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Natural Deduction

Let PV be an infinite set of propositional variables.

Definition
Let A be the least set such that:
e lLeA
e PVCA
e pyelthen(pAy)(pVvy)(p—y)el

A is our set of formulas.
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Natural Deduction

Definition

A judgment is a pair consisting of a finite set of formulas " and a
formula ¢, and we denote it by I" F ¢.

3/22



Natural Deduction
Classical Propositional Calculus
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Natural Deduction

Definition
We inductively define a derivable judgment as any judgment that is
either an axiom or is derived from the rules of inference.

Definition

A theorem is a derivable judgment with ' = &.
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Natural Deduction
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Natural Deduction
Classical Propositional Calculus
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Natural Deduction
Intuitionistic Propositional Calculus
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Natural deduction
Intuitionistic Propositional Calculus
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From Classical to Intuitionistic

What is the difference?
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Semantics of Classical Propositional Calculus

“(pAg@)— —pV g
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Semantics of Classical Propositional Calculus

Definition

A classical valuation is a function from PV to {0, 1}.

Definition

Given a valuation v, we define the value function vV : A — {0, 1} as:
e V(L)=0

V(p) =v(p) ifp€PV

V(e A ¢) =min{V(e), V(y)}

V(e v ¢) = max{V(e), V() }

V(e = ¢) = Lyp)<viy)
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Semantics of Classical Propositional Calculus

Definition
We say a formula ¢ is classically valid and write it as F ¢ whenever
for every valuation v we have V() = 1.
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Semantics
Heyting Algebras

Definition
A partial order {H, <} is a Heyting algebra if:

e Every two elements a, b € H have a supremum (a U b) and an
infimum (a N b) in H.

e Every two elements a, b € H have a relative pseudo
complement (a — b), which is the greatest ¢ € H such that
anc<b.

e H has both top (1) and bottom (0) elements.
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Semantics
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Semantics

Definition
Given a Heyting algebra # = {H, <,U,N, 0,1, =}, an
intuitionistic valuation is a function from PV to H.

Definition
Given a Heyting algebra # = {H, <, U, N, 0,1, =} and a valuation
v, we define the value function V : A — H as:
e V(L)=0
V(p) =v(p) ifpEPV
V(e A y) =V(e)NV(y)
V(e v y¢)=V(p)UV(y)
V(e — ¢) = V() = V(y)
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Semantics

Definition

We write F ¢ whenever we have that V(@) = 1, for every Heyting
algebra 7 and every valuation v.
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Semantics

F ¢ if and only if E ¢.
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Semantics
Non-redundancy of the Law of Excluded Middle

Theorem

Fov-p

O
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Semantics

Theorem




Glivenko’s Theorem

Theorem

A formula ¢ is classically valid if and only if = — ¢ is intuitionistically
valid.
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That'’s all

Questions?
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