫
Γ

∂2Φ(x,y)

∂n(x)∂n(y)
µ(y)dsy (12)
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Numerical result

The formulation is not Fredholm equation of second kind.
Numerically it is difficult to discretize TBµ to high order.

Table : Results for pot shaped cavity at different wavenumber

k 1 10 20 40 80 160
Error 10−6 10−7 10−7 10−7 10−6 10−6
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New formulation

We therefore propose the following formulation:{
us = SH

Γ1
σ +DH

Γ1
µ+DBµ, for x ∈ R2

+\Ω1

us = SH
Γ1
σ +DH

Γ1
µ+DBµ+DΓµ, for x ∈ Ω1

(13)

Compared to the old formulation:

us =

{ SH
Γ1
σ +DH

Γ1
µ, for x ∈ R2

+\Ω1

SΓ1σ +DΓ1µ+DBµ+DΓµ for x ∈ Ω1
(14)

we add some non-physical terms in the new formulation.
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Integral equation

The new formulation leads to the following integral equation:
µ−DΓµ = 0, for x ∈ Γ1
σ + TΓµ = 0, for x ∈ Γ1

−1
2µ+ SH

Γ1
σ +DH

Γ1
µ+DBµ+DΓµ = g, for x ∈ B ∪ Γ

Advantage: the system is still second kind. More importantly,
there is no hypersingular term anymore. One can even
eliminate µ and σ on Γ1 by hand and reduce the unknown to µ
on B ∪ Γ only.
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Well-posedness

We have the following uniqueness result:

Theorem
Given k > 0, the following system

µ−DΓµ = 0, for x ∈ Γ1
σ + TΓµ = 0, for x ∈ Γ1

−1
2µ+ SH

Γ1
σ +DH

Γ1
µ+DBµ+DΓµ = 0, for x ∈ B ∪ Γ

only has a zero solution for µ ∈ C(B) ∪ C(Γ) ∪ C(Γ1) and
σ ∈ C(Γ1).

from which the existence of the solution follows.
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Discretization

In our numerical simulation, we apply Nyström discetization to
the integral equation. In other words, we replace the integral∫

Γ
K (x,y)σ(y)dSy (15)

by the quadrature

N∑
i=1

p∑
j=1

K(xl,m,yi,j)σ(yi,j)wl,m,i,j (16)

where xl,m is the m-th Gauss-Legendre node on panel l , yi,j is
the j-th Gauss-Legendre node on panel i , wl,m,i,j is the
quadrature weight and K is the "quadrature kernel".
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Dyadic refinement

In the existence of corners, we apply the dyadic refinement at
the end of each segment

Figure : Graded mesh on a smooth segment

Error analysis: The formal error analysis depends on the
regularity of σ and µ. Qualitatively, if ε denotes the length of the
finest panel, then the error is proportional to O(e−p + ε).
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Fast direct solver

A large dense linear system will be generated from the cavity
problem, especially when the frequency is high. Conventional
linear solver, either direct or iterative, requires an enormous
amount of time. We therefore choose fast direct solver to solve
the problem. The advantages of fast direct solver are:

The direct solver is insensitive to multiple reflections inside
the cavity, especially at high frequencies and hence is
much faster than iterative solver.
The solver scales exceptionally well with multiple right
hand sides.
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The linear matrix to be solved

The following is the system that we need to solve:

A =


−1/2 D 0 0
D −1/2 +D DH SH

0 −D 1 0
0 T 0 1



µB
µΓ

µΓ1

σΓ1

 (17)
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Low rank interaction for far field

Low Rank

Interaction

Figure : Low Rank interaction between two different segments

The rank of the far field interaction is roughly on the order of
log(k), which implies the matrix, A ∈ RN×N , has a hierarchical
off-diagonal low-rank (HODLR) structure.
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Inverse of a matrix with low rank perturbation

One can quickly find the inverse of a matrix with low rank
perturbation if the inverse of the matrix is known through
Sherman-Morrison formula:
If A ∈ Rn×n is invertible, u ∈ Rn and v ∈ Rn, then

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
(18)

Generalization to rank k perturbation to A is the
Sherman-Morrison-Woodbury formula:

(A + UV T )−1 = A−1 − A−1U(I + V T A−1U)−1V T A−1 (19)
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HODLR matrix

A 2-level HODLR matrix can be written in the form shown in
equation (21).

A =

[
A(1)

1 U(1)
1 K (1)

1,2 V (1)T

2

U(1)
2 K (1)

2,1 V (1)T

1 A(1)
2

]
(20)

=


[

A(2)
1 U(2)

1 K (2)
1,2 V (2)T

2

U(2)
2 K (2)

2,1 V (2)T

1 A(2)
2

]
U(1)

1 K (1)
1,2 V (1)T

2

U(1)
2 K (1)

2,1 V (1)T

1

[
A(2)

3 U(2)
3 K (2)

3,4 V (2)T

4

U(2)
4 K (2)

4,3 V (2)T

3 A(2)
4

]
 (21)

The low-rank decomposition of the off-diagonal blocks is
obtained using the adaptive cross approximation (ACA)
algorithm, which is a minor modification of the partially pivoted
LU algorithm.
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Multiple level

Full rank; Low rank;

Figure : A hierarchical off-diagonal low-rank matrix at different levels.
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factorization

The matrix A is factored as shown in Equation (22).

A = AκAκ−1 · · ·A1A0 (22)

where Ai ’s are block diagonal matrices with 2i diagonal blocks
and each block is a low-rank perturbation to identity matrix.

A

=

A3

×

A2

×

A1

×

A0

Full rank; Low-rank; Identity matrix; Zero matrix;

Figure : Factorization of a HODLR matrix at level 3.
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Inversion

To invert the matrix after the factorization, one simply needs to
apply the Sherman-Morrison-Woodbury formula recursively.
The whole cost is on O(N). For multiple right hand sides, the
additional cost is negligible.

24/31



Conclusion

Numerical experiment

We are trying to mimic the following field in Ω:

u(x) =
i
4

H(1)
0 (k |(x− x0)|) +

i
4

H(1)
0 (k |(x− x′0)|), (23)

by solving the following equation
−µ+DΓµ = u(x), for x ∈ Γ1

σ + TΓµ = ∂u(x)
∂n , for x ∈ Γ1

−1
2µ+ SH

Γ1
σ +DH

Γ1
µ+DBµ+DΓµ = u(x), for x ∈ B ∪ Γ

(24)
where x0 = (5,12), x′0 = (5,−12) and the center of the cavity is
at (0.5,0).
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Pot shaped cavity
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Figure : Example 1. (a)Real part of the scattered field for a pot
shaped cavity from the normal incidence of a plane wave with
wavenumber k=160. (b)The backscatter RCS in dB for the pot
shaped cavity at k=160
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Pot shaped cavity

Table : Results for pot shaped cavity at different wavenumber

k Nmid Nover Ntot Tfactor (s) Tsolve(s) Eerror

1 10 2 1320 0.5 0.01 7.6 · 10−10

10 10 10 2200 0.65 0.01 5 · 10−9

20 10 20 3300 1.52 0.01 1.2 · 10−9

40 10 40 5500 3.14 0.02 8.5 · 10−9

80 10 80 9900 9.5 0.05 4.1 · 10−9

160 10 160 18700 42.4 0.19 1.2 · 10−9

320 10 320 36300 192.8 0.57 2.1 · 10−8

640 10 400 45100 581.4 1.43 5.5 · 10−5

800 10 400 45100 785.1 1.57 4.6 · 10−6
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Engine shaped cavity
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Figure : Example 2. (a)Real part of the scattered field for a engine
shaped cavity from the 45o incidence of a plane wave with
wavenumber k=160. (b)The backscatter RCS in dB for the engine
shaped cavity at k=160
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Rough bottom cavity
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Figure : Example 3. (a)Real part of the scattered field for a rough
bottom cavity from the normal incidence of a plane wave with
wavenumber k=160. (b)The backscatter RCS in dB for the rough
bottom cavity at k=160
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Conclusion

Propose an integral formulation for the cavity problem that
leads to a high order discretization
Apply the fast direct solver for the resulted linear system
The extension to TE case is straightforward
Future work includes the impedance boundary problem,
optimal design problem
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Thank you
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