Bézout's Theorem

Jacob Swenberg
 (Graduate Mentor: Richard Haburcak)

Directed Reading Program
Department of Mathematics
Dartmouth College

March 11, 2021
(1) Introduction

- Algebraic Geometry
- Intersections
- Bézout's Theorem
(2) Projective Plane Curves
- Projective Plane
- Projective Plane Curves
- Functions
(3) Intersections
- Defining Intersection Multiplicity
- Homogenizing and Dehomogenizing
- Examples
- Total Number of Intersections

What is Algebraic Geometry?

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).
- Irreducible ones (varieties).

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).
- Irreducible ones (varieties).
- Defining a topology, functions on algebraic sets, local behavior, dimension, smoothness, etc.
- Sheaves, schemes, and beyond!

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).
- Irreducible ones (varieties).
- Defining a topology, functions on algebraic sets, local behavior, dimension, smoothness, etc.
- Sheaves, schemes, and beyond!
- Focus today: plane curves.

Two Curves

Figure: Two cubic curves.

Two Curves

$3 \times 3=9$

Figure: Two cubic curves.

Another Example

Figure: A circle and a quartic curve.

Another Example

$2 \times 4=8$

Figure: A circle and a quartic curve.

Is this a counterexample?

- Where do these intersect?

Figure: Parallel lines.

Is this a counterexample?

- Where do these intersect?
- "Intersecting at infinity"

Figure: Parallel lines.

Is this a counterexample?

- Where do these intersect?
- "Intersecting at infinity"
- Look at projective space.

Figure: Parallel lines.

Is this a counterexample?

- Where do these intersect?

Figure: A parabola and a line.

Is this a counterexample?

- Where do these intersect?
- They don't "intersect at infinity."

Figure: A parabola and a line.

Is this a counterexample?

- Where do these intersect?
- They don't "intersect at infinity.'
- $x^{2}=-1$
$\Longrightarrow x= \pm \sqrt{-1}$.
- Look at complex projective space.

Figure: A parabola and a line.

Is this a counterexample?

- Do these intersect only once?

Figure: A parabola and a different line.

Is this a counterexample?

- Do these intersect only once?
- $y=x^{2}=0$.
- x^{2} has a double root at 0 .

Figure: A parabola and a different line.

Is this a counterexample?

Figure: A parabola and a different line.

- Do these intersect only once?
- $y=x^{2}=0$.
- x^{2} has a double root at 0 .
- Count multiplicity.

Bézout's Theorem

Theorem (Bézout)
 Let C_{1} and C_{2} be projective plane curves of degree d_{1} and d_{2}, respectively.

Bézout's Theorem

Theorem (Bézout)

Let C_{1} and C_{2} be projective plane curves of degree d_{1} and d_{2}, respectively. Suppose that C_{1} and C_{2} do not share a common component.

Bézout's Theorem

Theorem (Bézout)

Let C_{1} and C_{2} be projective plane curves of degree d_{1} and d_{2}, respectively. Suppose that C_{1} and C_{2} do not share a common component. Then C_{1} and C_{2} intersect in exactly $d_{1} d_{2}$ points, counted with multiplicity.

Projective Plane Projective Plane Curves Functions

The Projective Plane

The Projective Plane

We define an equivalence relation \sim on $\mathbb{C}^{3} \backslash\{0\}$ by $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$ if and only if $\left(a_{1}, b_{1}, c_{1}\right)=\left(\lambda a_{2}, \lambda b_{2}, \lambda c_{2}\right)$ for some $\lambda \in \mathbb{C}^{*}$.

The Projective Plane

We define an equivalence relation \sim on $\mathbb{C}^{3} \backslash\{0\}$ by $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$ if and only if $\left(a_{1}, b_{1}, c_{1}\right)=\left(\lambda a_{2}, \lambda b_{2}, \lambda c_{2}\right)$ for some $\lambda \in \mathbb{C}^{*}$. Write an equivalence class as $[a: b: c]$, so that $[a: b: c]=[\lambda a: \lambda b: \lambda c]$ for all $\lambda \in \mathbb{C}^{*}$.

The Projective Plane

We define an equivalence relation \sim on $\mathbb{C}^{3} \backslash\{0\}$ by $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$ if and only if $\left(a_{1}, b_{1}, c_{1}\right)=\left(\lambda a_{2}, \lambda b_{2}, \lambda c_{2}\right)$ for some $\lambda \in \mathbb{C}^{*}$. Write an equivalence class as $[a: b: c]$, so that $[a: b: c]=[\lambda a: \lambda b: \lambda c]$ for all $\lambda \in \mathbb{C}^{*}$.

Definition

The projective plane is

$$
\mathbb{P}^{2}:=\mathbb{P}^{2}(\mathbb{C}):=\left(\mathbb{C}^{3} \backslash\{0\}\right) / \sim:=\{[x: y: z]:(x, y, z) \neq 0\}
$$

Points on the projective plane

Note that the plane $\mathbb{A}_{\mathbb{C}}^{2}:=\mathbb{C}^{2}$ sits inside \mathbb{P}^{2} as

$$
\left\{[a: b: 1] \in \mathbb{P}^{2}: a, b \in \mathbb{C}\right\} .
$$

Points on the projective plane

Note that the plane $\mathbb{A}_{\mathbb{C}}^{2}:=\mathbb{C}^{2}$ sits inside \mathbb{P}^{2} as

$$
\left\{[a: b: 1] \in \mathbb{P}^{2}: a, b \in \mathbb{C}\right\} .
$$

Every other point looks like $[a: b: 0$] (points at infinity).

Outline

Homogeneous Polynomials

Homogeneous Polynomials

Definition

A polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$ is called homogeneous if every term of f has the same degree. Denote by S_{d} the set of homogeneous polynomials of degree d, and 0 .

Homogeneous Polynomials

Definition

A polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$ is called homogeneous if every term of f has the same degree. Denote by S_{d} the set of homogeneous polynomials of degree d, and 0 .

Examples

- $x+3 y-2 z$
- $x^{2}+y^{2}-z^{2}$
- $z y^{2}-x^{3}-z^{2} x-z^{3}$

Homogeneous Polynomials

Definition

A polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$ is called homogeneous if every term of f has the same degree. Denote by S_{d} the set of homogeneous polynomials of degree d, and 0 .

Examples

- $x+3 y-2 z$
- $x^{2}+y^{2}-z^{2}$
- $z y^{2}-x^{3}-z^{2} x-z^{3}$

If f is a homogeneous polynomial of degree d, then for any $\lambda \in \mathbb{C}$,

$$
f(\lambda x, \lambda y, \lambda z)=\lambda^{d} f(x, y, z)
$$

Projective Plane Curves

What are the zeros of a homogeneous polynomial?

Projective Plane Curves

What are the zeros of a homogeneous polynomial? If $(a, b, c) \in \mathbb{C}^{3} \backslash\{0\}$ and $f \in S_{d}$, then

$$
\begin{aligned}
f(a, b, c)=0 & \Longleftrightarrow \lambda^{d} f(a, b, c)=0 \quad \text { for all } \lambda \in \mathbb{C}^{*} \\
& \Longleftrightarrow f(\lambda a, \lambda b, \lambda c)=0 \quad \text { for all } \lambda \in \mathbb{C}^{*}
\end{aligned}
$$

Projective Plane Curves

What are the zeros of a homogeneous polynomial? If $(a, b, c) \in \mathbb{C}^{3} \backslash\{0\}$ and $f \in S_{d}$, then

$$
\begin{aligned}
f(a, b, c)=0 & \Longleftrightarrow \lambda^{d} f(a, b, c)=0 \quad \text { for all } \lambda \in \mathbb{C}^{*} \\
& \Longleftrightarrow f(\lambda a, \lambda b, \lambda c)=0 \quad \text { for all } \lambda \in \mathbb{C}^{*}
\end{aligned}
$$

Definition

A projective plane curve is a set of the form

$$
V(f):=\left\{[a: b: c] \in \mathbb{P}^{2}: f(a, b, c)=0\right\}
$$

where $f \in \mathbb{C}[x, y, z]$ is homogeneous and nonzero. The degree of f is called the degree of the curve.

An Example (Parallel Lines)

Examples

We have two parallel lines $y=2 x+1$ and $y=2 x-1$. Where do they intersect?

An Example (Parallel Lines)

Examples

We have two parallel lines $y=2 x+1$ and $y=2 x-1$. Where do they intersect? First, homogenize to get $y-2 x-z$ and $y-2 x+z$.

An Example (Parallel Lines)

Examples

We have two parallel lines $y=2 x+1$ and $y=2 x-1$. Where do they intersect? First, homogenize to get $y-2 x-z$ and $y-2 x+z$. These intersect when

$$
y-2 x-z=y-2 x+z=0
$$

We get $2 z=0 \Longrightarrow z=0$. If $z=0$, then we have $y=2 x$. If $x=0$, then $(x, y, z)=(0,0,0)$, which doesn't give a point on the projective plane. So x is nonzero, and the intersection is at $[x: 2 x: 0]=[1: 2: 0]$.

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^{2}. What about $[a: b: c] \mapsto a$?

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^{2}. What about $[a: b: c] \mapsto a$?
- This is not well defined: $[a: b: c]=[2 a: 2 b: 2 c]$, but $a \neq 2 a$ if a is nonzero.

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^{2}. What about $[a: b: c] \mapsto a$?
- This is not well defined: $[a: b: c]=[2 a: 2 b: 2 c]$, but $a \neq 2 a$ if a is nonzero.
- In general, if $f(x, y, z) / g(x, y, z) \in \mathbb{C}(x, y, z)$ is a rational function, f / g is not well-defined at a point $[a: b: c] \in \mathbb{P}^{2}$.

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^{2}. What about $[a: b: c] \mapsto a$?
- This is not well defined: $[a: b: c]=[2 a: 2 b: 2 c]$, but $a \neq 2 a$ if a is nonzero.
- In general, if $f(x, y, z) / g(x, y, z) \in \mathbb{C}(x, y, z)$ is a rational function, f / g is not well-defined at a point $[a: b: c] \in \mathbb{P}^{2}$.
- However, if f and g are both homogeneous of the same degree d, then for any $\lambda \in \mathbb{C}^{*}$,

$$
\frac{f(\lambda x, \lambda y, \lambda z)}{g(\lambda x, \lambda y, \lambda z)}=\frac{\lambda^{d} f(x, y, z)}{\lambda^{d} g(x, y, z)}=\frac{f(x, y, z)}{g(x, y, z)}
$$

Function Field of \mathbb{P}^{2}

Definition

The function field, or the field of rational functions, of \mathbb{P}^{2} is

$$
k\left(\mathbb{P}^{2}\right):=\left\{f / g: f, g \in S_{d} \text { for some } d \in \mathbb{Z}_{\geq 0}, g \neq 0\right\}
$$

Function Field of \mathbb{P}^{2}

Definition

The function field, or the field of rational functions, of \mathbb{P}^{2} is

$$
k\left(\mathbb{P}^{2}\right):=\left\{f / g: f, g \in S_{d} \text { for some } d \in \mathbb{Z}_{\geq 0}, g \neq 0\right\}
$$

(This really is a field.)

Function Field of \mathbb{P}^{2}

Definition

The function field, or the field of rational functions, of \mathbb{P}^{2} is

$$
k\left(\mathbb{P}^{2}\right):=\left\{f / g: f, g \in S_{d} \text { for some } d \in \mathbb{Z}_{\geq 0}, g \neq 0\right\}
$$

(This really is a field.)

Examples

$$
\frac{1}{1}, \quad \frac{x}{z}, \quad \frac{x^{3}+y^{3}}{x^{2} y+y^{2} z+z^{2} x}
$$

Localization

When can we actually find the value of f / g at a point $p \in \mathbb{P}^{2}$?

Localization

When can we actually find the value of f / g at a point $p \in \mathbb{P}^{2}$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Localization

When can we actually find the value of f / g at a point $p \in \mathbb{P}^{2}$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Definition

The local ring of \mathbb{P}^{2} at $p \in \mathbb{P}^{2}$ is

$$
\mathcal{O}_{\mathbb{P}^{2}, p}:=\left\{f / g: f, g \in S_{d} \text { for some } d \in \mathbb{Z}_{\geq 0,} g(p) \neq 0\right\} .
$$

Localization

When can we actually find the value of f / g at a point $p \in \mathbb{P}^{2}$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Definition

The local ring of \mathbb{P}^{2} at $p \in \mathbb{P}^{2}$ is

$$
\mathcal{O}_{\mathbb{P}^{2}, p}:=\left\{f / g: f, g \in S_{d} \text { for some } d \in \mathbb{Z}_{\geq 0,} g(p) \neq 0\right\} .
$$

(This really is a local ring.)

Localization

When can we actually find the value of f / g at a point $p \in \mathbb{P}^{2}$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Definition

The local ring of \mathbb{P}^{2} at $p \in \mathbb{P}^{2}$ is

$$
\mathcal{O}_{\mathbb{P}^{2}, p}:=\left\{f / g: f, g \in S_{d} \text { for some } d \in \mathbb{Z}_{\geq 0,} g(p) \neq 0\right\} .
$$

(This really is a local ring.)

Examples

For $p=[0: 0: 1], \frac{0}{1}, \frac{x}{z}, \frac{y}{z}, \frac{z}{z}, \frac{x^{2}}{x^{2}+z^{2}} \in \mathcal{O}_{\mathbb{P}^{2}, p}$. $\frac{x}{y}$ is NOT in $\mathcal{O}_{\mathbb{P}^{2}, p}$ in this case.

Defining Intersection Multiplicity

Let $p=[a: b: c] \in \mathbb{P}^{2}$. For simplicity, assume $c \neq 0$. Let C_{1} and C_{2} be two plane curves defined by f and g, respectively.

Defining Intersection Multiplicity

Let $p=[a: b: c] \in \mathbb{P}^{2}$. For simplicity, assume $c \neq 0$. Let C_{1} and C_{2} be two plane curves defined by f and g, respectively. We could replace f and g by f / z^{n} and g / z^{m} for appropriate n, m so that $f, g \in \mathcal{O}_{\mathbb{P}^{2}, p}$.

Defining Intersection Multiplicity

Let $p=[a: b: c] \in \mathbb{P}^{2}$. For simplicity, assume $c \neq 0$. Let C_{1} and C_{2} be two plane curves defined by f and g, respectively.
We could replace f and g by f / z^{n} and g / z^{m} for appropriate n, m so that $f, g \in \mathcal{O}_{\mathbb{P}^{2}, p}$.

Definition

The intersection multiplicity of C_{1} and C_{2} at p is

$$
I_{p}\left(C_{1}, C_{2}\right):=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^{2}, p} /(f, g)
$$

Defining Intersection Multiplicity

Let $p=[a: b: c] \in \mathbb{P}^{2}$. For simplicity, assume $c \neq 0$. Let C_{1} and C_{2} be two plane curves defined by f and g, respectively.
We could replace f and g by f / z^{n} and g / z^{m} for appropriate n, m so that $f, g \in \mathcal{O}_{\mathbb{P}^{2}, p}$.

Definition

The intersection multiplicity of C_{1} and C_{2} at p is

$$
I_{p}\left(C_{1}, C_{2}\right):=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^{2}, p} /(f, g)
$$

"Usually" this will be 0 or 1 . We have

$$
I_{p}\left(C_{1}, C_{2}\right) \geq 1 \Longleftrightarrow p \in C_{1} \cap C_{2} .
$$

A Technical Detail

With $p=[a: b: 1] \in \mathbb{A}^{2} \subset \mathbb{P}^{2}$ as above, we have an isomorphism

$$
\begin{aligned}
\varphi: \mathcal{O}_{\mathbb{P}^{2}, p} & \rightarrow \mathbb{C}[x, y]_{\mathfrak{m}_{p}} \\
h(x, y, z) & \mapsto h(x, y, 1) \\
H(x / z, y / z) & \mapsto H(x, y)
\end{aligned}
$$

where

$$
\mathfrak{m}_{p}:=\{H \in \mathbb{C}[x, y]: H(p)=0\}=(x-a, y-b) \subset \mathbb{C}[x, y]
$$

is the maximal ideal corresponding to p. The forward map is dehomogenization, and the inverse map is called homogenization. This makes calculations slightly less cumbersome.

A First Example

Examples

Suppose $C_{1}:=\{f=x=0\}$ and $C_{2}:=\{g=y=0\}$. Let $p=[0: 0: 1]$.

A First Example

Examples

Suppose $C_{1}:=\{f=x=0\}$ and $C_{2}:=\{g=y=0\}$. Let $p=[0: 0: 1]$. Then

$$
I_{p}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^{2}, p} /(x / z, y / z)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y]_{\mathfrak{m}_{\rho}} /(x, y)
$$

A First Example

Examples

Suppose $C_{1}:=\{f=x=0\}$ and $C_{2}:=\{g=y=0\}$. Let $p=[0: 0: 1]$. Then

$$
I_{p}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^{2}, p} /(x / z, y / z)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y]_{\mathfrak{m}_{\rho}} /(x, y)
$$

We have $a+b x+c y+d x^{2}+e x y+\cdots \equiv a \bmod (x, y)$.

A First Example

Examples

Suppose $C_{1}:=\{f=x=0\}$ and $C_{2}:=\{g=y=0\}$. Let $p=[0: 0: 1]$. Then

$$
I_{p}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^{2}, p} /(x / z, y / z)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y]_{\mathfrak{m}_{\rho}} /(x, y)
$$

We have $a+b x+c y+d x^{2}+e x y+\cdots \equiv a \bmod (x, y)$. So only scalars, a 1-d vector space, so

$$
I_{p}\left(C_{1}, C_{2}\right)=1
$$

A Non-Intersection

Examples

The curves defined by $y-z$ and $y+z(y=1$ and $y=-1)$ intersect, but not at $p=[0: 0: 1]$ (so intersection multiplicity should be 0).

A Non-Intersection

Examples

The curves defined by $y-z$ and $y+z(y=1$ and $y=-1)$ intersect, but not at $p=[0: 0: 1]$ (so intersection multiplicity should be 0). Then the ideal $(y-1, y+1) \subset \mathbb{C}[x, y]_{\mathfrak{m}_{p}}$ contains $y+1-(y-1)=2 \notin \mathfrak{m}_{p}$, a unit.

A Non-Intersection

Examples

The curves defined by $y-z$ and $y+z(y=1$ and $y=-1)$ intersect, but not at $p=[0: 0: 1]$ (so intersection multiplicity should be 0$)$. Then the ideal $(y-1, y+1) \subset \mathbb{C}[x, y]_{\mathfrak{m}_{p}}$ contains $y+1-(y-1)=2 \notin \mathfrak{m}_{p}$, a unit. So $(y-1, y+1)=\mathbb{C}[x, y]_{\mathfrak{m}_{p}}$ is the whole ring, so the quotient is $\{0\}$ of dimension 0 over \mathbb{C}, so

$$
I_{p}\left(C_{1}, C_{2}\right)=0
$$

A Non-Intersection

Examples

The curves defined by $y-z$ and $y+z(y=1$ and $y=-1)$ intersect, but not at $p=[0: 0: 1]$ (so intersection multiplicity should be 0$)$. Then the ideal $(y-1, y+1) \subset \mathbb{C}[x, y]_{\mathfrak{m}_{p}}$ contains $y+1-(y-1)=2 \notin \mathfrak{m}_{p}$, a unit. So $(y-1, y+1)=\mathbb{C}[x, y]_{\mathfrak{m}_{p}}$ is the whole ring, so the quotient is $\{0\}$ of dimension 0 over \mathbb{C}, so

$$
I_{p}\left(C_{1}, C_{2}\right)=0
$$

In general, we see that if either f or g does not vanish at p, then $(f, g)=\mathcal{O}_{\mathbb{P}^{2}, p}$, the quotient is trivial, and $I_{p}\left(C_{1}, C_{2}\right)=0$.

A Harder Example

Examples

Consider $f=y-x^{2}$ and $g=y$（the parabola and the line）．Let $u=x \bmod (f, g)$ and $v=y \bmod (f, g)$ ．

A Harder Example

Examples

Consider $f=y-x^{2}$ and $g=y$ (the parabola and the line). Let $u=x \bmod (f, g)$ and $v=y \bmod (f, g)$. Then

$$
v=0, u^{2}=0
$$

so in $\mathbb{C}[x, y]_{\mathfrak{m}_{\rho}} /(f, g)$, we are left with elements of the form

$$
\frac{a u+b}{c u+d}
$$

with $d \neq 0$.

A Harder Example

Examples

Consider $f=y-x^{2}$ and $g=y$ (the parabola and the line). Let $u=x \bmod (f, g)$ and $v=y \bmod (f, g)$. Then

$$
v=0, u^{2}=0
$$

so in $\mathbb{C}[x, y]_{\mathfrak{m}_{p}} /(f, g)$, we are left with elements of the form

$$
\frac{a u+b}{c u+d},
$$

with $d \neq 0$. But

$$
\frac{a u+b}{c u+d} \cdot \frac{-c u+d}{-c u+d}=\frac{-a c u^{2}+(a d-b c) u+b d}{d^{2}-c^{2} u^{2}}=\frac{a d-b c}{d^{2}} u+\frac{b}{d} .
$$

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_{p}} /(f, g)$ is of the form $a u+b$ for some $a, b \in \mathbb{C}$.

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_{p}} /(f, g)$ is of the form $a u+b$ for some $a, b \in \mathbb{C}$. In fact, 1 and u are linearly independent over \mathbb{C} :

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_{p}} /(f, g)$ is of the form $a u+b$ for some $a, b \in \mathbb{C}$. In fact, 1 and u are linearly independent over \mathbb{C} : suppose $a u+b=0$. Then $a x+b \in(f, g)$, which is impossible (look at f and g again).

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_{\rho}} /(f, g)$ is of the form $a u+b$ for some $a, b \in \mathbb{C}$. In fact, 1 and u are linearly independent over \mathbb{C} : suppose $a u+b=0$. Then $a x+b \in(f, g)$, which is impossible (look at f and g again $)$. So $I_{p}\left(C_{1}, C_{2}\right)=2$.

Figure: A parabola and a line.

Total Number of Intersections

The total number of intersections between C_{1} and C_{2} can then be counted as

$$
\sum_{p \in \mathbb{P}^{2}} I_{p}\left(C_{1}, C_{2}\right)
$$

This sum is finite as long as C_{1} and C_{2} don't share a common component.

Total Number of Intersections

The total number of intersections between C_{1} and C_{2} can then be counted as

$$
\sum_{p \in \mathbb{P}^{2}} I_{p}\left(C_{1}, C_{2}\right)
$$

This sum is finite as long as C_{1} and C_{2} don't share a common component.

Bézout's Theorem

Let C_{1} and C_{2} be projective plane curves of degree d_{1} and d_{2}, respectively. Suppose that C_{1} and C_{2} do not share a common component. Then

$$
\sum_{p \in \mathbb{P}^{2}} I_{p}\left(C_{1}, C_{2}\right)=d_{1} d_{2}
$$

Thank You

Sorry there's not time for a proof, but thank you for listening! Questions?

