Bézout's Theorem

Jacob Swenberg (Graduate Mentor: Richard Haburcak)

Directed Reading Program Department of Mathematics Dartmouth College

March 11, 2021

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Outline

Introduction Projective Plane Curves Intersections

Introduction

- Algebraic Geometry
- Intersections
- Bézout's Theorem

2 Projective Plane Curves

- Projective Plane
- Projective Plane Curves
- Functions

Intersections

- Defining Intersection Multiplicity
- Homogenizing and Dehomogenizing
- Examples
- Total Number of Intersections

Algebraic Geometry Intersections Bézout's Theorem

æ

< 1 →

What is Algebraic Geometry?

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Algebraic Geometry Intersections Bézout's Theorem

A 10

What is Algebraic Geometry?

• Solutions to sets of polynomial equations (algebraic sets).

Algebraic Geometry Intersections Bézout's Theorem

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).
- Irreducible ones (varieties).

Algebraic Geometry Intersections Bézout's Theorem

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).
- Irreducible ones (varieties).
- Defining a topology, functions on algebraic sets, local behavior, dimension, smoothness, etc.
- Sheaves, schemes, and beyond!

Algebraic Geometry Intersections Bézout's Theorem

What is Algebraic Geometry?

- Solutions to sets of polynomial equations (algebraic sets).
- Irreducible ones (varieties).
- Defining a topology, functions on algebraic sets, local behavior, dimension, smoothness, etc.
- Sheaves, schemes, and beyond!
- Focus today: plane curves.

Algebraic Geometry Intersections Bézout's Theorem

イロト イヨト イヨト イヨト

2

Two Curves

Figure: Two cubic curves.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Algebraic Geometry Intersections Bézout's Theorem

Two Curves

2

Figure: Two cubic curves.

Algebraic Geometry Intersections Bézout's Theorem

< /₽ > < ∃

3 🖒 3

Another Example

Figure: A circle and a quartic curve.

Algebraic Geometry Intersections Bézout's Theorem

Another Example

 $2 \times 4 = 8$

< 4 1 → 4 三

3 🖒 3

Figure: A circle and a quartic curve.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

• Where do these intersect?

▲ 同 ▶ → ● 三

э

Figure: Parallel lines.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

Figure: Parallel lines.

- Where do these intersect?
- "Intersecting at infinity"

A 10

ъ

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

Figure: Parallel lines.

- Where do these intersect?
- "Intersecting at infinity"

A 10

• Look at projective space.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

• Where do these intersect?

▲ 御 ▶ ▲ 国

æ

Figure: A parabola and a line.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

Figure: A parabola and a line.

- Where do these intersect?
- They don't "intersect at infinity."

< 日 ▶

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

Figure: A parabola and a line.

- Where do these intersect?
- They don't "intersect at infinity."

$$x^2 = -1$$

۵

$$\implies x = \pm \sqrt{-1}.$$

A 10

 Look at complex projective space.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

• Do these intersect only once?

< 日 ▶

글▶ 글

Figure: A parabola and a different line.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

• Do these intersect only once?

•
$$y = x^2 = 0$$
.

• x^2 has a double root at 0.

A 10

Figure: A parabola and a different line.

Algebraic Geometry Intersections Bézout's Theorem

Is this a counterexample?

• Do these intersect only once?

•
$$y = x^2 = 0$$
.

- x^2 has a double root at 0.
- Count multiplicity.

Figure: A parabola and a different line.

Algebraic Geometry Intersections Bézout's Theorem

▲ 同 ▶ → ● 三

B> B

Bézout's Theorem

Theorem (Bézout)

Let C_1 and C_2 be projective plane curves of degree d_1 and d_2 , respectively.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Algebraic Geometry Intersections Bézout's Theorem

< A > <

Bézout's Theorem

Theorem (Bézout)

Let C_1 and C_2 be projective plane curves of degree d_1 and d_2 , respectively. Suppose that C_1 and C_2 do not share a common component.

Algebraic Geometry Intersections Bézout's Theorem

▲ 御 ▶ ▲ 三

Bézout's Theorem

Theorem (Bézout)

Let C_1 and C_2 be projective plane curves of degree d_1 and d_2 , respectively. Suppose that C_1 and C_2 do not share a common component. Then C_1 and C_2 intersect in exactly d_1d_2 points, counted with multiplicity.

Projective Plane Projective Plane Curves Functions

(日)

æ

э

The Projective Plane

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Projective Plane Projective Plane Curves Functions

◆ 同 ▶ ◆ 三 ▶

The Projective Plane

We define an equivalence relation \sim on $\mathbb{C}^3 \setminus \{0\}$ by $(a_1, b_1, c_1) \sim (a_2, b_2, c_2)$ if and only if $(a_1, b_1, c_1) = (\lambda a_2, \lambda b_2, \lambda c_2)$ for some $\lambda \in \mathbb{C}^*$.

Projective Plane Projective Plane Curves Functions

The Projective Plane

We define an equivalence relation \sim on $\mathbb{C}^3 \setminus \{0\}$ by $(a_1, b_1, c_1) \sim (a_2, b_2, c_2)$ if and only if $(a_1, b_1, c_1) = (\lambda a_2, \lambda b_2, \lambda c_2)$ for some $\lambda \in \mathbb{C}^*$. Write an equivalence class as [a : b : c], so that $[a : b : c] = [\lambda a : \lambda b : \lambda c]$ for all $\lambda \in \mathbb{C}^*$.

Projective Plane Projective Plane Curves Functions

(4 同) (ヨ) (ヨ)

The Projective Plane

We define an equivalence relation \sim on $\mathbb{C}^3 \setminus \{0\}$ by $(a_1, b_1, c_1) \sim (a_2, b_2, c_2)$ if and only if $(a_1, b_1, c_1) = (\lambda a_2, \lambda b_2, \lambda c_2)$ for some $\lambda \in \mathbb{C}^*$. Write an equivalence class as [a : b : c], so that $[a : b : c] = [\lambda a : \lambda b : \lambda c]$ for all $\lambda \in \mathbb{C}^*$.

Definition

The projective plane is

 $\mathbb{P}^2 := \mathbb{P}^2(\mathbb{C}) := (\mathbb{C}^3 \setminus \{0\}) / \sim := \{ [x : y : z] : (x, y, z) \neq 0 \}.$

Projective Plane Projective Plane Curves Functions

Points on the projective plane

Note that the plane $\mathbb{A}^2_{\mathbb{C}} := \mathbb{C}^2$ sits inside \mathbb{P}^2 as $\{[a:b:1] \in \mathbb{P}^2 : a, b \in \mathbb{C}\}.$

Projective Plane Projective Plane Curves Functions

Points on the projective plane

Note that the plane $\mathbb{A}^2_{\mathbb{C}} := \mathbb{C}^2$ sits inside \mathbb{P}^2 as

$$\{[a:b:1]\in\mathbb{P}^2:a,b\in\mathbb{C}\}.$$

Every other point looks like [a : b : 0] (points at infinity).

Projective Plane Projective Plane Curves Functions

æ

ъ.

- ∢ 🖓 ▶ - ∢ 🖻

Homogeneous Polynomials

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Projective Plane Projective Plane Curves Functions

Homogeneous Polynomials

Definition

A polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$ is called *homogeneous* if every term of f has the same degree. Denote by S_d the set of homogeneous polynomials of degree d, and 0.

Projective Plane Projective Plane Curves Functions

Homogeneous Polynomials

Definition

A polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$ is called *homogeneous* if every term of f has the same degree. Denote by S_d the set of homogeneous polynomials of degree d, and 0.

Examples

•
$$x + 3y - 2z$$

•
$$x^2 + y^2 - z^2$$

•
$$zy^2 - x^3 - z^2x - z^3$$

Projective Plane Projective Plane Curves Functions

Homogeneous Polynomials

Definition

A polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$ is called *homogeneous* if every term of f has the same degree. Denote by S_d the set of homogeneous polynomials of degree d, and 0.

Examples

•
$$x + 3y - 2z$$

•
$$x^2 + y^2 - z^2$$

•
$$zy^2 - x^3 - z^2x - z^3$$

If f is a homogeneous polynomial of degree d, then for any $\lambda \in \mathbb{C}$,

$$f(\lambda x, \lambda y, \lambda z) = \lambda^d f(x, y, z)$$

Projective Plane Projective Plane Curves Functions

Projective Plane Curves

What are the zeros of a homogeneous polynomial?

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Projective Plane Projective Plane Curves Functions

Projective Plane Curves

What are the **zeros** of a homogeneous polynomial? If $(a, b, c) \in \mathbb{C}^3 \setminus \{0\}$ and $f \in S_d$, then

$$f(a, b, c) = 0 \iff \lambda^d f(a, b, c) = 0 \text{ for all } \lambda \in \mathbb{C}^*$$

 $\iff f(\lambda a, \lambda b, \lambda c) = 0 \text{ for all } \lambda \in \mathbb{C}^*$

Projective Plane Projective Plane Curves Functions

Projective Plane Curves

What are the **zeros** of a homogeneous polynomial? If $(a, b, c) \in \mathbb{C}^3 \setminus \{0\}$ and $f \in S_d$, then

$$f(a, b, c) = 0 \iff \lambda^d f(a, b, c) = 0 \text{ for all } \lambda \in \mathbb{C}^*$$

 $\iff f(\lambda a, \lambda b, \lambda c) = 0 \text{ for all } \lambda \in \mathbb{C}^*$

Definition

A projective plane curve is a set of the form

$$V(f) := \{ [a:b:c] \in \mathbb{P}^2 : f(a,b,c) = 0 \},$$

where $f \in \mathbb{C}[x, y, z]$ is homogeneous and nonzero. The degree of f is called the *degree* of the curve.

Projective Plane Projective Plane Curves Functions

< 同 > < 三 >

An Example (Parallel Lines)

Examples

We have two parallel lines y = 2x + 1 and y = 2x - 1. Where do they intersect?

Projective Plane Projective Plane Curves Functions

- 4 同 ト - 4 目 ト

э

An Example (Parallel Lines)

Examples

We have two parallel lines y = 2x + 1 and y = 2x - 1. Where do they intersect? First, homogenize to get y - 2x - z and y - 2x + z.

Projective Plane Projective Plane Curves Functions

・ 同 ト ・ ヨ ト ・ ヨ ト

An Example (Parallel Lines)

Examples

We have two parallel lines y = 2x + 1 and y = 2x - 1. Where do they intersect? First, homogenize to get y - 2x - z and y - 2x + z. These intersect when

$$y - 2x - z = y - 2x + z = 0.$$

We get $2z = 0 \implies z = 0$. If z = 0, then we have y = 2x. If x = 0, then (x, y, z) = (0, 0, 0), which doesn't give a point on the projective plane. So x is nonzero, and the intersection is at [x : 2x : 0] = [1 : 2 : 0].

Projective Plane Projective Plane Curves Functions

A 10

Functions on Projective Things

• Suppose we want to define polynomial/rational functions on \mathbb{P}^2 . What about $[a:b:c] \mapsto a$?

Projective Plane Projective Plane Curves Functions

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^2 . What about $[a:b:c] \mapsto a$?
- This is not well defined: [a : b : c] = [2a : 2b : 2c], but a ≠ 2a if a is nonzero.

Projective Plane Projective Plane Curves Functions

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^2 . What about $[a:b:c] \mapsto a$?
- This is not well defined: [a : b : c] = [2a : 2b : 2c], but a ≠ 2a if a is nonzero.
- In general, if f(x, y, z)/g(x, y, z) ∈ C(x, y, z) is a rational function, f/g is not well-defined at a point [a : b : c] ∈ P².

Projective Plane Projective Plane Curves Functions

Functions on Projective Things

- Suppose we want to define polynomial/rational functions on \mathbb{P}^2 . What about $[a:b:c] \mapsto a$?
- This is not well defined: [a : b : c] = [2a : 2b : 2c], but a ≠ 2a if a is nonzero.
- In general, if f(x, y, z)/g(x, y, z) ∈ C(x, y, z) is a rational function, f/g is not well-defined at a point [a : b : c] ∈ P².
- However, if f and g are both homogeneous of the same degree d, then for any $\lambda \in \mathbb{C}^*$,

$$\frac{f(\lambda x, \lambda y, \lambda z)}{g(\lambda x, \lambda y, \lambda z)} = \frac{\lambda^d f(x, y, z)}{\lambda^d g(x, y, z)} = \frac{f(x, y, z)}{g(x, y, z)}.$$

Projective Plane Projective Plane Curves Functions

Image: A = A = A

-∢ ≣ ▶

э

Function Field of \mathbb{P}^2

Definition

The function field, or the field of rational functions, of \mathbb{P}^2 is

$$k(\mathbb{P}^2) := \{f/g : f, g \in S_d \text{ for some } d \in \mathbb{Z}_{\geq 0}, g \neq 0\}.$$

Projective Plane Projective Plane Curves Functions

▲ 同 ▶ → ● 三

Function Field of $\mathbb{P}^{2^{n}}$

Definition

The function field, or the field of rational functions, of \mathbb{P}^2 is

$$k(\mathbb{P}^2) := \{f/g : f, g \in S_d \text{ for some } d \in \mathbb{Z}_{\geq 0}, g \neq 0\}.$$

(This really is a field.)

Projective Plane Projective Plane Curves Functions

▲ 伊 ▶ ▲ 三 ▶

Function Field of $\mathbb{P}^{2^{n}}$

Definition

The function field, or the field of rational functions, of \mathbb{P}^2 is

$$k(\mathbb{P}^2) := \{f/g : f, g \in S_d \text{ for some } d \in \mathbb{Z}_{\geq 0}, g \neq 0\}.$$

(This really is a field.)

Examples

$$\frac{1}{1}$$
, $\frac{x}{z}$, $\frac{x^3 + y^3}{x^2y + y^2z + z^2x}$.

Projective Plane Projective Plane Curves Functions

▲ 同 ▶ → ● 三

ъ.

э

Localization

When can we actually find the value of f/g at a point $p \in \mathbb{P}^2$?

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Projective Plane Projective Plane Curves Functions

日 ▶ ▲ □

Localization

When can we actually find the value of f/g at a point $p \in \mathbb{P}^2$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Projective Plane Projective Plane Curves Functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Localization

When can we actually find the value of f/g at a point $p \in \mathbb{P}^2$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Definition

The local ring of \mathbb{P}^2 at $p \in \mathbb{P}^2$ is

 $\mathcal{O}_{\mathbb{P}^2,p} := \{ f/g : f, g \in S_d \text{ for some } d \in \mathbb{Z}_{\geq 0}, g(p) \neq 0 \}.$

Projective Plane Projective Plane Curves Functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Localization

When can we actually find the value of f/g at a point $p \in \mathbb{P}^2$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Definition

The local ring of \mathbb{P}^2 at $p \in \mathbb{P}^2$ is

 $\mathcal{O}_{\mathbb{P}^2,p} := \{ f/g : f, g \in S_d \text{ for some } d \in \mathbb{Z}_{\geq 0}, g(p) \neq 0 \}.$

(This really is a local ring.)

Projective Plane Projective Plane Curves Functions

Localization

When can we actually find the value of f/g at a point $p \in \mathbb{P}^2$? We ask that $g(p) \neq 0$ (which is a well-defined thing to ask).

Definition

The local ring of \mathbb{P}^2 at $p \in \mathbb{P}^2$ is

 $\mathcal{O}_{\mathbb{P}^2,p} := \{f/g : f, g \in S_d \text{ for some } d \in \mathbb{Z}_{\geq 0}, g(p) \neq 0\}.$

(This really is a local ring.)

Examples

For
$$p = [0:0:1]$$
, $\frac{0}{1}$, $\frac{x}{z}$, $\frac{y}{z}$, $\frac{z}{z}$, $\frac{x^2}{x^2+z^2} \in \mathcal{O}_{\mathbb{P}^2,p}$.
 $\frac{x}{y}$ is NOT in $\mathcal{O}_{\mathbb{P}^2,p}$ in this case.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

Defining Intersection Multiplicity

Let $p = [a : b : c] \in \mathbb{P}^2$. For simplicity, assume $c \neq 0$. Let C_1 and C_2 be two plane curves defined by f and g, respectively.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

Defining Intersection Multiplicity

Let $p = [a : b : c] \in \mathbb{P}^2$. For simplicity, assume $c \neq 0$. Let C_1 and C_2 be two plane curves defined by f and g, respectively. We could replace f and g by f/z^n and g/z^m for appropriate n, m so that $f, g \in \mathcal{O}_{\mathbb{P}^2, p}$.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

▲ 伊 ▶ ▲ 三 ▶

Defining Intersection Multiplicity

Let $p = [a : b : c] \in \mathbb{P}^2$. For simplicity, assume $c \neq 0$. Let C_1 and C_2 be two plane curves defined by f and g, respectively. We could replace f and g by f/z^n and g/z^m for appropriate n, m so that $f, g \in \mathcal{O}_{\mathbb{P}^2, p}$.

Definition

The intersection multiplicity of C_1 and C_2 at p is

 $I_p(C_1, C_2) := \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^2, p}/(f, g).$

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

Defining Intersection Multiplicity

Let $p = [a : b : c] \in \mathbb{P}^2$. For simplicity, assume $c \neq 0$. Let C_1 and C_2 be two plane curves defined by f and g, respectively. We could replace f and g by f/z^n and g/z^m for appropriate n, m so that $f, g \in \mathcal{O}_{\mathbb{P}^2, p}$.

Definition

The intersection multiplicity of C_1 and C_2 at p is

$$I_p(C_1, C_2) := \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^2, p}/(f, g).$$

"Usually" this will be 0 or 1. We have

$$I_p(C_1, C_2) \geq 1 \iff p \in C_1 \cap C_2.$$

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Technical Detail

With $p = [a : b : 1] \in \mathbb{A}^2 \subset \mathbb{P}^2$ as above, we have an isomorphism

$$arphi : \mathcal{O}_{\mathbb{P}^2, p} o \mathbb{C}[x, y]_{\mathfrak{m}_p}$$

 $h(x, y, z) \mapsto h(x, y, 1)$
 $H(x/z, y/z) \leftarrow H(x, y)$

where

$$\mathfrak{m}_p := \{H \in \mathbb{C}[x, y] : H(p) = 0\} = (x - a, y - b) \subset \mathbb{C}[x, y]$$

is the maximal ideal corresponding to *p*. The forward map is *dehomogenization*, and the inverse map is called *homogenization*. This makes calculations slightly less cumbersome.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

- 4 目 ト - 4 目 ト - 4

B> B

A First Example

Examples

Suppose $C_1 := \{f = x = 0\}$ and $C_2 := \{g = y = 0\}$. Let p = [0:0:1].

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

(4 同) (ヨ) (ヨ)

э

A First Example

Examples

Suppose $C_1 := \{f = x = 0\}$ and $C_2 := \{g = y = 0\}$. Let p = [0:0:1]. Then

 $I_p(C_1, C_2) = \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^2, p}/(x/z, y/z) = \dim_{\mathbb{C}} \mathbb{C}[x, y]_{\mathfrak{m}_p}/(x, y).$

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

▲ 伊 ▶ ▲ 三 ▶

A First Example

Examples

Suppose $C_1 := \{f = x = 0\}$ and $C_2 := \{g = y = 0\}$. Let p = [0:0:1]. Then

$$I_p(C_1, C_2) = \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^2, p}/(x/z, y/z) = \dim_{\mathbb{C}} \mathbb{C}[x, y]_{\mathfrak{m}_p}/(x, y).$$

We have $a + bx + cy + dx^2 + exy + \cdots \equiv a \mod (x, y)$.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

▲ 伊 ▶ ▲ 三 ▶

A First Example

Examples

Suppose $C_1 := \{f = x = 0\}$ and $C_2 := \{g = y = 0\}$. Let p = [0:0:1]. Then

$$I_p(C_1, C_2) = \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^2, p}/(x/z, y/z) = \dim_{\mathbb{C}} \mathbb{C}[x, y]_{\mathfrak{m}_p}/(x, y).$$

We have $a + bx + cy + dx^2 + exy + \cdots \equiv a \mod (x, y)$. So only scalars, a 1-d vector space, so

$$I_p(C_1, C_2) = 1.$$

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

< / □ ト < 三

A Non-Intersection

Examples

The curves defined by y - z and y + z (y = 1 and y = -1) intersect, but not at p = [0:0:1] (so intersection multiplicity should be 0).

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

▲ 同 ▶ - ▲ 三 ▶

A Non-Intersection

Examples

The curves defined by y - z and y + z (y = 1 and y = -1) intersect, but not at p = [0:0:1] (so intersection multiplicity should be 0). Then the ideal $(y - 1, y + 1) \subset \mathbb{C}[x, y]_{\mathfrak{m}_p}$ contains $y + 1 - (y - 1) = 2 \notin \mathfrak{m}_p$, a unit.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

< /□ > < □ >

A Non-Intersection

Examples

The curves defined by y - z and y + z (y = 1 and y = -1) intersect, but not at p = [0:0:1] (so intersection multiplicity should be 0). Then the ideal $(y - 1, y + 1) \subset \mathbb{C}[x, y]_{\mathfrak{m}_p}$ contains $y + 1 - (y - 1) = 2 \notin \mathfrak{m}_p$, a unit. So $(y - 1, y + 1) = \mathbb{C}[x, y]_{\mathfrak{m}_p}$ is the whole ring, so the quotient is $\{0\}$ of dimension 0 over \mathbb{C} , so

 $I_p(C_1, C_2) = 0.$

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Non-Intersection

Examples

The curves defined by y - z and y + z (y = 1 and y = -1) intersect, but not at p = [0:0:1] (so intersection multiplicity should be 0). Then the ideal $(y - 1, y + 1) \subset \mathbb{C}[x, y]_{\mathfrak{m}_p}$ contains $y + 1 - (y - 1) = 2 \notin \mathfrak{m}_p$, a unit. So $(y - 1, y + 1) = \mathbb{C}[x, y]_{\mathfrak{m}_p}$ is the whole ring, so the quotient is $\{0\}$ of dimension 0 over \mathbb{C} , so

$$I_p(C_1, C_2) = 0.$$

In general, we see that if either f or g does not vanish at p, then $(f,g) = \mathcal{O}_{\mathbb{P}^2,p}$, the quotient is trivial, and $I_p(C_1, C_2) = 0$.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example

Examples

Consider $f = y - x^2$ and g = y (the parabola and the line). Let $u = x \mod (f,g)$ and $v = y \mod (f,g)$.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example

Examples

Consider $f = y - x^2$ and g = y (the parabola and the line). Let $u = x \mod (f,g)$ and $v = y \mod (f,g)$. Then

$$v=0, u^2=0,$$

so in $\mathbb{C}[x, y]_{\mathfrak{m}_p}/(f, g)$, we are left with elements of the form

$$\frac{au+b}{cu+d}$$

with $d \neq 0$.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example

Examples

Consider $f = y - x^2$ and g = y (the parabola and the line). Let $u = x \mod (f,g)$ and $v = y \mod (f,g)$. Then

$$v=0, u^2=0,$$

so in $\mathbb{C}[x, y]_{\mathfrak{m}_p}/(f, g)$, we are left with elements of the form

$$\frac{au+b}{cu+d}$$

with $d \neq 0$. But

$$\frac{au+b}{cu+d}\cdot\frac{-cu+d}{-cu+d}=\frac{-acu^2+(ad-bc)u+bd}{d^2-c^2u^2}=\frac{ad-bc}{d^2}u+\frac{b}{d}.$$

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_p}/(f, g)$ is of the form au + b for some $a, b \in \mathbb{C}$.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_{p}}/(f, g)$ is of the form au + b for some $a, b \in \mathbb{C}$. In fact, 1 and u are linearly independent over \mathbb{C} :

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_p}/(f, g)$ is of the form au + b for some $a, b \in \mathbb{C}$. In fact, 1 and u are linearly independent over \mathbb{C} : suppose au + b = 0. Then $ax + b \in (f, g)$, which is impossible (look at f and g again).

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

A Harder Example (cont.)

Examples

So every element in $\mathbb{C}[x, y]_{\mathfrak{m}_p}/(f, g)$ is of the form au + b for some $a, b \in \mathbb{C}$. In fact, 1 and u are linearly independent over \mathbb{C} : suppose au + b = 0. Then $ax + b \in (f, g)$, which is impossible (look at f and g again). So $I_p(C_1, C_2) = 2$.

Figure: A parabola and a line.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

Total Number of Intersections

The total number of intersections between C_1 and C_2 can then be counted as

$$\sum_{p\in\mathbb{P}^2}I_p(C_1,C_2).$$

This sum is finite as long as C_1 and C_2 don't share a common component.

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

Total Number of Intersections

The total number of intersections between C_1 and C_2 can then be counted as

$$\sum_{p\in\mathbb{P}^2}I_p(C_1,C_2).$$

This sum is finite as long as C_1 and C_2 don't share a common component.

Bézout's Theorem

Let C_1 and C_2 be projective plane curves of degree d_1 and d_2 , respectively. Suppose that C_1 and C_2 do not share a common component. Then

$$\sum_{\rho\in\mathbb{P}^2}I_{\rho}(C_1,C_2)=d_1d_2.$$

Defining Intersection Multiplicity Homogenizing and Dehomogenizing Examples Total Number of Intersections

Sorry there's not time for a proof, but thank you for listening! Questions?

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout's Theorem