A taste of Intuitionistic Logic

Directed Reading Program with Zachary Winkeler Dylan Fridman and Julia Zanette

...........

To φ or not to φ

Law of excluded middle

 $\varphi \lor \neg \varphi$

Natural Deduction

Let **PV** be an infinite set of *propositional variables*.

 Δ is our set of formulas.

Natural Deduction

Definition

A **judgment** is a pair consisting of a finite set of formulas Γ and a formula φ , and we denote it by $\Gamma \vdash \varphi$.

Natural Deduction Classical Propositional Calculus

$\Gamma, \varphi \vdash \varphi \; (\mathrm{Ax})$	$\Gamma \vdash \varphi \lor \neg \varphi \; (Ax)$
$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \ (\rightarrow I)$	$\frac{\Gamma\vdash\varphi\rightarrow\psi\Gamma\vdash\varphi}{\Gamma\vdash\psi}(\rightarrow \mathrm{E})$
$\frac{\Gamma\vdash\varphi\Gamma\vdash\psi}{\Gamma\vdash\varphi\wedge\psi}\;(\wedge \mathrm{I})$	$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} (\land \mathbf{E}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}$
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} (\lor I) \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$	$\frac{\Gamma, \varphi \vdash \vartheta \Gamma, \psi \vdash \vartheta \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \vartheta} \ (\lor E)$
$\frac{\Gamma}{\Gamma}$	$\frac{-\perp}{+\varphi}$ (\perp E)

Natural Deduction

Definition

We inductively define a **derivable judgment** as any judgment that is either an axiom or is derived from the rules of inference.

Definition

A **theorem** is a derivable judgment with $\Gamma = \varnothing$.

Natural Deduction

Natural Deduction Classical Propositional Calculus

$\Gamma, \varphi \vdash \varphi \; (\mathrm{Ax})$	$\Gamma \vdash \varphi \lor \neg \varphi$ (Ax)	
$rac{\Gamma, arphi dash \psi}{\Gammadash arphi o \psi} \; (o \mathrm{I})$	$\frac{\Gamma\vdash\varphi\rightarrow\psi\Gamma\vdash\varphi}{\Gamma\vdash\psi}(\rightarrow \mathrm{E})$	
$\frac{\Gamma \vdash \varphi \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \ (\land I)$	$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} (\land \mathbf{E}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}$	
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} (\lor I) \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$	$\frac{\Gamma, \varphi \vdash \vartheta \Gamma, \psi \vdash \vartheta \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \vartheta} \ (\lor E)$	
$rac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$ ($\bot E$)		

Natural Deduction Intuitionistic Propositional Calculus

$\Gamma, \varphi \vdash \varphi$ (Ax)	$\Gamma \vdash \varphi \checkmark \varphi$ (Ax)	
$rac{\Gamma, arphi dash \psi}{\Gammadash arphi ightarrow \psi} \; (ightarrow { m I})$	$\frac{\Gamma\vdash\varphi\rightarrow\psi\Gamma\vdash\varphi}{\Gamma\vdash\psi}(\rightarrow \mathrm{E})$	
$\frac{\Gamma\vdash\varphi\Gamma\vdash\psi}{\Gamma\vdash\varphi\wedge\psi}\;(\wedge \mathrm{I})$	$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} (\land \mathbf{E}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}$	
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} (\lor I) \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$	$\frac{\Gamma, \varphi \vdash \vartheta \Gamma, \psi \vdash \vartheta \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \vartheta} \ (\lor E)$	
$rac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \; (\bot E)$		

Natural deduction Intuitionistic Propositional Calculus

From Classical to Intuitionistic

What is the difference?

Semantics of Classical Propositional Calculus

$$\neg (p \land q) \rightarrow \neg p \lor \neg q$$

Semantics of Classical Propositional Calculus

Definition

A classical valuation is a function from PV to $\{0, 1\}$.

Definition

Given a valuation v, we define the value function V : $\Delta \rightarrow \{0, 1\}$ as:

- V(⊥) = 0
- $V(\varphi) = v(\varphi)$ if $\varphi \in PV$
- $V(\varphi \land \psi) = \min\{V(\varphi), V(\psi)\}$
- $V(\varphi \lor \psi) = \max\{V(\varphi), V(\psi)\}$
- $V(\varphi \rightarrow \psi) = \mathbb{1}_{V(\varphi) \leq V(\psi)}$

Semantics of Classical Propositional Calculus

Definition

We say a formula φ is classically valid and write it as $\vDash \varphi$ whenever for every valuation v we have $V(\varphi) = 1$.

Semantics Heyting Algebras

Definition

A partial order $\{H, \leq\}$ is a **Heyting algebra** if:

- Every two elements a, b ∈ H have a supremum (a ∪ b) and an infimum (a ∩ b) in H.
- Every two elements a, b ∈ H have a relative pseudo complement (a → b), which is the greatest c ∈ H such that a ∩ c ≤ b.
- H has both top (1) and bottom (0) elements.

Definition

Given a Heyting algebra $\mathcal{H} = \{H, \leq, \cup, \cap, 0, 1, \Rightarrow\}$, an **intuitionistic valuation** is a function from **PV** to *H*.

Definition

Given a Heyting algebra $\mathcal{H} = \{H, \leq, \cup, \cap, 0, 1, \Rightarrow\}$ and a valuation v, we define the **value function** $V : \Delta \rightarrow H$ as:

- V(⊥) = 0
- $V(\varphi) = v(\varphi)$ if $\varphi \in PV$
- $V(\varphi \land \psi) = V(\varphi) \cap V(\psi)$
- $V(\varphi \lor \psi) = V(\varphi) \cup V(\psi)$
- $V(\varphi \rightarrow \psi) = V(\varphi) \Rightarrow V(\psi)$

Definition

We write $\vDash \varphi$ whenever we have that $V(\varphi) = 1$, for every Heyting algebra \mathscr{H} and every valuation v.

Theorem

 $\vdash \varphi$ if and only if $\models \varphi$.

Semantics Non-redundancy of the Law of Excluded Middle

heorem	
$p \lor \neg p$	
Proof.	

Theorem

$$\not\vdash \neg \neg p \rightarrow p$$

Proof.

Glivenko's Theorem

Theorem

A formula φ is classically valid if and only if $\neg \neg \varphi$ is intuitionistically valid.

Questions?