The automatic solution of PDEs using a global spectral method

2014 CBMS-NSF Conference, 29th June 2014

Alex Townsend
PhD student
University of Oxford
(with Sheehan Olver)

Introduction

Chebfun

\sqrt{c} e b fug

Endpoint
singularities
$\left(2010^{\star}\right)$
Blow up functions (2011)

Reducing regularity

Two dimensions

Introduction

Chebop: Spectral collocation for ODEs
In 2008: Overload the MATLAB backslash command \for operators [Driscoll, Bornemann, \& Trefethen 2008].

```
L = chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); % Airy equation
L.lbc = 1; L.rbc = 0;
u = L \ 0; plot(u)
% Set boundary conditions
% Solve and plot
```


Introduction

Spectral collocation basics

Given values on a grid, what are the values of the derivative on that same grid?:

$$
D_{n}\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)=\left(\begin{array}{c}
u_{1}^{\prime} \\
\vdots \\
u_{n}^{\prime}
\end{array}\right), \quad D_{n}=\operatorname{diffmat}(\mathrm{n})
$$

For example, $u^{\prime}(x)+\cos (x) u(x)$ is represented as

$$
L_{n}=D_{n}+\operatorname{diag}\left(\cos \left(x_{1}\right), \ldots, \cos \left(x_{n}\right)\right) \in \mathbb{R}^{n \times n}
$$

Introduction

Why do spectral methods get a bad press?

Introduction

Why do spectral methods get a bad press?

1. Dense matrices.


```
* ............
*
*
```



```
#
```


Introduction

Why do spectral methods get a bad press?

1. Dense matrices.
2. III-conditioned matrices.

Introduction

Why do spectral methods get a bad press?

1. Dense matrices.
2. III-conditioned matrices.
3. When has it converged? Tricky.

See, for example: [Canuto et al. 07], , [Fornberg 98], [Trefethen 00].

A fast and well-conditioned spectral method

Differentiation operator
Work with coefficients: Spectral methods do not have to result in dense, illconditioned matrices. (Just don't discretize the differentiation operator faithfully.)

The idea is to use simple relations between Chebyshev polynomials:

$$
\begin{aligned}
& \frac{d T_{k}}{d x}=\left\{\begin{array}{ll}
k U_{k-1}, & k \geq 1, \\
0, & k=0,
\end{array} \quad T_{k}= \begin{cases}\frac{1}{2}\left(U_{k}-U_{k-2}\right), & k \geq 2, \\
\frac{1}{2} U_{1}, & k=1, \\
U_{0}, & k=0 .\end{cases} \right. \\
& \mathcal{D}=\left(\begin{array}{lllll}
0 & 1 & & & \\
& & 2 & & \\
& & & 3 & \\
& & & & \ddots
\end{array}\right), \quad \mathcal{S}=\left(\begin{array}{ccccccc}
1 & 0 & -\frac{1}{2} & & & \\
& \frac{1}{2} & 0 & -\frac{1}{2} & & \\
& & \frac{1}{2} & 0 & -\frac{1}{2} & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) .
\end{aligned}
$$

Olver \& T., A fast and well-conditioned spectral method, SIAM Review, 2013.

A fast and well-conditioned spectral method

 Multiplication operator$$
\begin{aligned}
& T_{j} T_{k}=\quad \frac{1}{2} T_{|j-k|} \quad+\quad \frac{1}{2} T_{j+k} \\
& \mathcal{M}[\boldsymbol{a}]=\frac{1}{2} \underbrace{\left(\begin{array}{ccccc}
2 a_{0} & a_{1} & a_{2} & a_{3} & \ldots \\
a_{1} & 2 a_{0} & a_{1} & a_{2} & \ddots \\
a_{2} & a_{1} & 2 a_{0} & a_{1} & \ddots \\
a_{3} & a_{2} & a_{1} & 2 a_{0} & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)}_{\text {Toeplitz }}+\frac{1}{2} \underbrace{\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
a_{1} & a_{2} & a_{3} & a_{4} & . \cdot \\
a_{2} & a_{3} & a_{4} & a_{5} & . \\
a_{3} & a_{4} & a_{5} & a_{6} & . \\
\vdots & . & . & . & . \\
\hline .
\end{array}\right)}_{\text {Hankel + rank-1 }}
\end{aligned}
$$

Multiplication is not a dense operator in finite precision. It is \mathbf{m}-banded:

$$
a(x)=\sum_{k=0}^{\infty} a_{k} T_{k}(x)=\sum_{k=0}^{m} \tilde{a}_{k} T_{k}(x)+O(\epsilon),
$$

A fast and well-conditioned spectral method

 What about this new spectral method?
A fast and well-conditioned spectral method

 What about this new spectral method?1. Almost banded matrices.

A fast and well-conditioned spectral method

 What about this new spectral method?1. Almost banded matrices.
2. Well-conditioned matrices.

A fast and well-conditioned spectral method

 What about this new spectral method?1. Almost banded matrices.
2. Well-conditioned matrices.
3. When has it converged? Trivial.

Condition number

Error in solution

Other approaches: [Clenshaw 57], [Greengard 91], [Shen 03].

A fast and well-conditioned spectral method

 First example$$
u^{\prime}(x)+x^{3} u(x)=100 \sin \left(20,000 x^{2}\right), \quad u(-1)=0 .
$$

The exact solution is

$$
u(x)=e^{-\frac{x^{4}}{4}}\left(\int_{-1}^{x} 100 e^{\frac{t^{4}}{4}} \sin \left(20,000 t^{2}\right) d t\right) .
$$

- $\mathrm{N}=\operatorname{chebop}(\mathrm{Q}(\mathrm{x}, \mathrm{u}) \cdots$); $N .1 b c=0 ; u=N \backslash f ;$
- Adaptively selects the discretisation size.
- Forms a chebfun object [Chebfun V4.2].
$\square\|\tilde{u}-u\|_{\infty}=1.5 \times 10^{-15}$.

A fast and well-conditioned spectral method

Another example

$$
u^{\prime}(x)+\frac{1}{1+50,000 x^{2}} u(x)=0, \quad u(-1)=1 .
$$

The exact solution with $a=50,000$ is

$$
u(x)=\exp \left(-\frac{\tan ^{-1}(\sqrt{\mathrm{a}} x)+\tan ^{-1}(\sqrt{\mathrm{a}})}{\sqrt{\mathrm{a}}}\right) .
$$

A fast and well-conditioned spectral method

A high-order example

$$
\begin{gathered}
u^{(10)}(x)+\cosh (x) u^{(8)}(x)+\cos (x) u^{(2)}(x)+x^{2} u(x)=0 \\
u(\pm 1)=0, u^{\prime}(\pm 1)=1, u^{(k)}(\pm 1)=0, k=2,3,4
\end{gathered}
$$

$$
\begin{gathered}
\left(\int_{-1}^{1}(\tilde{u}(x)+\tilde{u}(-x))^{2}\right)^{\frac{1}{2}} \\
=1.3 \times 10^{-14}
\end{gathered}
$$

Chebop and Chebop2

Convenience for the user

$L=$ chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); \% Airy equation
L.lbc = 1; L.rbc = 0;
\% Set boundary conditions
$\mathrm{u}=\mathrm{L} \backslash 0$;

Chebop and Chebop2

Convenience for the user

$L=\operatorname{chebop}(@(x, u) \operatorname{diff}(u, 2)-x . * u,[-3030])$; \% Airy equation
L.lbc = 1; L.rbc = 0;
\% Set boundary conditions
$\mathrm{u}=\mathrm{L} \backslash \mathrm{O}$;

L = chebop2 $(@(x, y, u)$ laplacian(u)+(1000+y)*u);\% Helmholtz with gravity L.lbc = 1; L.rbc = 1; L.ubc = 1; L.dbc = 1;\% Set boundary conditions $\mathrm{u}=\mathrm{L} \backslash 0$;

Interpreting user-defined input

Automatic differentiation

- Implemented by forward-mode operator overloading
- Interpret anonymous function as a sequence of elementary operations
- Can also calculate Fréchet derivatives

Key people:
Ásgeir Birkisson and Toby Driscoll

$$
u_{x x}+u_{y y}+50 u+y u
$$

Low rank approximation
 Numerical rank

For $A \in \mathbb{C}^{m \times n}$, SVD gives best rank k wrt 2-norm [Eckart \& Young 1936]

$$
A=\sum_{j=1}^{\min (m, n)} \sigma_{j} u_{j} v_{j}^{*} \approx \sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}, \quad \sigma_{k+1}<\text { tol. }
$$

Low rank approximation
 Numerical rank

For $A \in \mathbb{C}^{m \times n}$, SVD gives best rank k wrt 2-norm [Eckart \& Young 1936]

$$
A=\sum_{j=1}^{\min (m, n)} \sigma_{j} u_{j} v_{j}^{*} \approx \sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}, \quad \sigma_{k+1}<\text { tol. }
$$

For Lipschitz smooth bivariate functions [Schmidt 1909, Smithies 1937]

$$
f(x, y)=\sum_{j=1}^{\infty} \sigma_{j} u_{j}(y) v_{j}(x) \approx \sum_{j=1}^{k} \sigma_{j} u_{j}(y) v_{j}(x)
$$

Low rank approximation
 Numerical rank

For $A \in \mathbb{C}^{m \times n}$, SVD gives best rank k wrt 2-norm [Eckart \& Young 1936]

$$
A=\sum_{j=1}^{\min (m, n)} \sigma_{j} u_{j} v_{j}^{*} \approx \sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}, \quad \sigma_{k+1}<\text { tol. }
$$

For Lipschitz smooth bivariate functions [Schmidt 1909, Smithies 1937]

$$
f(x, y)=\sum_{j=1}^{\infty} \sigma_{j} u_{j}(y) v_{j}(x) \approx \sum_{j=1}^{k} \sigma_{j} u_{j}(y) v_{j}(x)
$$

For compact linear operators acting on functions of two variables,

$$
\mathcal{L} \stackrel{!}{=} \sum_{j=1}^{\infty} \sigma_{j} \mathcal{L}_{j}^{y} \otimes \mathcal{L}_{j}^{x} \approx \sum_{j=1}^{k} \sigma_{j} \mathcal{L}_{j}^{y} \otimes \mathcal{L}_{j}^{x} .
$$

Low rank approximation

Do the low rank stuff before discretization
Low rank-then-discretize: Instead of low rank techniques after discretization, do them before.

For example, Helmholtz is of rank 2
$\nabla^{2} u+K^{2} u=\left(u_{x x}+\frac{K^{2}}{2} u\right)+\left(u_{y y}+\frac{K^{2}}{2} u\right)$

Low rank approximation

Do the low rank stuff before discretization
Low rank-then-discretize: Instead of low rank techniques after discretization, do them before.

For example, Helmholtz is of rank 2
$\nabla^{2} u+K^{2} u=\left(u_{x x}+\frac{K^{2}}{2} u\right)+\left(u_{y y}+\frac{K^{2}}{2} u\right)=\left(\mathcal{D}^{2}+\frac{K^{2}}{2} \mathcal{I}\right) \otimes \mathcal{I}+\mathcal{I} \otimes\left(\mathcal{D}^{2}+\frac{K^{2}}{2} \mathcal{I}\right)$.

Low rank approximation

Do the low rank stuff before discretization
Low rank-then-discretize: Instead of low rank techniques after discretization, do them before.

For example, Helmholtz is of rank 2
$\nabla^{2} u+K^{2} u=\left(u_{x x}+\frac{K^{2}}{2} u\right)+\left(u_{y y}+\frac{K^{2}}{2} u\right)=\left(\mathcal{D}^{2}+\frac{K^{2}}{2} \mathcal{I}\right) \otimes \mathcal{I}+\mathcal{I} \otimes\left(\mathcal{D}^{2}+\frac{K^{2}}{2} \mathcal{I}\right)$.
Let A be your favourite ODE discretization of $\mathcal{D}^{2}+\frac{K^{2}}{2} \mathcal{I}$, then (typically)

$$
A X I+I X A^{T}
$$

In general, if \mathcal{L} is of rank k we have

$$
\sum_{j=1}^{k} A_{j} X B_{j}^{T}=F
$$

Low rank approximation

Computing the rank of a partial differential operator
Recast differential operators as polynomials: Once you have polynomials computing the rank is easy.

The rank of

$$
\mathcal{L}=\sum_{i=0}^{N_{y}} \sum_{j=0}^{N_{X}} a_{i j}(x, y) \frac{\partial^{i}}{\partial y^{i}} \frac{\partial^{j}}{\partial x^{j}}
$$

equals a TT-rank [Oseledets 2011] (between $\{x, s\}$ and $\{y, t\}$) of

$$
h(x, s, y, t)=\sum_{i=0}^{N_{y}} \sum_{j=0}^{N_{x}} a_{i j}(s, t) y^{i} x^{j}
$$

Low rank approximation

Computing the rank of a partial differential operator
Recast differential operators as polynomials: Once you have polynomials computing the rank is easy.

The rank of

$$
\mathcal{L}=\sum_{i=0}^{N_{y}} \sum_{j=0}^{N_{x}} a_{i j}(x, y) \frac{\partial^{i}}{\partial y^{i}} \frac{\partial^{j}}{\partial x^{j}}
$$

equals a TT-rank [Oseledets 2011] (between $\{x, s\}$ and $\{y, t\}$) of

$$
h(x, s, y, t)=\sum_{i=0}^{N_{y}} \sum_{j=0}^{N_{x}} a_{i j}(s, t) y^{i} x^{j}=\sum_{j=1}^{k} c_{j}(t, y) r_{j}(s, x)
$$

Low rank approximation

Computing the rank of a partial differential operator
Recast differential operators as polynomials: Once you have polynomials computing the rank is easy.

The rank of

$$
\mathcal{L}=\sum_{i=0}^{N_{y}} \sum_{j=0}^{N_{x}} a_{i j}(x, y) \frac{\partial^{i}}{\partial y^{i}} \frac{\partial^{j}}{\partial x^{j}}
$$

equals a TT-rank [Oseledets 2011] (between $\{x, s\}$ and $\{y, t\}$) of

$$
h(x, s, y, t)=\sum_{i=0}^{N_{y}} \sum_{j=0}^{N_{x}} a_{i j}(s, t) y^{i} x^{j}=\sum_{j=1}^{k} c_{j}(t, y) r_{j}(s, x) .
$$

Rank 3: Biharmonic Lots here.

Low rank approximation

Construct a n_{x} by n_{y} generalised Sylvester matrix equation
If the PDE is $\mathcal{L} u=f$, where \mathcal{L} is of rank- k then we solve for $X \in \mathbb{C}^{n_{y} \times n_{x}}$ in,

$$
\sum_{j=1}^{k} \sigma_{j} A_{j} X B_{j}^{T}=F, \quad A_{j} \in \mathbb{C}^{n_{y} \times n_{y}}, \quad B_{j} \in \mathbb{C}^{n_{x} \times n_{x}} .
$$

$X=$ solution's coefficients $\quad A_{j}, B_{j}=1 \mathrm{D}$ spectral discretization of $\mathcal{L}_{j}^{y}, \mathcal{L}_{j}^{x}$

Low rank approximation

Matrix equation solvers

- Rank 1: $A_{1} X B_{1}^{\top}=F$. Solve $A_{1} Y=F$, then $B_{1} X^{\top}=Y^{\top}$.
- Rank 2: $A_{1} X B_{1}^{T}+A_{2} X B_{2}^{T}=F$. Generalised Sylvester solver (RECSY) [Jonsson \& Kågström, 2002].
- Rank k, k \geq 3: Solve $N \times N$ system using almost banded structure.

blue = rank 1 green = rank 2 red $=$ rank 3

Examples

Helmholiz equation

$$
\nabla^{2} u+2 \omega^{2} u=0, \quad u(\pm 1, y)=f(\pm 1, y), \quad u(x, \pm 1)=f(x, \pm 1),
$$

where $f(x, y)=\cos (\omega x) \cos (\omega y)$.

$$
\omega=50
$$

Examples

Variable helmholtz equation

$\mathrm{N}=$ chebop2(@(x,y,u) laplacian(u) + 10000(1/2+sin(x)^2).*cos(y) ^2.*u);
N.lbc = 1; N.rbc = 1; N.ubc = 1; N.dbc = 1;
$\mathrm{u}=\mathrm{N} \backslash \operatorname{cheb} \mathrm{u}_{\mathrm{n}} 2(\mathrm{@}(\mathrm{x}, \mathrm{y}) \cos (\mathrm{x} . * \mathrm{y}))$;

$$
N=1,050,625, \quad \text { error } \approx 1.47 \times 10^{-13}, \quad \text { time }=44.2 \mathrm{~s}
$$

Examples

Wave and Klein-Gordon equation

$$
\begin{aligned}
& N=\text { chebop2 }(@(u) \operatorname{diff}(u, 2,1)-\operatorname{diff}(u, 2,2)+5 * u) ; \% u_{-} t t-u _x x+5 u \\
& N . d b c=@(x, u)\left[u-\exp \left(-10^{*} x\right) \operatorname{diff}(u)\right] ; N . l b c=0 ; N . r b c=0 ; \\
& u=N \backslash 0 ;
\end{aligned}
$$

Conclusion

- Spectral methods do not have to be ill-conditioned. (Don't discretize differentiation faithfully.)
- Spectral methods are extremely convenient and flexible.
- As of 2014, global spectral methods are heavily restricted to a few geometries.

Thank you for listening

