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Highly oscillatory ordinary differential equations

I will discuss the efficient representation of solutions of second order linear ordinary
differential equations of the form

y ′′(t) + λ2q(t)y(t) = 0 for all 0 ≤ t ≤ 1,

where

q(t) is smooth;

q(t) is positive on the interval; and

λ is positive and moderately large.
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q(t) = 1− sin(3t), λ = 1000

Solutions are necessarily highly
oscillatory.

Representing them accurately with
standard methods (e.g., polynomial
or trigonometric interpolation)
requires a great deal of information,
even when q(t) is smooth and can
be represented efficiently.



WKB Approximations

The ansatz

y(t) = exp

(
∞∑
k=0

λ1−kbk(t)

)
gives rise to a sequence of ordinary differential equations. Solving these equations results
in asymptotic expansions for two linearly independent solutions.

The functions bk(t) do not depend on λ and they are roughly as smooth as q(t). Hence,
they appear to provide a mechanism for encoding solutions using a quantity of information
proportional to that which is required to represent q(t).
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First order WKB approximation;
q(t) = 1− sin(3t), λ = 1000.
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WKB Approximations

The ansatz

y(t) = exp

(
∞∑
k=0

λ1−kbk(t)

)
gives rise to a sequence of ordinary differential equations. Solving these equations results
in asymptotic expansions for two linearly independent solutions.

The first order WKB approximations are simply

q−1/4(t) cos

(
λ

∫ t

0

√
q(u) du

)
and q−1/4(t) sin

(
λ

∫ t

0

√
q(u) du

)
.
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First order WKB approximation;
q(t) = 1− sin(3t), λ = 1000.
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WKB Approximations need not converge

The mth order WKB approximations is of the form

Ym(t) = exp

(
m∑

k=0

λ1−kbk(t)

)
.

There exist an exact solution y(t) of the differential equation and a sequence
C0,C1,C2, · · · of constants such that

|y(t)− Ym(t)| ≤ Cm λ−m for all 0 ≤ t ≤ 1 and all integers m ≥ 0.

Typically, the approximations Ym(t) do not converge to y(t). This happens because the
sequence of constants Cm grows faster than the sequence λ−m decays.

For a fixed λ, arbitrarily high accuracy cannot necessarily be obtained. Moreover:

obtainable accuracy ∼ O
(
λ−m)

for some integer m.



Kummer to the rescue

E.E. Kummer investigated an alternative method for encoding
solutions of highly oscillatory ordinary differential equations in the
1840s.

We say that a smooth function α(t) is a phase function for the
ordinary differential equation

y ′′(t) + λ2q(t)y(t) = 0

if

u(t) =
cos(α(t))

|α′(t)|1/2
and v(t) =

sin(α(t))

|α′(t)|1/2

form a basis of solutions.

A function α(t) is a phase function if and only if it satisfies the third order nonlinear
ordinary differential equation

[
α′(t)

]2
= λ2q(t)− 1

2

α′′′(t)

α′(t)
+

3

4

(
α′′(t)

α′(t)

)2

.



Phase functions are typically highly oscillatory

Unlike the ordinary differential equations defining WKB approximations, Kummer’s
equation [

α′(t)
]2

= λ2q(t)− 1

2

α′′′(t)

α′(t)
+

3

4

(
α′′(t)

α′(t)

)2

contains the wavenumber λ and so we expect its solutions to be highly oscillatory when λ
is large.
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A phase function for 20th order Legendre polynomials (left) and its derivative (right).



Not all phase functions are oscillatory

There is a particular well-known phase function α(z) for Bessel’s equation which is
nonoscillatory.

Asymptotic expansions of it have been standard in mathematical tables for decades.

Its derivative α′(z) is given by the formula

α′(z) =
2

πz

1

J2
ν(z) + Y 2

ν (z)
.

0 200 400 600 800 1000

0

200

400

600

800

0 200 400 600 800 1000

0.985

0.990

0.995

1.000

A phase function for 20 order Bessel functions (left) and its derivative (right).



Do nonoscillatory phase functions exist in general?

First key observation

The linearization of the logarithm form of Kummer’s equation is the constant coefficient
Helmholtz equation in disguise.

An elementary transform converts Kummer’s equation (which involves unpleasant quo-
tients) into the more tractable equation

r ′′(t)− 1

4

[
r ′(t)

]2
+ 4λ2 [exp(r(t))− q(t)] = 0.

We call this the logarithm form of Kummer’s equation.

If we let
r(t) = r0(t) + δ(t)

and neglect terms of order [δ(t)]2 and higher, then we obtain the ordinary differential
equation

δ′′(t)− 1

2
r ′0(t)δ′(t) + 4λ2 exp(r0(t))δ(t) = f (t),

where f (t) is nonoscillatory under mild conditions on r0(t).



Do nonoscillatory phase functions exist in general?

First key observation

The linearization of the logarithm form of Kummer’s equation is the constant coefficient
Helmholtz equation in disguise.

Under the change of variables

x(t) =

∫ t

0

exp

(
r0(u)

2

)
du,

which is related to the well-known Liouville-Green transform, the equation

δ′′(t)− 1

2
r ′0(t)δ′(t) + 4λ2 exp(r0(t))δ(t) = f (t),

becomes
δ′′(x) + 4λ2δ(x) = exp (−r(x)) f (x),

which is simply the constant coefficient Helmholtz equation.



Do nonoscillatory phase functions exist in general?

Second key observation

The constant coefficient Helmholtz equation admits solutions which are essentially
nonoscillatory.

If f (x) is a rapidly decaying Schwartz function and we define

g(x) =
1

4λ

∫ ∞
−∞

sin (2λ |x − y |) f (y) dy ,

then g(x) is a solution of
y ′′(x) + 4λ2y(x) = f (x)

and

ĝ(ξ) =
f̂ (ξ)

4λ2 − ξ2 .

We are interpreting ĝ(ξ) as a tempered distribution defined via a principal value integral.



Do nonoscillatory phase functions exist in general?

Second key observation

The constant coefficient Helmholtz equation admits solutions which are essentially
nonoscillatory.

The function

ĝ(ξ) =
f̂ (ξ)

4λ2 − ξ2 =
1

4λ

[
f̂ (ξ)

2λ− ξ +
f̂ (ξ)

2λ+ ξ

]
is singular when ξ = ±2λ, so g(x) has a component which oscillates at frequency 2λ.
However, the magnitude of that component is on the order of

λ−1 f̂ (2λ).

If f̂ (ξ) decays sufficiently rapidly, then this highly oscillatory component will be negligible.



Do nonoscillatory phase functions exist in general?

Second key observation

The constant coefficient Helmholtz equation admits solutions which are essentially
nonoscillatory.
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This is a solution of y ′′(t) + 4λ2y(t) = f (t),

where λ = 10 and f (t) = exp(−t2).
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Do nonoscillatory phase functions exist in general?

Key observations:

The linearization of the logarithm form of Kummer’s equation is the constant coefficient
Helmholtz equation in disguise.

The constant coefficient Helmholtz equation admits solutions which are essentially
nonoscillatory.

These observations suggest that we apply Newton’s method to the logarithm form of
Kummer’s equation.

Each iteration consists of solving a linear differential equation which is, after a change of
variables, the constant coefficient Helmholtz equation.

We always choose the solution which is essentially nonoscillatory. Moreover, we discard
the highly-oscillatory component of negligible magnitude.

By so doing, we should converge to an approximate solution of Kummer’s equation which
is nonoscillatory.



Conclusion:

Solutions of second order linear differential equations can be approximated to high
accuracy via nonoscillatory phase functions.

q(t) = 2− sin(13t)t + t2; λ = 300; iterations = 6.

q(t)
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Conclusion:

Solutions of second order linear differential equations can be approximated to high
accuracy via nonoscillatory phase functions.

q(t) = 2− sin(13t)t + t2; λ = 3, 000; iterations = 5.

q(t)
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Conclusion:

Solutions of second order linear differential equations can be approximated to high
accuracy via nonoscillatory phase functions.

q(t) = 2− sin(13t)t + t2; λ = 3, 000, 000; iterations = 3.

q(t)
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Conclusion:

Solutions of second order linear differential equations can be approximated to high
accuracy via nonoscillatory phase functions.

q(t) = 2− sin(13t)t + t2; λ = 16; iterations = 12.

q(t)
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Reformulation as an integral equation

Through various machinations, we can reformulate the logarithm form of Kummer’s
equation as the nonlinear integral equation

σ(x) = S [T [σ] ] (x) + p(x),

where T is the linear integral operator defined by

T [f ] (x) =
1

4λ

∫ ∞
−∞

sin(2λ|x − y |)f (y) dy ,

and S is the nonlinear differential operator defined by

S [f ] (x) =
[f ′(x)]

2

4
− 4λ2

{
[f (x)]2

2!
+

[f (x)]3

3!
+ · · ·

}
.

This equation is obtained with the help of the change of variables

x(t) =

∫ t

0

√
q(u) du

and the function p(x) is related to q(t) through the formula

p(x) = 2{t, x}.



Theorem

Suppose that λ > 0, Γ > 0 and a > 0 are real numbers such that

λ > max

{
6Γ,

6

a

}
.

Suppose also that p is a rapidly decaying Schwartz function such that

|p̂(ξ)| ≤ Γ exp(−a|ξ|) for all ξ ∈ R.

Then there exist a (small) real constant C > 0 and functions σ(x) and p̃(x) such that

‖p̃ − p‖∞ ≤ CΓλ exp(−λa) for all ξ ∈ R,

σ(x) is a solution of the integral equation

σ(x) = S [T [σ] ] (x) + p̃(x),

and

|σ̂(ξ)| ≤ 2Γ exp

(
−
(
a− 1

λ

)
|ξ|
)

for all ξ ∈ R.



A few remarks are in order ...

The solution σ(x) of the integral equation

σ(x) = S [T [σ] ] (x) + p̃(x)

gives rise to a nonoscillatory phase function for a second order linear differential
equation

y ′′(t) + λ2q̃(t)y(t) = 0 for all 0 ≤ t ≤ 1,

where q̃(t) ∼ q(t).

One can easily bound the difference between solutions of this perturbed equation
and the those of the original equation. The relative error is on the order of

λ‖p − p̃‖∞ ∼ λ2 exp(−aλ).

The condition
|p̂(ξ)| ≤ Γ exp(−a|ξ|) for all ξ ∈ R

is roughly equivalent to requiring that p(x) be bounded and analytic on a strip of
radius a > 0 around the real axis. The parallels error estimates for Gaussian
quadrature are obvious.



A violation of the same space rule

The central difficulty is that the integral equation

σ(x) = S [T [σ] ] + p(x)

breaks the “same space rule.” Recall that the operator T is defined by the formula

T [σ] (x) =
1

4λ

∫ ∞
−∞

sin(2λ|x − y |)σ(y) dy .

From this definition, we see that in order for T [σ] to exist, at least one of the two
following conditions must be met.

The function σ must decay sufficiently fast at ∞ (σ ∈ L1 (R) suffices);

σ̂(±2λ) = 0.

Even if σ(x) satisfies both of these conditions, S [T [σ] ] (x) will not.

In order for a solution to exist, there must be delicate cancellation involving p(x).



Better living through brutal approximation

In order to overcome this difficulty, we form a “band-limited”version Tb of the linear
integral operator T .

The operator Tb is defined for f ∈ L1 (R) via the formula

T̂b [f ](ξ) =
f̂ (ξ)b(ξ)

4λ2 − ξ2 ,

where b(ξ) is a bump function supported on the interval [−λ, λ] .

Tb is relatively well behaved — for instance, it is bounded as an operator
L∞ (R)→ L∞ (R) and it maps of the space of Schwartz functions continuously into itself.

As a consequence, the integral equation

σ(x) = S [Tb [σ] ] + p(x)

is far more tractable than our original formulation.



A little bit of functional analysis

The contraction mapping principle implies that the sequence of fixed point iterates

σ0(x) = p(x)

σ1(x) = S [Tb [σ0]] (x) + p(x)

...

σn+1(x) = S [Tb [σn]] (x) + p(x)

...

converges to a solution σ(x) of the integral equation

σ(x) = S [Tb [σ] ] (x) + p(x).



Pointwise Fourier estimate

If ∣∣∣f̂ (ξ)
∣∣∣ ≤ C exp(−a|ξ|) for all ξ ∈ R

then

̂S [Tb [f ]](ξ) ∼ C 2 exp(−a|ξ|)
λ4

{
|ξ|2

a
+ λ2 exp

(
C

λ2
|ξ|
)
|ξ|
}

for all ξ ∈ R.

This is not too promising at first glance.

But we observe that because of band-limiting, σn+1 only depends on the values of σ̂n on
the finite interval [−λ, λ], and so∣∣∣f̂ (ξ)

∣∣∣ ≤ C exp(−a|ξ|) for all |ξ| ≤ λ

implies

̂S [Tb [f ]](ξ) ∼ C 2 exp(−a|ξ|)
λ4

{
λ2

a
+ λ2 exp

(
C

λ2
λ

)
λ

}
∼ C 2 exp(−a|ξ|)

{
1

λ2a
+

1

λ
exp

(
C

λ

)}
for all |ξ| ≤ λ.



Pointwise Fourier estimate

Assuming λ is large relative to C and
1

a
,

̂S [Tb [f ]](ξ) ∼ C 2

λ
exp(−a|ξ|).

From there it is easy to see that

|σ̂n(ξ)| ≤ βn exp(−a|ξ|) for all |ξ| ≤ λ,

where {βn} is defined by

βn+1 =
β2
n

λ
+ β0, β0 = Γ.

As a consequence,

|σ̂(ξ)| ≤ CΓ exp

(
−
(
a− 1

λ

)
|ξ|
)

for all ξ ∈ R.



Pointwise Fourier estimate

We define σb(x) via the formula

σ̂b(ξ) = σ̂(ξ)b(ξ),

where b(ξ) is the bump function we used to define Tb.

Since the Fourier transform of σb(x) is 0 at ±2λ, we can plug it into the original integral
equation in order to obtain

σb(x) = S [T [σb] ] (x) + p̃(x),

where
p̃(x) = p(x) + σ(x)− σb(x).

The estimate
‖p − p̃‖∞ ∼ λ exp(−aλ)

follows from the inequality

|σ̂(ξ)| ≤ 2Γ exp

(
−
(
a− 1

λ

)
|ξ|
)
.



Conclusion

The theorem I’ve shown you today is far from the best possible result. It can be
sharpened in a number of directions — convergence for smaller values of λ, better
error estimates, more flexibility in the assumptions on q(t), and so on ...

There are a number of interesting things to say about the numerical aspects of this
subject. They will have to wait for another talk on another day.

A preprint for the one-dimensional problem is almost ready.

Generalization of these results to linear elliptic problems in two-dimensions is
underway.

Thank you for your attention!


