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We simulate the progression of the novel H1N1 virus outbreak in Spring 2009

using a patch SIR model for six U.S. regions. A sensitivity analysis shows that

the timing of peak prevalence is greatly affected by epidemiological parameters but
little affected by migration rates. The method presented here has the advantage

of using publicly available transportation data for only a few large regions and

epidemiological parameters that may be estimated from the first few cases and the
households in which they occur. Comparison with data shows the method to have

predictive value for timing of epidemics.
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1. Introduction

In March of 2009 a new strain of H1N1 influenza was detected in South-
ern California 1. Within months cases were reported in distant sites across
the U.S. Some, but not all, cases were traced to foreign travel. A com-
pelling statistical argument has been made for linking regional outbreaks
with frequency of inbound flights from Mexico 2. However, large regional
airline hubs serve all parts of the U.S. as well, so disease may well have
been transmitted from within the U.S. once it arrived. This hypothesis is
the one modeled and analyzed here.

The classic model of an infectious disease is given by three coupled
ordinary differential equations for susceptible, infectious and recovered in-
dividuals (SIR models)3. This model is appropriate for large homogeneous
well-mixed populations. A recent survey article points out the limitations
of the SIR model in capturing spacial dynamics, pointing out that agent
based models represent these dynamics but have their own computational
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limitations 4. Patch models make it possible to investigate spacial phenom-
ena at an intermediate level, by representing regions of a certain size (the
patches) as homogeneously mixed while linking well separated regions via
migration. In either case, the accuracy of SIR models depends completely
on the accuracy of the data used to estimate initial prevalence, transmis-
sion, and recovery rates for any given disease.

Global airline networks have been studied in an effort to model large
scale disease propagation. One study, of the worldwide air network of 3,880
airports, indicates that properties of the statistical distribution of travel are
thought to influence rates of disease propagation 5. It would be useful to
know to what extent a data from a few major airports capture the dynamics
of disease transmission and, in particular, the timing and intensity of disease
prevalence. In this study we use publicly available airport usage data to
construct a patch SIR model for six U.S. regions with major airports and
compare the results of the model with publicly available data from the 2009
influenza outbreak.

2. Methods

Models for diseases that spread from city to city consider populations that
are separated into patches, each of which is described by an SIR model, with
migration between patches given as a linear term. Equations 1-3 below give
the general form for the patch SIR model used here.

S′i = (a− b)(Si)(1− Si/ki)−B
SiIi

(Si + Ii + Ri)
−

∑
j∼i

m(i,j)Si +
∑
j∼i

m(j,i)Sj

(1)

I ′i = B
SiIi

(Si + Ii + Ri)
− (v + b + d)Ii −

∑
j∼i

m(i,j)Ii +
∑
j∼i

m(j,i)Ij (2)

R′i = vIi − bRi −
∑
j∼i

m(i,j)Ri +
∑
j∼i

m(j,i)Rj (3)

Here the growth rate of the susceptible population, as a function of
Si only, is given by a logistic term. b is the natural death rate, d is the
death rate of the disease only, B is the transmission coefficient, m(i,j) is
the relative rate of travel from vertex i to vertex j, assumed to be equal for
susceptible, infectious and recovered populations at vertex i. Sums denoted
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by j ∼ i indicate vertices adjacent to the ith vertex. Note that making
birth a function of only susceptible individuals is not the most general form
that could be taken, but it is reasonable for short term diseases. In a
previous paper 6 we show that stability of the disease free equilibrium for
symmetric versions of such models depends only on local parameters, i. e.
not migration rates.

Six major U.S. areas connected by large airports (CA, CO, TX, GA,
IL, NY) were used as a basis for parametrizing the model in equations 1-3.
For this simulation, the growth rate was set to (a − b)(1 − Si/ki) − dSi.
The birth rate, a, and death rate, b, were taken as the U.S. average78

and ki was chosen to give an equilibrium population at the disease free
equilibrium corresponding to the actual population of each region9. The
transmission and death rates (B and d respectively) from this particular
strain can be estimated from commonly known statistics reported in the
newspaper as 1.5 new cases per three days 10, which correlate roughly with
those in the literature. We used .5 as the transmission rate, estimated as a
reproduction rate of 1.5 spread over a three day duration. Actual likelihood
of transmission was reported to vary between 1 (for households with two
members) and approximately .2 (for households with six members) 11. A
review of multiple swine flu studies puts the reproduction number for the
2009 outbreak between 1.4 and 1.6 new infections per infected individual,
but does not say over how many days this occurs 12. A World Health
Organization study gives a reproduction rate of 1.58 and confirms the same
three day period based on data from the early outbreak in Mexico 2. The
recovery rate can be estimated from data available at the Center for Disease
Control and corresponds to a disease of 14 days duration 13.

The graph between patches was the complete graph on six vertices, with
migration rates estimated from airport data14. To model migration rates
we assumed that the traffic to and from destinations other than the six
modeled was negligible.

Migration rates for each state included were two forms: migration from
state 1 to state 2, e. g. (mCA,NY ) and total migration away from a specific
state e. g. (mCA).

Let qNY be the total average daily traffic through New York airports
(and define q similarly for all six regions). Let ΣNY be the sum of average
daily traffic through the five remaining airports in the model (and define Σ
similarly for all six regions).

The calculations for the migration rates from one state to the other are



August 6, 2013 10:54 Proceedings Trim Size: 9in x 6in WCairport

4

given by Equation 4.

mCA,NY = qCAqNY /ΣCA (4)

This expression weights traffic from CA to NY according to the amount
of traffic in NY. Notice that summing all the outgoing traffic from CA
returns the total traffic in CA. The total migration away from a specific
state is just the sum of the outgoing rates to all other states. The expression
for New York is given by Equation 5.

mNY = mNY,CO + mNY,CA + mNY,TX + mNY,GA + mNY,IL (5)

A simple model was created to test the migration rates with no disease
present to verify that populations of the various regions remained approx-
imately accurate at equilibrium. The model was then run with disease
introduced in California and Texas. A second version of the model was run
in which birth rates depended on the entire population of the region rather
than on just susceptible individuals, in order to see if this adjustment to
the model made any significant difference to the results. (It did not.)

The simulation was then compared with the patient data from clinics
in each area (Regions 2,4,5,6,8,9) that report to the Center for Disease
Control 15. The regions for which FluView data was used included re-
gions 2 (New York, New Jersey), 4 (Kentucky, Tennessee, North Carolina,
South Carolina, Georgia, Florida, Alabama, Mississippi), 5 (Minnesota,
Wisconsin, Michigan, Illinois, Indiana, Ohio), 6 (New Mexico, Texas, Okla-
homa, Louisiana, Arkansas), 8 (Utah, Colorado, Wyoming, Montana, South
Dakota, North Dakota), and 9 (California, Nevada, Arizona), which corre-
spond to NY, GA, IL, TX, CO, and CA, respectively. The regions used in
this study did not include just the city in which the airport was located,
but the surrounding area as well. Population data corresponding with the
regions around each airport was taken from a 2010 report on tuberculosis
incidence 16. One assumption of the model was that the heavily populated
regions near accounted for most of the disease prevalence.

A sensitivity analysis was conducted on parameters and initial condi-
tions with respect to the error observed between peak case load (for each
state and for the US total) in the model versus data. In a subsequent simu-
lation, transmission rates were modified for each state for a best match with
data (for the first version of the model). Table 1 shows parameters used for
the original model. Not shown are initial conditions for infected individuals
(2 in California, 1 in Texas, 0 elsewhere) or recovered individuals (0 for all
regions).
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Table 1. Parameters for the model

Notation Value Units

kNY , SNY (0) 19151072 individuals in NY area

kCO, SCO(0) 2599235 individuals in CO area

kCA, SCA(0), 17293449 individuals in CA area
kTX , STX(0) 12564909 individuals in TX area

kGA, SGA(0) 5540092 individuals in GA area

kIL, SIL(0) 9622245 individuals in IL area
mNY,CO 5.93 * 10−5 daily migration from NY to CO

as a percent of regional population

mNY,CA 0.000133771 daily migration from NY to CA
mNY,TX 0.00012474 daily migration from NY to TX

mNY,GA 0.000104113 daily migration from NY to GA
mNY,IL 9.67E-05 daily migration from NY to IL

mCO,NY 5.30 * 10−5 daily migration from CO to NY

mCO,CA 5.86 * 10−5 daily migration from CO to CA
mCO,TX 5.46 * 10−5 daily migration from CO to TX

mCO,GA 4.56 * 10−5 daily migration from CO to GA

mCO,IL 4.23E-05 daily migration from CO to IL
mCA,NY 0.000137123 daily migration from CA to NY

mCA,CO 6.72 * 10−5 daily migration from CA to CO

mCA,TX 0.000141255 daily migration from CA to TX
mCA,GA 0.000117897 daily migration from CA to GA

mCA,IL 0.000109452 daily migration from CA to IL

mTX,NY 0.000125624 daily migration from TX to NY
mTX,CO 6.16 * 10−5 daily migration from TX to CO

mTX,CA 0.000138777 daily migration from TX to CA
mTX,GA 0.00010801 daily migration from TX to GA

mTX,IL 0.000100273 daily migration from TX to IL

mGA,NY 0.000100813 daily migration from GA to NY
mGA,CO 4.94 * 10−55 daily migration from GA to CO

mGA,CA 0.000111369 daily migration from GA to CA
mGA,TX 0.00010385 daily migration from GA to TX
mGA,IL 8.05 * 10−5 daily migration from GA to IL
mIL,NY 9.23 * 10−5 daily migration from IL to NY

mIL,CO 4.52 * 10−5 daily migration from IL to CO
mIL,CA 0.000101972 daily migration from IL to CA

mIL,TX 9.51 * 10−5 daily migration from IL to TX
mIL,GA 7.94 * 10−5 daily migration from IL to GA
mNY 0.000518612 daily migration away from NY
mCO 0.000254107 daily migration away from CO

mCA 0.000572914 daily migration away from CA
mTX 0.000534237 daily migration away from TX

mGA 0.000445897 daily migration away from GA
mIL 0.000413958 daily migration away from IL

a 0.0135 natural birth rate percent per day
b 0.008036 natural death rate percent per day
B 0.5 transmission rate individuals per day

d 0.01043575 death rate due to disease percent per day
v 0.07142857 recovery rate percent per day
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3. Results

Figure 1 shows the infected populations in all cities and the total. The first
two peaks are for the California and Texas regions, while subsequent peaks
are for all other regions.

Figure 1. Model output for default parameters. Left scale is to be multiplied by 107.

3.1. Disease prevalence

The Center for Disease Control reports a total of 43,677 laboratory-
confirmed cases of influenza (H1N1) 2009 in the United States through
July 2009 17. They estimate the under reporting of influenza as 79 actual
infections per reported case. Their statistical model estimates 1.8 million to
5.7 million cases occurred. Our model predicts 3.8 million cases, well within
this range. However our model is only for heavily populated regions around
the six major airports, so it seems like the model overestimates the number
of cases. When broken down by region and reported cases we see consis-
tently large overestimates of the peak prevalence, as in Table 2, which gives
model calculations and data comparison for constant transmission rate of
.5.
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Table 2. Peak prevalence results for constant transmission rate

Region Peak Value (Model) Peak Value (Data) 79 * Peak Value (Data)

NY 9,981,985 275 21,725

CO 1,442,394 2,134 168,586
CA 9,042,460 1,192 94,168

TX 6,614,867 652 51,508

GA 3,010,005 815 64,385
IL 5,106,028 1,763 139,277

National 28,000,000 10,050 793,950

However the model may just produce a distorted distribution. We can
also compare the total number of cases in each region to the integrated
infected compartment. If we assume a 14 day duration of disease and
use the first fifteen weeks of data for each region to estimate total cases
during this period we have the comparison described in Table 3, which
gives model calculations and data comparison for constant transmission
rate of .5. Total cases for the first 15 weeks of outbreak in each region are
multiplied by 79 as recommended. Integrated infected compartments for
each region are divided by a 14 day average duration of illness, consistent
with the recovery rate. Our model predicts values about 15 times as large
as the statistically adjusted data for the total number of cases and most of
the individual regions.

Table 3. Total prevalence results compared

Region 79 * Total cases (Data) Integrated Value (Model)/14
NY 236,052 14,975,307
CO 103,964 2,192,060

CA 474,869 13,758,223
TX 278,870 10,087,391

GA 514,053 4,551,770
IL 643,455 7,691,961

National 3,077,919 53,256,713

3.2. Timing of peak prevalence

The number of days until the model reached peak prevalence was compared
to the peak in the corresponding data set for all regions and the total. For
the default transmission rate of .5 errors were within a couple of weeks
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for most regions. The exceptionally poor matches were for California and
Texas. The data for these states had two separate peaks– an early one
and a late one. The model placed a peak between the two. Adjusting the
transmission rate for a single state could often bring the model and data
into agreement, as is shown for the Colorado region in Figure 2.

Figure 2. Time lag (peak of model - peak of data) versus transmission rates for Colorado

Figure 3 shows the results of altering transmission rates one at a time
for each region. In this figure, California’s two peaks are plotted separately,
and these show the largest disagreement with the model, which produces
a peak in the middle. Only the first peak of the Texas data was used for
comparison.

Figure 3. Time lag versus transmission rates for all regions
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3.3. Sensitivity of parameters

A sensitivity analysis was carried out on all parameters. Specifically, we
were interested in the error between the time to peak prevalence in the
model and the data, for each region. Figure 4 shows, for Colorado, the
result of varying each parameter up and down 10%. The result in Figure 4 is
typical of all the regions and also the total. Disease related parameters have,
in general, a much larger effect than migration rates, with the transmission
rate having the largest effect of all. Table 4 summarizes the results for
all regions with parameters listed in descending order of effect on time lag
between data peak and model peak.

Figure 4. As each parameter is varied from its default value by +/- 10%, the time to
peak prevalence varies. The transmission rate is seen to have by far the largest effect;

migration rates have almost no effect.

Table 4. Sensitivity of error in peak time prediction

Region Top 5 Negligible effect

NY B, v, d, a, b mCO, mCA, mTX , mNY , mIL, mGA

CO B, v, d, a, b mCO, mCA, mNY , mTX , mIL, mGA

CA B, v, d, b, mCA mNY , mCO, mTX , mIL, a, mGA

TX B, v, d, b, mCA mNY , mCO, mTX , mIL, a, mGA

GA B, v, d, b, a mNY , mCA, mCO, mTX , mIL, mGA

IL B, v, d, b, a mNY , mCA, mCO, mIL, mTX , mGA

NAT B, v, mNY , a, d b, mCO, mCA, mIL, mTX , mGA
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4. Conclusions

4.1. Estimates of disease prevalence

The data we used gives the percent of those patients who, having presented
with flu-like symptoms, tested positive for influenza15. Early cases were
detected in California and Texas18. These were taken as initial conditions
in the model, with disease incidence at all other locations taken to be
zero. The FluView application has a disclaimer that explains that the data
is from both the U.S. World Health Organization (WHO) Collaborating
Laboratories and the National Respiratory and Enteric Virus Surveillance
System (NREVSS). The disclaimer also mentions that the methods/testing
practices varied from region to region. One last thing the disclaimer states
is that WHO collaborating laboratories report on the influenza A subtypes
of H1 or H3 while the majority of NREVSS laboratories do not report them.

There are approximately 145 participating laboratories in the U.S. How
we chose to aggregate this data influences how our model compares to it.
Perhaps if we had included more regions in the vicinity of each airport the
local estimates would have been closer to the CDC estimate of 79 times
the reported cases. The model prediction for the total is within the CDC
estimate for the U.S. of 1.8 to 5.7 million cases 17 for April to July of 2009.

In addition, altering the transmission rate would also change the pre-
dicted prevalence. Our model does not take into account behavioral changes
of individuals which may take place when an outbreak is known and publi-
cized, as data for the resulting change in transmission rates was not avail-
able. These changes may also be modeled explicitly if relevant parameters
are known 19. Doing so should lower the estimated number of cases in each
region.

The estimates of prevalence we obtain from the integral of infected indi-
viduals over the time period under consideration (and divided by duration
of the disease) were consistently higher than CDC estimates, indicating
that a patch SIR model would have to be adjusted in order to predict the
disease burden in advance.

4.2. Timing of peak prevalence

With two notable exceptions the timing of peak prevalence in our model
was within a week or two of peak number of cases reported in the data.
With transmission rates within a range of .4 to .55 we have good agreement
on timing with data from GA, NY, CO, IL and the whole U.S., as shown
in Figure 3. Strangely, the simulations for states where the disease starts
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(TX, CA) have the worst agreement with data. In both cases the data
show double peaks. Texas has an early peak followed by a period of low
case reports and then a second peak, which may be a second strain of
virus. It is possible that, due to overland travel from Mexico, the original
number of cases was under-reported in Texas, which could certainly alter
the timing of the peak in that state. California also shows two peaks,
but this is probably because the disease started in the San Diego region
and later reached Northern California. We suspect that if we had treated
the California region as two separate patches we would have had better
agreement with the data. Nonetheless, the model produced results within
a week or two of the peaks in the data set for most regions, indicating that
patch models based on airport migration data could be a useful tool in
predicting the timing of disease spread.

The timing also suggests that only a few cases arriving from abroad
have the potential to spread through migration within the country. It is
unnecessary to suppose that every outbreak was initiated through travel
from Mexico. Regions assumed to acquire the disease by migration from
Texas or California (or each other) had peak prevalence substantially later
than those two states, both in the model and in the data. Had infected
visitors from abroad been the source of infection it is unlikely that the
timing would be so consistent.

4.3. General utility of this method

Although the transportation data is only an average, our sensitivity anal-
ysis shows that small variations in it do not have a noticeable effect on
timing of peak prevalence. Of all the parameters in this model, the trans-
mission rate has the largest effect. Unfortunately, this parameter can be
difficult to estimate and can vary regionally and over time as people in-
crease their awareness of a possible epidemic. How well a patch SIR model
will predict the timing of an epidemic is highly dependent on getting an
accurate estimate of the transmission rate and other disease-related pa-
rameters. However, even a rough estimate of the timing of an epidemic, in
advance, is very useful. The method presented here has the advantage of
using publicly available transportation data for only a few large regions and
epidemiological parameters that may be estimated from the first few cases
and the households in which they occur. Comparison with data shows the
method to have predictive value.
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