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AN EQUIVARIANT BRAUER SEMIGROUP
AND THE SYMMETRIC IMPRIMITIVITY THEOREM

ASTRID AN HUEF, IAIN RAEBURN, AND DANA P. WILLIAMS

Abstract. Suppose that (X,G) is a second countable locally compact trans-
formation group. We let SG(X) denote the set of Morita equivalence classes
of separable dynamical systems (A,G,α) where A is a C0(X)-algebra and
α is compatible with the given G-action on X. We prove that SG(X) is a
commutative semigroup with identity with respect to the binary operation
[A,G, α][B,G, β] = [A⊗X B,G,α⊗X β] for an appropriately defined balanced
tensor product on C0(X)-algebras. If G and H act freely and properly on the
left and right of a space X, then we prove that SG(X/H) and SH(G\X) are
isomorphic as semigroups. If the isomorphism maps the class of (A,G,α) to
the class of (B,H, β), then A oα G is Morita equivalent to B oβ H.

1. Introduction

Mackey’s imprimitivity theorem identifies the unitary representations U of a
locally compact group G which have been induced from a closed subgroup H .
In Rieffel’s formulation, it says that U is induced precisely when it is part of a
covariant representation (π, U) of the dynamical system

(
C0(G/H), G

)
; he proved

the theorem by showing that the crossed product C0(G/H)oG is Morita equivalent
to the group C∗-algebra C∗(H) (and invented the C∗-algebraic theory of Morita
equivalence while he was at it). The symmetric imprimitivity theorem of Green
and Rieffel involves commuting free and proper actions of two groups, G and H , on
a space X , and asserts that C0(G\X) o H is Morita equivalent to C0(X/H) o G
(see [26]); one recovers Mackey’s theorem by taking H ⊂ G and X = G.

In recent years we have studied dynamical systems involving continuous-trace
C∗-algebras (A,G, α) by viewing them as elements of an equivariant Brauer group
BrG(X) associated to the induced action of a group G on the spectrum X of the
algebra A [6], [18]. Inspired by the symmetric imprimitivity theorem, it was shown
in [16] that if H and G act freely and properly on X as above, then there is a group
isomorphism λ of BrH(G\X) onto BrG(X/H) such that B oβ G is Morita equiv-
alent to A oα H whenever (B,G, β) is a representative for λ(A,H, α). Green and
Rieffel’s symmetric imprimitivity theorem is recovered by taking A = C0(G\X);
in general, this Morita equivalence can be obtained by applying the noncommuta-
tive symmetric imprimitivity theorem of [21] to systems involving continuous-trace
algebras.

Our present goal is to find a version of the isomorphism of [16] which incorpo-
rates as much algebraic structure as possible and yet gives the full strength of the
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symmetric imprimitivity theorem as discussed in [21]. We shall do this by intro-
ducing an equivariant Brauer semigroup SG(X): the objects in SG(X) are again
represented by systems (A,G, α), but now we insist only that A is a C0(X)-algebra
in the sense of [14], [2], [17], and that the action α is compatible with a given action
of G on X and C0(X). This incorporates many more systems: the algebras A need
not be type I or even nuclear, and their spectrums could be much bigger than X .
(For example, any algebra of the form C0(X,D) could arise.)

We begin by introducing our Brauer semigroup SG(X). As in [6], the product
is based on a balanced tensor product of the underlying algebras. Here, however,
we want to allow non-nuclear algebras, and this leads to technical difficulties: to
get an associative multiplication we have to use the maximal tensor product rather
than the spatial one. The objects in SG(X) will be Morita equivalence classes of
systems, and checking that these equivalences are compatible with our balanced
tensor products requires some technical innovations.

Our basic isomorphism is proved in section 3. Specifically, we prove that if G
and H are second countable locally compact groups acting freely and properly on
the left and right, respectively, of a second countable locally compact space X in
such a way that (s · x) · h = s · (x · h), then there is a semigroup isomorphism
θ of SG(X/H) onto SH(G\X). We give an explicit description of θ in terms of
Rieffel’s generalized fixed-point algebras Aγ for proper actions γ : G → AutA.
Every class in SG(X/H) has a representative of the form (Aβ , G, ᾱ), where α and
β are commuting proper actions of G and H , respectively, on a C0(X)-algebra A
which are compatible with the given actions on X . Since Aβ is a subalgebra of the
multiplier algebra M(A), ᾱ is just the natural lift of α to M(A). The isomorphism
θ maps the class of (Aβ , G, ᾱ) to the class of (Aα, H, β̄). Furthermore, Aαoβ̄H and
Aβ oᾱ G are Morita equivalent. The Morita equivalence can be proved two ways;
since (A,G×H,α× β) defines a class in SG×H(X) and the actions of G and H are
free and proper, the equivalence follows from Kasparov’s [14, Theorem 3.15] or from
the second author’s [21, Theorem 1.1]. Carefully untangling Kasparov’s argument
leads to a tensor product imprimitivity bimodule, and also to an interesting result
concerning regular representations of the crossed products Aα oβ̄ H arising in our
theorem. (Recall that regular representations are faithful exactly when the reduced
crossed product Aα oβ̄,r H equals the universal crossed product Aα oβ̄ H .)

We present our result on regular representations in section 4. Given that the
action of G on X is free and proper, α : G→ AutA must be proper and saturated
in Rieffel’s sense and hence A0 := Cc(X) ·A can be completed to an Aoα,rG –Aα-
imprimitivity bimodule Yα by [27, Theorem 1.5]. An important special case occurs
when A = C0(X,D) and α = τ ⊗ γ for a C∗-dynamical system γ : G→ AutD. It
is proved in [23, Theorem 2.1] that Cc(X,D) can be completed to a C0(X,D) oα
G – IndXG (A,α)-imprimitivity bimodule X. We prove that Yα is a quotient of X,
and use this to prove that regular representations of A oα G are faithful; thus,
A oα,r G = A oα G. Furthermore, Yα admits an H-action u such that (Yα, u)
implements an equivalence between (A oα G,H, β o ι) and (Aα, H, β̄). Using [7],
[5], we can form an A oα×β (G ×H) –Aα oβ̄ H-imprimitivity bimodule Yα ou H
based on Cc(H,Yα). The set-up is symmetric in H and G, and the tensor product
bimodule

W := (Yβ ov G)̃ ⊗Aoα×β(G×H) (Yα ou H)(1.1)
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is an Aβ oᾱ G –Aα oβ̄ H-imprimitivity bimodule. Using the symmetry in (1.1)
and a result of Combes, we can prove that regular representations of Aβ oᾱ G are
faithful if and only if regular representations of Aα oβ̄ H are. This generalizes a
result of Quigg and Spielberg [20, Theorem 4.2].

Although the approach leading to (1.1) was used in proving our generalization
of Quigg-Spielberg, it is often convenient in applications (cf. [9]) to have a more
concrete realization of the imprimitivity bimodule. By appealing to [21], we can
obtain an Aβ oᾱ G –Aα oβ̄ H-imprimitivity bimodule Z which is a quotient of the
module constructed in [21, Theorem 1.1] based on Cc(X,A). It is natural to ask if
the two modules are the same, and it turns out that they are isomorphic. We give
a proof in the case A = C0(X,D) at the end of section 4.

Since BrG(X) is easily identified with a subgroup of the group SG(X)−1 of
invertible elements in SG(X), our definitions and results concerning SG(X) extend
those for the equivariant Brauer group BrG(X). However, BrG(X) is actually
equal to SG(X)−1, and we prove this in an appendix; the result and its proof are
essentially due to Green [12], but were never published.

2. Preliminaries

2.1. C0(X)-algebras. If X is a locally compact (Hausdorff) space, then a C0(X)-
algebra is a C∗-algebra A together with a homomorphism ιA : C0(X) → ZM(A)
which is nondegenerate in the sense that

ιA
(
C0(X)

)
·A := span{ ιA(ϕ) · a : ϕ ∈ C0(X) and a ∈ A }

is dense in A. There is already considerable literature on C0(X)-algebras; in par-
ticular, [3] and [17] give nice overall treatments. We recount some of the basic
properties here for convenience.

The Dauns-Hofmann Theorem identifies the center ZM(A) of the multiplier
algebra with Cb(PrimA). It is not hard to see that if (A, ιA) is a C0(X)-algebra,
then there is a continuous map σA : Prim(A)→ X such that ιA(ϕ) and ϕ ◦ σA are
equal in ZM(A). Conversely, if σA : Prim(A)→ X is continuous, then

ιA(ϕ)a := (ϕ ◦ σA) · a for all ϕ ∈ C0(X) and a ∈ A
clearly defines a homomorphism ιA : C0(X) → ZM(A), and it is not hard to
see that ιA is nondegenerate. When convenient, we can view σA as a continuous
function on Â. We usually suppress the homomorphism ιA, and write ϕ · a in
place of ιA(ϕ)a and a · ϕ in place of aιA(ϕ). Thus a C0(X)-algebra A is a central
C0(X)-bimodule.1 Conversely, if A is a nondegenerate central C0(X)-bimodule,
then ιA(ϕ)a := ϕ · a makes A into a C0(X)-algebra provided (ϕ · a)∗ = ϕ̄ · a∗ for all
a ∈ A and ϕ ∈ C0(X).

We will write C0,x(X) for the ideal of functions in C0(X) which vanish at x. If
A is a C0(X)-algebra, then let Ix be the closed ideal C0,x(X) ·A of A. Notice that
if x /∈ σA

(
Prim(A)

)
, then Ix = A; otherwise,

Ix =
⋂
{P : σA(P ) = x }.

A C0(X)-algebra can profitably be viewed as the upper-semicontinuous sections of
a bundle over X (cf., [10], [11], [15]). Specifically, the quotient A/Ix will be called
the fibre over x, and will be denoted by A(x). The image of a ∈ A in A(x) will

1If X is a B-bimodule, we call X a central B-bimodule when b ·x = x · b for all x ∈ X and b ∈ B.
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be denoted by a(x). Some of the basic properties of the “section” x 7→ a(x) are
summarized in the next lemma.

Lemma 2.1 ([3], [17]). Suppose that A is a C0(X)-algebra.
(a) For all a ∈ A, the map x 7→ ‖a(x)‖ is upper semicontinuous. That is, { x ∈

X : ‖a(x)‖ ≥ ε } is closed for all ε ≥ 0.
(b) The map x 7→ ‖a(x)‖ is continuous for all a ∈ A if and only if σA is open

from Prim(A) to X.
(c) For all a ∈ A, ‖a‖ = sup{ ‖a(x)‖ : x ∈ X }.
(d) If ϕ ∈ C0(X) and a ∈ A, then (ϕ · a)(x) = ϕ(x)a(x).

2.2. Balanced tensor products. We will write S(X) for the collection of all
separable C0(X)-algebras. We want to define a C0(X)-balanced tensor product on
S(X) with the objective of defining, up to isomorphism, an associative operation on
S(X) for which C0(X) is an identity. Since S(X) can contain non-nuclear algebras,
an approach based on identifying Prim(A ⊗ B) with Prim(A) × Prim(B), such as
employed in [23, §1], is inadequate. However, Blanchard’s maximal C0(X)-balanced
tensor product is sufficient for our purposes [3], [2]. (Blanchard considered only the
case in which X is compact. However, his results extend easily to the general case.
Additional details may be found in [11, §2].)

Definition 2.2 ([11, Definition 2.3]). Let A and B be two C0(X)-algebras and let
I be the closed ideal of A⊗max B generated by

{ a · ϕ⊗ b− a⊗ ϕ · b : a ∈ A, b ∈ B, ϕ ∈ C0(X) }.

Then A ⊗X B := (A ⊗max B)/I, equipped with the C0(X)-action given on the
images a⊗X b of elementary tensors a⊗ b by

ϕ · (a⊗X b) = ϕ · a⊗X b = a⊗X ϕ · b,

is called the maximal C0(X)-balanced tensor product of A and B.

Remark 2.3. It is possible to form other balanced tensor products, but our choice
of the maximal tensor product is not a random one. For example, it is observed
in [2] that Blanchard’s minimal tensor product

⊗m
C(X), which is defined using the

spatial tensor product, need not be associative. Such pathologies vanish when one
of the factors is nuclear, and Definition 2.2 gives the same balanced tensor product
used in [23] when at least one of the algebras is nuclear.

The universal property of the maximal tensor product implies that every rep-
resentation of A ⊗X B is of the form πA ⊗ πB, where πA and πB are commuting
representations of A and B, respectively, such that π̄A|C0(X) = π̄B|C0(X) (cf., [11,
Remark 2.5(a)]). If A is both a C0(X)- and a C0(Y )-algebra, and C is a C0(Y )-
algebra, then A⊗Y C is a C0(X)-algebra in such a way that

ϕ · (a⊗Y c) = (ϕ · a)⊗Y c for ϕ ∈ C0(X).

If πA and πC is a pair of commuting representations such that

π̄A|C0(Y ) = π̄C |C0(Y ),

then the corresponding representation πA ⊗Y πC of A⊗Y C satisfies

(πA ⊗Y πC )̄ |C0(X) = π̄A|C0(X).
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Lemma 2.4. Suppose that X and Y are second countable locally compact Hausdorff
spaces, and that p : X → Y is a continuous surjection. Let C ∈ S(Y ), and
A,B ∈ S(X). Viewing, as necessary, elements in S(X) as elements of S(Y ) via
composition with p, there is an isomorphism Ψ of (A⊗XB)⊗Y C onto (A⊗Y C)⊗XB
such that

Ψ
(
(a⊗X b)⊗Y c

)
= (a⊗Y c)⊗X b.

Similarly, there are isomorphisms Ψ1 : A⊗X B → B ⊗X A and Ψ2 : (A⊗X B)⊗Y
C → A ⊗X (B ⊗Y C) such that Ψ1(a ⊗X b) = b ⊗X a and Ψ2

(
(a ⊗X b) ⊗Y c

)
=

a⊗X (b⊗Y c).

Proof. The idea is to show that the natural isomorphism of (A ⊗max B) ⊗max C
onto (A⊗max C) ⊗max B (e.g., [25, Corollary B.29]) matches up the kernels of the
quotient maps q1 onto (A⊗X B)⊗Y C and q2 onto (A⊗Y C)⊗X B. The kernel of
the quotient map (A⊗X B)⊗max C → (A⊗X B)⊗Y C is⋂

{ ker(πA ⊗X πB)⊗ πC : (πA ⊗X πB )̄ ◦ p∗ = π̄C |C0(Y ) }.

So ker q1, which is the inverse image of this ideal in (A⊗max B)⊗max C, is⋂
{ ker(πA ⊗ πB)⊗ πC : πA|C0(X) = πB|C0(X) and πA|C0(X) ◦ p∗ = πC |C0(Y ) }.

On the other hand, the kernel of the map (A⊗Y C)⊗max B → (A⊗Y C)⊗X B is⋂
{ ker(πA ⊗Y πC)⊗ πB : πA ⊗Y πC |C0(X) = πB |C0(X) }

=
⋂
{ ker(πA ⊗Y πC)⊗ πB : πA|C0(X) = πB |C0(X) }.

Thus

ker q2 =
⋂
{ ker(πA ⊗ πC)⊗ πB :

πA|C0(X) ◦ p∗ = πC |C0(Y ) and πA|C0(X) = πB|C0(X) },
and the assertions about Ψ follow. The arguments for Ψ1 and Ψ2 are similar.

Corollary 2.5. The maximal C0(X)-balanced tensor product is associative on
S(X).

2.3. Induced algebras. Suppose that X is a free and proper left G-space and
that (A,G, α) is a dynamical system. Then IndXG (A,α) is the C∗-subalgebra of
Cb(X,A) consisting of those functions f such that

(a) f(s · x) = αs
(
f(x)

)
, and (b) x 7→ ‖f(x)‖ defines an element of C0(G\X).

When X is a right G-space, condition (a) is replaced by

(a)′ f(x · s) = α−1
s

(
f(x)

)
.

An important example occurs when G is a closed subgroup of a locally compact
group H . If H is viewed as a right G-space, then IndHG (A,α) was studied at length
in [22]. Furthermore, if γ = τ ⊗ α is the diagonal action of G on C0(X,A), given
by

γs(f)(x) = αs
(
f(s−1 · x)

)
,(2.1)

then IndXG (A,α) is the algebra denoted by GC(X,A)γ in [23, §2] and by
Ind(A;X,G, α) or Ind(α) in [21].
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2.4. Proper actions on C∗-algebras. It is well-known that proper group actions
on spaces — and therefore on abelian C∗-algebras — play a central rôle in the
theory of crossed products. It is natural to try to extend the notion of proper
actions to nonabelian C∗-algebras. Although it is not yet clear what the best
definition of such an action should be, the notion developed by Rieffel in [27] is
sufficient for our purposes.2 Let (A,G, α) be a dynamical system, and suppose that
A0 is a dense α-invariant ∗-subalgebra of A. A multiplier T ∈ M(A) belongs to
M(A0) if T maps A0 into itself. Since each αs extends to an automorphism ᾱs of
M(A), we can consider the ∗-subalgebraM(A0)α of ᾱ-invariant elements in M(A0).

Definition 2.6 ([27, Definition 1.2]). A dynamical system (A,G, α) is called
proper if there is a dense α-invariant ∗-subalgebra A0 of A such that

(a) for all a, b ∈ A0, the functions s 7→
E
〈a , b〉(s) := ∆G(s)−

1
2 aαs(b∗) and

s 7→ aαs(b∗) are in L1(G,A).
(b) For each a, b ∈ A0, there is a (uniquely determined) element 〈a , b〉

D
in

M(A0)α such that for all c ∈ A0∫
cαs(a∗b) ds = c〈a , b〉

D
.

Viewing
E
〈· , ·〉 as taking values in Aoα,r G, Rieffel showed that

E0 := span{
E
〈a , b〉 : a, b ∈ A0 }

was an ideal in Aoα,r G. The action α is called saturated if the closure E of E0 is
all of Aoα,r G. The closure in M(A) of

D0 := span{ 〈a , b〉
D

: a, b ∈ A0 }

is defined to be the generalized fixed-point algebra of α, and is denoted Aα.
Of course, A0 is an E0 –D0-bimodule; the actions are given by

E
〈a , b〉c =

∫
G

aαs(b∗c) ds and c〈a , b〉
D

=
∫
G

cαs(a∗b) ds

for a, b, c ∈ A0.

Theorem 2.7 ([27, Theorem 1.5]). Suppose that (A,G, α) is a proper dynamical
system. Then the completion Y of A0 is an E –Aα-imprimitivity bimodule. In
particular, if α is also saturated, then Aoα,r G is Morita equivalent to Aα.

Suppose that X is a left G-space. We will write τG : G → AutC0(X) for the
associated automorphism group: τGs (f)(x) = f(s−1 · x). If X is a right H-space,
then τHh (f)(x) := f(x · h). (When there is no possibility of confusion, we will write
τ in place of τG or τH .)

Example 2.8 ([27, Example 2.6]). Suppose X is a free and proper left G-space,
and α : G→ AutD is any C∗-dynamical system. Then the diagonal action τ ⊗ α
is a proper and saturated action of G on A = C0(X,D). Rieffel’s generalized fixed
point algebra C0(X,D)τ⊗α is IndXG (D,α).

2Rieffel has recently introduced a more general notion of properness for actions of locally
compact groups on C∗-algebras [28]. However, the earlier version suffices for our purposes here,
and the newer notion is not (yet) associated with a general Morita equivalence result.
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2.5. The Brauer Semigroup. Let (G,X) be a second countable locally compact
transformation group. We consider the class SG(X) of pairs (A,α) where A is a
C0(X)-algebra and α : G→ AutA is a strongly continuous action which preserves
the given G-action on X in that

αs(ϕ · a) = τs(ϕ) · αs(a) for all ϕ ∈ C0(X), s ∈ G, and a ∈ A.(2.2)

Alternatively, we can replace (2.2) with σA(s ·π) = s ·σA(π) for all π ∈ Â. Elements
of SG(X) were called G-C0(X)-algebras in [14].

Example 2.9 (Example 2.8 continued). The action ϕ·f=(ϕ⊗1)f makesC0(X,D)
a C0(X)-algebra, and

(
C0(X,D), τ ⊗ α

)
∈ SG(X).

Recall that two systems (A,G, α) and (B,G, β) are Morita equivalent if there is
an A –B-imprimitivity bimodule X and a strongly continuous action u of G on X
by linear maps such that for all x, y ∈ X and s ∈ G,

A

〈
us(x) , us(y)

〉
= αs

(
A
〈x , y〉

)
, and

〈
us(x) , us(y)

〉
B

= βs
(
〈x , y〉

B

)
.

Suppose that (A,α) and (B, β) are elements in SG(X) which are Morita equivalent
via (X, u). The actions of A and B extend to the respective multiplier algebras.
Hence X becomes a C0(X) – C0(X)-bimodule. If hX : PrimB → PrimA is the
Rieffel homeomorphism induced by X, and if we use the Dauns-Hofmann Theorem
to identify ιA(f) with f ◦ σA and ιB(f) with f ◦ σB , then it is not hard to see that

(f ◦ σA) · x = x · (f ◦ σB ◦ hX)

(cf., [25, Proposition 5.7(a)]). It follows that we have ιA(f) · x = x · ιB(f) for all
x ∈ X and f ∈ C0(X) exactly when the diagram

PrimB

σB
##HHHHHHHHH
hX // PrimA

σA
{{wwwwwwwww

X

(2.3)

commutes. With these considerations in mind, we make the following definition.

Definition 2.10. Two elements (A,α) and (B, β) in SG(X) are Morita equivalent
over X if they are Morita equivalent via (X, u) and if

ιA(f) · x = x · ιB(f) for all f ∈ C0(X) and x ∈ X.

In this event, we call X an A –X B-imprimitivity bimodule.

Remark 2.11. We shall write Br(X) for the elements A in S(X) with σA a home-
omorphism and A continuous trace (so that we can identify X , Â, and PrimA). If
A and B belong to Br(X) and if X is an A –X B-imprimitivity bimodule, then it
follows from (2.3) that hX = id. In particular, the notions of Morita equivalence
over X and an A –X B-imprimitivity bimodule defined above coincide on Br(X)
with those defined, for example, in [25, Definition 5.6], [24, §2] and [6, §1].

Lemma 2.12. Morita equivalence over X is an equivalence relation on SG(X).

Proof. The proof follows the same lines as in [6, §3].

Definition 2.13. We let SG(X) denote the set SG(X)/∼ of Morita equivalence
classes over X . We call SG(X) the equivariant Brauer semigroup. The class of
(A,α) in SG(X) is denoted by [A,α].



4766 ASTRID AN HUEF, IAIN RAEBURN, AND D. P. WILLIAMS

Now suppose that (A,α) and (B, β) belong to SG(X). Then s 7→ αs ⊗ βs is a
strongly continuous automorphism group of A ⊗max B, and for all a ∈ A, b ∈ B,
and ϕ ∈ C0(X),

αs ⊗ βs(ϕ · a⊗ b− a⊗ ϕ · b) = τs(ϕ) · a⊗ b− a⊗ τs(ϕ) · b.(2.4)

It follows that each αs ⊗ βs preserves the balancing ideal, and defines an automor-
phism αs ⊗X βs of A⊗X β. It is not hard to check that s 7→ αs ⊗X βs is strongly
continuous and equivariant; that is, (A⊗X B,α⊗X β) ∈ SG(X).

Suppose that X is an A –C-imprimitivity bimodule and that Y is a B –D-im-
primitivity bimodule. Then the algebraic tensor product X � Y has a completion
X⊗max Y which is an A⊗maxB – C⊗maxD-imprimitivity bimodule in the expected
way. Although a sketch of this is given in [4, Proposition 2.9], we provide a proof
for convenience.

Lemma 2.14. Suppose that A, B, C, and D are C∗-algebras, that X is an A –C-
imprimitivity bimodule, and that Y is a B –D-imprimitivity bimodule. Then Z :=
X�Y is an A�B –C�D-bimodule, and there are unique A�B- and C�D-valued
pre-inner products on Z such that

A⊗maxB
〈〈x⊗ y , z ⊗ w〉〉 =

A
〈x , z〉 ⊗

B
〈y , w〉,

〈〈x ⊗ y , z ⊗ w〉〉
C⊗maxD

= 〈x , z〉
C
⊗ 〈y , w〉

D
.

With these inner products, Z becomes an A � B –C �D-pre-imprimitivity bimod-
ule with respect to the maximal tensor product norms on A � B and C �D. The
completion X⊗max Y is an A⊗max B – C ⊗max D-imprimitivity bimodule.

Proof. Exactly as in the proof of [25, Proposition 3.36], Z is easily seen to satisfy
properties (a), (b), and (d) for a pre-imprimitivity bimodule as laid out in [25,
Definition 3.9]. The issue is to show that the inner products are bounded; that is,
we need to show that

〈〈ν · α , ν · α〉〉
C�D
≤ ‖ν‖2A⊗maxB〈〈α , α〉〉C�D, and(2.5)

A�B
〈〈α · µ , α · µ〉〉 ≤ ‖µ‖2C⊗maxDA�B

〈〈α , α〉〉,(2.6)

for all α ∈ X � Y, µ ∈ C � D, and ν ∈ A � B. (We have decorated the inner
products with the algebraic tensor products to emphasize that we are working on
the incomplete bimodule X� Y.)

Let X ⊗max Y be the completion of X � Y as a right Hilbert C ⊗max D-module
(see [25, Lemma 2.16]). Let q : X � Y → X ⊗max Y be the natural map. We
claim that there is a homomorphism ΦA of M(A) into L(X ⊗max Y) such that
ΦA(m)

(
q(x ⊗ y)

)
= q(m · x ⊗ y). Since ΦA(m∗) will act as an adjoint for ΦA(m),

it will suffice to see that ΦA(m) is bounded on X � Y with respect to ‖ · ‖X⊗maxY.
Since M(A) is spanned by its unitary elements, we can assume that m is unitary.
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If α =
∑n
i=1 xi ⊗ yi, then

‖ΦA(m)q(α)‖2X⊗maxY := ‖
〈〈

ΦA(m)q(α) , ΦA(m)q(α)
〉〉
C�D
‖

=
∥∥∥ n∑
i,j=1

〈m · xi , m · xj〉
C
⊗ 〈yi , yj〉

D

∥∥∥
=
∥∥∥ n∑
i,j=1

〈xi , xj〉
C
⊗ 〈yi , yj〉

D

∥∥∥
= ‖q(α)‖2X⊗maxY;

this proves the claim.
Thus we obtain commuting homomorphisms ΦA : A → L(X ⊗max Y) and ΦB :

B → L(X ⊗max Y) such that ΦA(a)q(x ⊗ y) = q(a · x ⊗ y) and ΦB(b)q(x ⊗ y) =
q(x⊗ b · y). The universal property of the maximal tensor product guarantees that
there is a homomorphism ΦA ⊗max ΦB of A⊗max B into L(X ⊗max Y). But

〈〈ν · α , ν · α〉〉
C�D

=
〈〈
q(ν · α) , q(ν · α)

〉〉
C⊗maxD

=
〈〈

ΦA ⊗max ΦB(ν)q(α) , ΦA ⊗max ΦB(ν)q(α)
〉〉
C⊗maxD

≤ ‖ΦA ⊗max ΦB(ν)‖2
〈〈
q(α) , q(α)

〉〉
C⊗maxD

≤ ‖ν‖2A⊗maxB〈〈α , α〉〉C�D.

This establishes (2.5), and (2.6) is proved similarly; there is a homomorphism
ΨC ⊗max ΨD of C ⊗max D into the adjointable operators on the completion of
X�Y as a left Hilbert A⊗max B-module. (Once we establish both (2.5) and (2.6),
so that we know Z is a pre-imprimitivity bimodule, then it follows that the two
completions of X� Y are the same.)

The following lemma is a straightforward generalization of [6, Lemmas 2.1 and
3.2].

Lemma 2.15. Suppose that A,B,C,D ∈ S(X), that X is an A – C-imprimitiv-
ity bimodule over X, and that Y is a B –D-imprimitivity bimodule over X. Then
the Rieffel correspondence [25, Proposition 3.24] between ideals in C ⊗max D and
A ⊗max B induced by X ⊗max Y maps the balancing ideal JX of C ⊗max D to the
balancing ideal IX in A⊗max B. In particular, the quotient X⊗X Y of X⊗max Y is
an A⊗X B – C ⊗X D-imprimitivity bimodule over X.

Thus, if (A,α) ∼ (C, γ) and (B, β) ∼ (D, δ) in S(X), then (A⊗X B,α⊗X β) ∼
(C ⊗X D, γ ⊗X δ).

Proposition 2.16. The binary operation

[A,α][B, β] := [A⊗X B,α⊗X β]

is well-defined on SG(X), and with respect to this operation, SG(X) is a commuta-
tive semigroup with identity equal to the class of

(
C0(X), τ

)
.

Proof. The operation is well-defined in view of Lemma 2.15. It is associative and
commutative by Lemma 2.4 since the isomorphisms there are easily seen to be
equivariant. The map ϕ⊗ a 7→ ϕ · a extends to a well-defined C0(X)-isomorphism
of C0(X)⊗X A onto A, and the final assertion follows from this.
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3. The Main Theorem

Theorem 3.1. Suppose that G and H are second countable locally compact groups
acting freely and properly on the left and right, respectively, of a second countable
locally compact space X in such a way that (s · x) · h = s · (x · h). Then there is a
semigroup isomorphism

θ : SG(X/H)→ SH(G\X)(3.1)

such that if [B, β] = θ([A,α]), then AoαG is Morita equivalent to BoβH. Indeed,
every class in SG(X/H) has the form [Aβ , ᾱ] for some (A,α×β) ∈ SG×H(X), and
then we have

θ
(
[Aβ , ᾱ]

)
= [Aα, β̄]

so that Aβ oᾱ G is Morita equivalent to Aα oβ̄ H.

Remark 3.2. In the next section, we will give another proof of the Morita equiv-
alence of Aβ oᾱ G and Aα oβ̄ H which implies both are Morita equivalent to
Aoα×β (G×H).

Lemma 3.3. Suppose that A is a C0(X)-algebra. Then the map ϕ⊗ a 7→ ϕ · a ex-
tends to a homomorphism Φ of C0(X,A) onto A which satisfies Φ(f)(x) = f(x)(x)
for all x ∈ X and f ∈ C0(X,A). The homomorphism Φ intertwines the action
ϕ · f := (ϕ⊗ 1)f of C0(X) on C0(X,A) with the given action on A.

Proof. The map (ϕ, a) 7→ ϕ · a is bilinear, and hence induces a linear map Φ on the
algebraic tensor product C0(X)�A, which is easily seen to be a ∗-homomorphism.
Let π be a faithful representation of A. Because the range of ι : C0(X) → M(A)
lies in ZM(A), the representations π and π̄ ◦ ι have commuting ranges, and hence
induce a representation (π̄ ◦ ι) ⊗max π of C0(X) ⊗max A. Since π is faithful, it is
isometric, and we have∥∥∥Φ

(∑
i

ϕi ⊗ ai
)∥∥∥ =

∥∥∥∑
i

ϕi · ai
∥∥∥ =

∥∥∥π(∑
i

ϕi · ai
)∥∥∥

=
∥∥∥∑

i

π̄ ◦ ι(ϕi)π(ai)
∥∥∥ =

∥∥∥(π̄ ◦ ι)⊗max π
(∑

i

ϕi ⊗ ai
)∥∥∥

≤
∥∥∥∑

i

ϕi ⊗ ai
∥∥∥

max
;

thus Φ is norm-decreasing and extends to a homomorphism on all of C0(X)⊗maxA.
We obtain the required map Φ by identifying C0(X) ⊗max A with C0(X,A) (cf.,
e.g., [25, Propositions B.43 and B.16]).

For an elementary tensor f := ϕ⊗a, the formula Φ(f)(x) = f(x)(x) follows from
the identity (ϕ · a)(x) = ϕ(x)a(x) (Lemma 2.1 (d)), and this extends to general
f ∈ C0(X,A) by linearity and continuity. The final remark is trivially true for
f ∈ C0(X)�A, and also extends to f ∈ C0(X,A) by linearity and continuity.

Proposition 3.4. Suppose G acts freely and properly on X and (A,α) ∈ SG(X).
Then (A,α) is proper with respect to the subalgebra

A0 := span{ϕ · a : ϕ ∈ Cc(X) and a ∈ A }.
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We have to verify the hypotheses (a) and (b) of Definition 2.6. For each pair of
generators ϕ · a and ψ · b, we have

(ϕ · a)αs(ψ · b)∗ =
(
ϕτs(ψ̄)

)
·
(
aαs(b)∗

)
.

The function s 7→ ϕτs(ψ̄) vanishes unless suppϕ ∩ s · (suppψ) 6= ∅, and hence
has compact support because G acts properly on X . Thus both functions s 7→
(ϕ · a)αs(ψ · b)∗ and

E
〈ϕ · a , ψ · b〉 lie in L1(G,A), and (a) is satisfied.

To verify (b), we need a lemma.

Lemma 3.5. For each f ∈ Cc(X,A), the function

µ(f)(x) :=
∫
G

τs ⊗ αs(f)(x) ds =
∫
G

αs
(
f(s−1 · x)

)
ds

belongs to IndXG (A,α) ⊂ Cb(X,A) ⊂ M
(
C0(X,A)

)
. The multiplier Φ̄

(
µ(f)

)
be-

longs to M(A0)α, depends only on the image Φ(f) of f in A, and satisfies

c Φ̄
(
µ(f)

)
=
∫
G

c αs
(
Φ(f)

)
ds for c ∈ A0.(3.2)

(In particular, the integrand on the right-hand side is a continuous function of
compact support from X to A, so the integral converges to an element of A.)

Proof. That µ(f) ∈ IndXG (A,α) is proved for elementary tensors f = ϕ ⊗ a in [25,
Lemma 6.17], and the proof carries over almost verbatim. Since every multiplier
m of A satisfies (ϕ · a)m = ϕ · (am) and m · (ϕ · a) = ϕ · (ma) for ϕ ∈ Cc(X) and
a ∈ A, we trivially have Φ̄

(
µ(f)

)
∈M(A0). We shall next verify (3.2).

If c = ϕ · b ∈ A0, then

(ϕ · b)Φ̄
(
µ(f)

)
= Φ(ϕ⊗ b)Φ̄

(
µ(f)

)
= Φ

(
(ϕ⊗ b)µ(f)

)
.

Now,(
(ϕ⊗ b)µ(f)

)
(x) =

(
ϕ(x)b

) ∫
G

αs
(
f(s−1 · x)

)
ds =

∫
G

ϕ(x)b αs
(
f(s−1 · x)

)
ds.

Because G acts properly on X , s 7→ (ϕ ⊗ b)(τs ⊗ αs(f)) is a continuous function
of compact support with values in C0(X,A), and hence the integral

∫
G

(ϕ⊗ b)τs ⊗
αs(f) ds converges in C0(X,A) in such a way that(∫

G

(ϕ⊗ b)τs ⊗ αs(f) ds
)

(x) =
∫
G

ϕ(x)b αs
(
f(s−1 · x)

)
ds = (ϕ⊗ b)µ(f)(x).

From the continuity of Φ we deduce that

s 7→ Φ
(
(ϕ⊗ b)τs ⊗ αs(f)

)
= (ϕ · b)αs

(
Φ(f)

)
is a continuous function of compact support, and

(ϕ · b)Φ̄
(
µ(f)

)
= Φ

(
(ϕ⊗ b)µ(f)

)
=
∫
G

Φ
(
(ϕ⊗ b)τs ⊗ αs(f)

)
ds

=
∫
G

(ϕ · b)αs
(
Φ(f)

)
ds,

as claimed.
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The formula (3.2) immediately implies that Φ̄
(
µ(f)

)
depends only on Φ(f). To

see that Φ̄
(
µ(f)

)
∈ M(A0)α, we use that this integral formula converges in norm

in A:

cαt
(
Φ̄
(
µ(f)

))
= αt

(
α−1
t (c)Φ̄(µ(f))

)
= αt

(∫
G

α−1
t (c)αs

(
Φ(f)

)
ds
)

=
∫
G

cαts
(
Φ(f)

)
ds

which is just cΦ̄
(
µ(f)

)
by left-invariance of Haar measure.

Proof of Proposition 3.4. Given ϕ · a and ψ · b in A0, we define f ∈ Cc(X,A) by
f(x) = ϕ(x)ψ(x)a∗b and we take for 〈ϕ · a , ψ · b〉

D
the multiplier Φ̄

(
µ(f)

)
of A0

described in Lemma 3.5. Since Φ(f) = (ϕ · a)∗(ψ · b), equation (3.2) implies that
Φ̄
(
µ(f)

)
has the property required in part (b) of Definition 2.6. Thus, (A,α) is

proper.

With the definition of the inner product 〈· , ·〉
D

fresh in our minds, we make
some observations about the corresponding generalized fixed-point algebra Aα. By
definition, this is the C∗-subalgebra

Aα := span{ 〈ϕ · a , ψ · b〉
D

: ϕ, ψ ∈ Cc(X) and a, b ∈ A }

of M(A)α. The functions µ(f) for f := ϕ̄ψ⊗a∗b used to define 〈ϕ ·a , ψ ·b〉
D

span a

C0(G\X)-submodule M of IndXG (A,α), which has the property that, for each a ∈ A
and x ∈ X , there exists g ∈M satisfying g(x) = a [25, Corollary 6.18]. A partition
of unity argument on G\X shows that M must therefore be dense in IndXG (A,α).
Thus the continuity of Φ̄ implies that it maps IndXG (A,α) into Aα. Further, since
the image of M is by definition dense in Aα and since Φ̄ has closed range, Φ̄ maps
IndXG (A,α) onto Aα. Thus:

Proposition 3.6. Suppose G acts freely and properly on X and (A,α) ∈ SG(X).
Then the map Φ of Lemma 3.3 induces a homomorphism Φ̄ of IndXG (A,α) onto Aα.

Corollary 3.7. Suppose G, H, and X are as in Theorem 3.1, and (A,α × β) ∈
SG×H(X). Then (Aα, β̄) ∈ SH(G\X) and Φ̄ : IndXG (A,α) → Aα is C0(G\X)-
linear.

Proof. One can easily check that ϕ · 〈x , y〉
D

= 〈ϕ · x , y〉
D

when ϕ ∈ C0(G\X),

so Aα is a C0(G\X)-submodule of M(A). The action of C0(G\X) on IndXG (A,α)
is nondegenerate, and Φ̄ is easily seen to be C0(G\X)-linear, so the action on
Aα = Φ̄

(
IndXG (A,α)

)
is nondegenerate too. For ϕ⊗ a ∈ Cc(X,A) we have

Φ
(
τHh ⊗ βh(ϕ⊗ a)

)
= τHh (ϕ) · βh(a) = βh(ϕ · a) = βh

(
Φ(ϕ⊗ a)

)
,

so Φ̄ intertwines the diagonal action of τH⊗β on IndXG (A,α) with the action of β̄ on
Aα. (We should write τH ⊗ β, but this notation is awkward and we hope it will be
clear from context that the action has been lifted to the multiplier algebra.) Since
H acts properly, τH⊗β is strongly continuous on IndXG (A,α) (see Lemma 5.1). This
implies both that β̄ is strictly continuous on Aα and that β̄t(ϕ ·m) = τHt (ϕ) · β̄t(m)
for ϕ ∈ C0(G\X) and m ∈ Aα.
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In [14], Kasparov uses a slightly different definition of a generalized fixed point
algebra for a proper action; namely,

(3.3) {m ∈M(A)α : ϕ ·m ∈ A for all ϕ ∈ C0(X) and ‖eim−m‖ → 0

as ei runs through an approximate identity for C0(G\X) }.

Corollary 3.8 ([14, p. 164]). Suppose that G acts freely and properly on X and
that A ∈ S(X). Then Rieffel’s generalized fixed point algebra Aα is given by (3.3).

Proof. If m ∈ Aα, then m = Φ̄(f) for some f ∈ IndXG (A,α) (Proposition 3.6). If
ϕ ∈ C0(X), then ϕ · f ∈ C0(X,A), and hence

ϕ ·m = ϕ · Φ̄(f) = Φ̄(ϕ · f) ∈ Φ
(
C0(X,A)

)
= A.

The assumption on approximate identities follows since Aα is a C0(G\X)-algebra.
Conversely, suppose that m ∈ M(A)α satisfies ϕ ·m ∈ A for all ϕ ∈ C0(X) and

‖eim→ m‖ → 0. We may suppose that

ei(x) =
∫
G

ϕi(s−1 · x) ds

for some ϕi ∈ Cc(X). Thus,

m ∼ eim =
(∫

G

ϕi(s−1 · x) ds
)
·m.

As in the proof of Lemma 3.5, if we take f = ϕi ⊗m, then µ(f) = ei ⊗m makes
sense as a bounded continuous function of X into M(A) which is constant on G-
orbits. This defines a multiplier of C0(X,A), so we can define Φ̄

(
µ(f)

)
. As in the

proof of the lemma, if c = ψ · b ∈ Cc(X) · A = A0, then because ϕi ·m ∈ A, the
function s 7→ cαs(ϕi ·m) is continuous, has compact support, and satisfies

c Φ̄
(
µ(f)

)
=
∫
c αs(ϕi ·m) ds.

Now we also have

(ψ · b)(ei ·m) = (ψei) · (bm) = Φ(ψei ⊗ bm) = Φ(ψ ⊗ b)Φ̄(ei ⊗m)

= Φ(ψ ⊗ b)Φ̄
(
µ(f)

)
,

so

(ψ · b)(ei ·m) =
∫
G

(ψ · b)αs(ϕi ·m) ds.

We can factor ϕi = ζθ in Cc(X), and then

(ψ · b)(ϕi ·m) =
∫
G

(ψ · b)αs
(
ζ · (θ ·m)

)
ds =

∫
G

(ψ · b)αs
(
Φ(ζ ⊗ θ ·m)

)
ds.

Now (3.2) implies that

(ψ · b)(ei ·m) = (ψ · b)Φ
(
µ(h)

)
,

where h(x) := ζ(x)(θ ·m) is in Cc(X,A). This is true for all ψ · b ∈ Cc(X) ·A = A0,
so it implies ei · m = Φ̄

(
µ(b)

)
∈ Φ̄

(
IndXG (A,α)

)
= Aα. Since Aα is closed and

m ∼ m · ei, we deduce that m ∈ Aα.
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Proposition 3.9. Let G, H and X be as in Theorem 3.1. Suppose that (A,α×β) ∈
SG×H(X) and that p : X → G\X is the orbit map. Then τG× τH ⊗ β̄ respects the
balancing ideal and defines an action τG × τH ⊗G\X β̄ of G ×H on p∗(Aα). The
pull-back system

(
p∗(Aα), τG× τH ⊗G\X β̄) is covariantly isomorphic to (A,α×β).

Proof. We start by showing that A and p∗(Aα) are isomorphic. Let J∆ be the
balancing ideal for p∗(Aα). That is,

p∗(Aα) = C0(X)⊗C0(G\X) A
α := C0(X)⊗Aα/J∆.

As in Lemma 3.3, the maps ϕ⊗m 7→ ϕ ·m and ϕ⊗ f 7→ ϕ · f extend to homomor-
phisms Γ : p∗(Aα) → A and M : C0(X) ⊗ IndXG (A,α) → C0(X,A), respectively.
(Note that ϕ ·m ∈ A by Corollary 3.8.) It is not difficult to see that M is surjec-
tive. The surjectivity of Γ is a consequence of the commutativity of the following
diagram:

C0(X)⊗ IndXG (A,α)
M // //

id⊗Φ̄

��

C0(X,A)

Φ

����

C0(X)⊗Aα Γ // A.

To see that A and p∗(Aα) are isomorphic, it suffices to see that ker(Γ) = J∆.
Let qx : A → A(x) be the quotient map. Note that every irreducible represen-
tation π of A “lives” on the fibre A

(
σA(π)

)
; that is, π = π̂ ◦ qσA(π) for some

π̂ ∈ A
(
σA(π)

)∧. Since every irreducible representation of IndXG (A,α) is of the form
M (x,π) where M (x,π)(F ) := π

(
F (x)

)
and π ∈ Â ([25, Proposition 6.16]) and since

Aα = Φ̄
(
IndXG (A,α)

)
, every irreducible representation R of Aα must be (equivalent

to one) such that M (x,π) = R ◦ Φ̄ for (x, π) ∈ X × Â. Since M (x,π)
(
ker Φ̄

)
= { 0 },

we must have x = σA(π). It follows that every irreducible representation of Aα

is of the form π̄|Aα for some π ∈ Â. If m ∈ Aα, then Corollary 3.8 implies that
the multiplier m(x) of A(x) defined by m actually belongs to A(x). It follows that
π̄(m) = π̂

(
m
(
σA(π)

))
.3 Since s · π|Aα = π̄|Aα , we have π̄

(
F (y)

)
= π̄

(
F (σA(π))

)
for any F ∈ C0(X,Aα) provided p(y) = p(σA(π)). Thus [23, Lemma 1.1] implies
that the norm of F ∈ C0(X,Aα) in the quotient p∗(Aα) = C0(X,Aα)/J∆ is

‖F + J∆‖ = sup
π∈Â
‖π̄
(
F
(
σA(π)

))
‖ = sup

π∈Â
‖π̂[F

(
σA(π)

)(
σA(π)

)
]‖.

On the other hand, since Γ(F )(x) = F (x)(x),

‖Γ(F )‖ = sup
π∈Â
‖π
(
Γ(F )

)
‖ = sup

π∈Â
‖π̂[Γ(F )

(
σA(π)

)
]‖ = sup

π∈Â
‖π̂[F

(
σA(π)

)(
σA(π)

)
]‖.

Therefore the kernel of Γ is equal to J∆, and p∗(Aα) and A are isomorphic.
Since τGs × τHh ⊗ β̄h certainly annihilates ϕ · ψ ⊗ m − ϕ ⊗ ψ · m for all ψ ∈

C0(G\X), ϕ ∈ C0(X), and m ∈ Aα, it remains only to check that the isomorphism
is equivariant. Since (A,α) ∈ SG(X), τGs (ϕ)ᾱs(m) = αs(ϕ ·m) for all ϕ ∈ C0(X)

3This analysis also allows us to identify (Aα)∧ with G\Â. Note that [π̄|Aα ] = [η̄|Aα ] in (Aα)∧

if and only if M (σA(π),π) and M (σA(η),η) are equivalent. Thus [25, Proposition 6.16] implies that

the latter occurs exactly when [η] = [s · π] in Â.
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and m ∈M(A). Thus if m ∈ Aα, then

Γ
(
τGs × τHh (ϕ) ⊗ β̄h(m)

)
= τGs × τHh (ϕ) · β̄h × ᾱs(m) = βh × αs(ϕ ·m)

= αs × βh
(
Γ(ϕ⊗m)

)
.

The result follows.

Proposition 3.10. Let G, H, and X be as in Theorem 3.1, and let p : X → G\X
be the orbit map. Suppose that (B,ω) ∈ SH(G\X). Then

(A,α× β) :=
(
p∗(B), τG × τH ⊗G\X ω

)
is in SG×H(X) and (Aα, β̄) is covariantly isomorphic to (B,ω).

Proof. We can identify A(x) with B
(
p(x)

)
. If b ∈ B, then the image of 1 ⊗ b

defines a multiplier 1 ⊗G\X b in M(A) such that (1 ⊗G\X b)a(x) := b
(
p(x)

)
a(x).

The map b 7→ 1 ⊗G\X b is an isomorphism of B into M(A), and we will show
that the image coincides with Aα, where α is the action on A = p∗(B) induced by
τG⊗ 1. Let q : C0(X,B)→ A be the quotient map. Then if ψ ∈ Cc(X) and b ∈ B,
q(ψ ⊗ b)(x) = ψ(x)b

(
p(x)

)
. Thus if ϕ ∈ Cc(X), then ϕ ⊗ q(ψ ⊗ b) ∈ Cc(X,A).

Notice that

αs
(
q(ψ ⊗ b)

)
(x) = q

(
τs(ψ)⊗ b

)
(x) = ψ(s−1 · x)b

(
p(x)

)
= q(ψ ⊗ b)(s−1 · x).

Lemma 6.17 of [25] implies that
∫
G
ϕ(s−1 · x)τGs

(
q(ψ ⊗ b)

)
ds defines an element

F ∈ IndXG (A,α); furthermore,

F (x)(y) =
∫
G

ϕ(s−1 · x)q(ψ ⊗ b)(s−1 · y) ds(3.4)

=
∫
G

ϕ(s−1 · x)ψ(s−1 · y)b
(
p(y)

)
ds

=
∫
G

ϕ(s−1 · x)ψ(s−1 · y) ds · b
(
p(y)

)
.

Thus Φ̄(F ) = ζ · (1 ⊗G\X b), where ζ is the function in Cc(G\X) given by

ζ
(
p(x)

)
=
∫
G

ϕ(s−1 · x)ψ(s−1 · x) ds.

It follows from [25, Corollary 6.18] and a partition of unity argument on G\X
that functions of the form∫

G

αs
(
f(s−1 · x)

)
ds for f ∈ Cc(X,A)

span a dense subspace of IndXG (A,α). It is clear that we may restrict f to lie in a
subspace of Cc(X,A) which is dense in the inductive limit topology. In particular,
functions of the form (3.4) span a dense subset of IndXG (A,α). Thus the range, Aα,
of Φ̄ restricted to IndXG (A,α) coincides with the image of B as required.

It is clear that τG× τH ⊗ω preserves the balancing ideal and defines an element(
p∗(B), τG × τH ⊗G\X ω

)
in SG×H(X). Thus it will now suffice to see that β̄

coincides with the action on the image of B in M(A) induced by ω. However, β is
induced by τH ⊗ω, and since τHh ⊗ωh(1⊗ b) = 1⊗ωh(b), the assertion is clear.



4774 ASTRID AN HUEF, IAIN RAEBURN, AND D. P. WILLIAMS

In the proof of Theorem 3.1, it will be convenient to describe equivalence in
SG(X) via linking algebras [25, Theorem 3.19]. The result we need is a version of
the corollary in [5, §4] modified to accommodate the C0(X)-action. If (A,α) ∼(X,u)

(B, β) in SG(X), then A and B are (isomorphic to) complementary full corners in
the C∗-subalgebra of L(X⊕B) given by

L :=
{(

a x
[(y) b

)
: a ∈ A, b ∈ B, x ∈ X, and y ∈ X

}
,

where X̃ is the B –X A-imprimitivity bimodule dual to X and [ : X → X̃ is the
identity map (e.g., [25, pp. 49–50]). Then L is a C0(X)-algebra:

ϕ ·
(

a x
[(y) b

)
=
(

ϕ · a ϕ · x
[(ϕ̄ · y) ϕ · b

)
,

and there is a dynamical system γ : G→ AutL such that

γs

(
a x
[(y) b

)
=
(
αs(a) us(x)
[(us(y)) βs(b)

)
.

Since us(a · x) = αs(a)us(x) [25, Remark 7.3], it is not hard to check that (L, γ) ∈
SG(X). The C∗-algebra L is called the linking algebra, and (L, γ) the linking
system corresponding to (A,α) ∼(X,u) (B, β).

Lemma 3.11 ([5, §4]). Suppose that (A,α) and (B, β) belong to SG(X). Then
(A,α) ∼ (B, β) in SG(X) if and only if there is a (L, γ) ∈ SG(X) such that A and
B are complementary full corners in L and γ|A = α while γ|B = β.

Proof. The “only if” direction was outlined above. If r and s are full projections
in L such that r + s = 1L, A = rLr and B = sLs, then X = rLs is an A –X B-
imprimitivity bimodule, and u = γ|rLs implements an equivalence between (A,α)
and (B, β). Additional details can be found in [5, §4].

Proof of Theorem 3.1. We will produce an isomorphism θ : SG×H(X)→ SH(G\X)
such that θ[A,α × β] = [Aα, β̄]. Then, with the exception of the statements
about Morita equivalence, the result will follow by symmetry. In order that θ
be well-defined, we have to show (A,α × β) ∼ (B, γ × δ) in SG×H(X) implies
that (Aα, β̄) ∼ (Bγ , δ̄) in SH(G\X). Let (L,Γ × ∆) be the linking system for
the given equivalence, and r =

(
1A 0
0 0

)
∈ M(L) the projection associated to the

corner A. If ΦL : C0(X,L) → L is as in Lemma 3.3, and r̃ ∈ Cb(X,L) is the
constant function x 7→ r, then Φ̄L(r̃f) = rΦ̄L(f) and Φ̄L(f r̃) = Φ̄(f)r for all
f ∈ Cb(X,L). In fact, if f ∈ IndXG (L,Γ), then both r̃f and f r̃ also belong
to IndXG (L,Γ). Since LΓ = Φ̄LG

(
IndXG (L,Γ)

)
, it follows that rLΓ and LΓr are

contained in LΓ; thus r ∈ M(LΓ). Furthermore, rLΓr = Φ̄LG
(
r̃ IndXG (L,Γ)r̃

)
=

Φ̄G
(
IndXG (A,α)

)
= Aα. Since IndXG (L,Γ)r̃ IndXG (L,Γ) is dense in IndXG (L,Γ), we

also have LΓrLΓ = Φ̄LG
(
IndXG (L,Γ)r̃ IndXG (L,Γ)

)
dense in LΓ. That is, Aα = rLΓr

is a full corner, and Bγ = sLΓs is a complementary full corner, where s =
(

0 0
0 1B

)
.

Since ∆̄|Aα = β̄ and ∆̄|Bγ = δ̄, we have (Aα, β̄) ∼ (Bγ , δ̄) in SH(G\X) by
Lemma 3.11, and θ is well-defined.

Next we want to define λ : SH(G\X) → SG×H(X) by λ[B,ω] := [p∗B, τG ×
τH ⊗G\X ω], and we need to see that this map is well-defined. Suppose that
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(B,ω) ∼ (C, ζ) in SH(G\X), and let (L1,Υ) be the corresponding linking system.
Let

(A,α× β) := (p∗L1, τ
G × τH ⊗G\X Υ) ∈ SG×H(X)

be as in Proposition 3.10. As above, it is not hard to verify that p∗B and p∗C are
complementary full corners in p∗L1 and that τG×τH⊗G\XΥ|p∗B = τG×τH⊗G\Xω,
while τG × τH ⊗G\X Υ|p∗C = τG × τH ⊗G\X ζ. Thus λ is well defined.

Proposition 3.9 and Proposition 3.10 imply that λ = θ−1. Since the inverse of
a homomorphism is a homomorphism, it will suffice to see that λ is a homomor-
phism. To do this, we proceed as on page 813 of [16]. We use Lemma 2.4 and the
observation that the isomorphisms there are easily seen to be equivariant to justify
the manipulations with tensor products:

λ(B ⊗G\X C, ω ⊗G\X ζ) =
(
p∗(B ⊗G\X C), τG × τH ⊗G\X (ω ⊗G\X ζ)

)
=
(
C0(X)⊗G\X B ⊗G\X C, τG × τH ⊗G\X ω ⊗G\X ζ

)
∼=
(
C0(X)⊗X C0(X)⊗G\X B ⊗G\X C,

τG × τH ⊗X τG × τH ⊗G\X ω ⊗G\X ζ
)

∼=
(
[C0(X)⊗G\X B]⊗X [C0(X)⊗G\X C],

[τG × τH ⊗G\X ω]⊗X [τG × τH ⊗G\X ζ]
)
,

which is a representative for λ[B,ω]λ[C, ζ].
Let Φ̄G be the restriction of Φ̄ to IndXG (A,α). It follows from Lemma 3.3 that

ker Φ̄G = { f ∈ IndXG (A,α) : f(x)(x) = 0 for all x ∈ X }.
Recall that the C0(X)-algebra structure onA gives a continuous map σA : PrimA→
X characterized by

σA(P ) = x⇐⇒ Ix ⊂ P,
so that Ix =

⋂
{P : σA(P ) = x }. Thus

ker Φ̄G = { f ∈ IndXG (A,α) : f(x) ∈ P whenever σA(P ) = x }

is the ideal I(σA) considered in [21, §2]. Because Φ̄G is surjective (Proposition 3.6)
and intertwines the diagonal action τH ⊗ β with β̄, we deduce that(

IndXG (A,α)/I(σA)
)
oτH⊗β H ∼= Aα oβ̄ H

([13, Proposition 12]). In exactly the same way,(
IndXH(A, β)/I(σA)

)
oτG⊗α G ∼= Aβ oᾱ G,

and hence [21, Corollary 2.1] says that Aαoβ̄H is Morita equivalent to Aβoᾱ G.

The Morita equivalence in the main theorem of [21] can be recovered from The-
orem 3.1.

Corollary 3.12 ([21, Theorem 1.1]). Suppose that X, G and H are as in Theo-
rem 3.1. Also, suppose that α and β are commuting actions of G on a C∗-algebra
D. As in Examples 2.8 and 2.9,

(
C0(X,D), τG ⊗ α× τH ⊗ β

)
∈ SG×H(X). Thus

IndXG (D,α) oτH⊗β H and IndXH(D, β) oτG⊗α G

are Morita equivalent.
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Corollary 3.13. Let X be a free and proper G-space. Suppose that (A,α) ∈
SG(X), and that A has continuous trace. Then Aoα G has continuous trace.

Proof. Since IndXG (A,α) is a C0(G\X)-algebra, we can form the pull-back
p∗
(
IndXG (A,α)

)
via the orbit map p : C0(X) → C0(G\X). If A has continuous-

trace, then C0(X,A) certainly does and it is proved in [23, Proposition 3.7] that
p∗
(
IndXG (A,α)

)
is isomorphic to C0(X,A). Therefore IndXG (A,α) has continuous

trace by [22, Lemma 1.2]. Since Aα is the image of IndXG (A,α) under Φ̄, Aα has
continuous trace. Since A oα G is Morita equivalent to Aα by Theorem 3.1 (with
H = { e }), the result follows from [29, Theorem 2.15].

Remark 3.14. Corollary 3.13 is a mild generalization of [22, Theorem 1.1(3)], where
it is proved that A oα G has continuous trace if A has continuous trace and the
action of G on Â is free and proper.

4. Regular Representations

In this section we want to investigate the question of when the universal norm and
reduced norm coincide on crossed products of the type arising in Theorem 3.1; in
other words, we want to determine circumstances in which regular representations
of the crossed product are faithful. Recall that a regular representation of Aoα G
is one induced from a faithful nondegenerate representation π0 : A → B(H). All
such representations have the same kernel and provide faithful representations of
the reduced crossed product Aoα,rG [19, Theorem 7.7.4]. The general question of
the faithfulness of regular representations was considered by Quigg and Spielberg
in [20], and systems for which the reduced norm equals the universal norm are
sometimes called QS-regular. We shall see that their [20, Theorem 4.2] can be
derived from our Theorem 3.1.

The one-sided case — where X is a free and proper left G-space, and (A,α) ∈
SG(X) — was treated by Kasparov in [14, Theorem 3.13]. We will use this result
and a theorem of Combes to derive the main result of this section. Theorem 2.7
and Proposition 3.4 imply that A0 = Cc(X) ·A can be completed to an E –G\X Aα-
imprimitivity bimodule Y, where E is a subalgebra of Aoα,rG. By definition, this
subalgebra coincides with Aoα,r G when α is saturated.

Proposition 4.1. Suppose that X is a free and proper G-space, and that (A,α) ∈
SG(X). Then regular representations of Aoα G are faithful, and

Aoα G = Aoα,r G.

Furthermore, α is saturated and Y is an Aoα G –G\X Aα-imprimitivity bimodule.

The result on regular representations is to be expected since, once we have shown
that α must be saturated, Rieffel’s Theorem 2.7 implies that A oα,r G is Morita
equivalent to Aα, while Theorem 3.1 implies that Aα is also Morita equivalent to
AoαG. However a C∗-algebra and a proper quotient can be isomorphic (let alone
Morita equivalent), so this observation only serves as motivation.

For our proof of the proposition, we shall realize Rieffel’s module Y as a quotient
X/M, where X is the imprimitivity bimodule described in [23, Theorem 2.2]; we
now recall the formulas making X a C0(X,A) oτ⊗α G – IndXG (A,α)-imprimitivity
bimodule.
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Let X0 := Cc(X,A). If z, w ∈ X0, f ∈ IndXG (A,α), and F ∈ Cc(G × X,A), we
can define inner products and actions on X0 by the following:

F · z(x) :=
∫
G

F (s, x)αs
(
z(s−1 · x)

)
∆(s)

1
2 ds,(4.1)

z · f(x) := z(x)f(x),(4.2)

〈z , w〉
IndXG (A,α)

(x) :=
∫
G

αs
(
z(s−1 · x)∗w(s−1 · x)

)
ds, and(4.3)

C0(X,A)oτ⊗αG
〈z , w〉(s, x) := ∆(s)−

1
2 z(x)αs

(
w(s−1 · x)

)∗
.(4.4)

Then [23, Theorem 2.2] implies that X0 can be completed to a C0(X,A) oτ⊗α
G – IndXG (A,α)-imprimitivity bimodule which we denote by X.

Recall that the Rieffel correspondence establishes a bijection Ind : I(B) →
I(A) between the lattices of ideals of two Morita equivalent algebras A and B [25,
Proposition 3.24].

Lemma 4.2. Suppose that G acts freely and properly on X. Let Φ̄G = Φ̄|IndXG (A,α).
If Ind : I

(
IndXG (A,α)

)
→ I

(
C0(X,A) oτ⊗α G

)
is the Rieffel correspondence map

for the imprimitivity bimodule X = X0, then Ind
(
ker Φ̄G

)
= (ker Φ)oτ⊗α G.

Proof. To make the notation less cumbersome, let J := ker Φ̄G, K := Ind(J), and
C := C0(X,A) oτ⊗α G. Recall that K is the ideal generated by

C
〈X · J , X〉 [25,

Proposition 3.24]. If z ∈ Cc(X,A), then z · f ∈ Cc(X,A) for any f ∈ J . Since

ker Φ = { f ∈ C0(X,A) : f(x)(x) = 0 for all x ∈ X },

it is easy to see that

C

〈
Cc(X,A) · J , Cc(X,A)

〉
⊆ Cc(G, ker Φ).

Thus K ⊆ Φoγ G.
For the other containment, let σA : Â → X be the continuous map giving

the C0(X)-algebra structure on A. By [25, Proposition 6.16], every irreducible
representation of IndXG (A,α) is of the form M (x,π) where M (x,π)(F ) := π

(
F (x)

)
.

Then,

J =
⋂
{ ker

(
M (x,π)

)
: π ∈ Â, x ∈ X , and σA(π) = x }.(4.5)

If N (x,π) is the representation of C0(X,A) given by N (x,π)(f) := π
(
f(x)

)
, then [23,

p. 768] implies that the representation of C0(X,A)oτ⊗αG induced from M (x,π) via
X is equivalent to IndG{ e }N

(x,π), where the latter is the representation on L2(G,Hπ)
given by

[IndG{ e }N
(x,π)(f)](ξ)(s) =

∫
G

π
(
α−1
s

(
f(t, s · x)

))
ξ(t−1s) dt.(4.6)

Thus

K =
⋂
{ ker

(
IndG{ e }N

(x,π)
)

: π ∈ Â, x ∈ X , and σA(π) = x. }.

Since (A,α) ∈ SG(X), σA(π ◦ α−1
s ) = s · σA(π); thus it follows from (4.6) that

Cc(G, I∆) ⊆ K. This completes the proof.
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Remark 4.3. If u : Z → W is an isomorphism of right Hilbert B-modules, then
Ψ(T ) := uTu−1 defines an isomorphism of L(Z) onto L(W). It is not hard to
check that

〈
u(x) , u(y)

〉
B

= Ψ
(
〈x , y〉

B

)
; hence u induces an isomorphism of the

imprimitivity algebras K(Z) and K(W).

Recall that if X is any Hilbert B-module and if J is an ideal in B, then the
quotient module XJ := X/X·J is a Hilbert B/J-module with respect to the quotient
norm on XJ [25, Proposition 3.25].

Proof of Proposition 4.1. Using (4.3) and Lemma 3.5, we see that

Φ̄
(
〈z , w〉

IndXG (A,α)

)
=
〈
Φ(z) , Φ(w)

〉
D

for all z, w ∈ X0.(4.7)

It follows that α is saturated. Since the left and right C0(G\X)-actions on Y clearly
coincide, Y is a Aoα,rG –G\X Aα-imprimitivity bimodule. It remains only to show
that Aoα G = Aoα,r G. Using (4.7), it follows that

‖Φ(x)‖Y := ‖
〈
Φ(x) , Φ(x)

〉
D
‖ = ‖Φ̄

(
〈x , x〉

IndXG (A,α)

)
‖ ≤ ‖〈x , x〉

IndXG (A,α)
‖ = ‖x‖X.

Therefore the map x 7→ Φ(x) is norm decreasing (as a map from X to Y), and
extends to a linear map u : X→ Y. Since〈

u(x) , u(x · b)
〉
D

=
〈
u(x), u(y)

〉
D

Φ̄(b) for x, y ∈ X0 and b ∈ IndXG (A,α),

we have X · ker Φ̄G ⊂ keru. (Recall that Φ̄G := Φ̄|IndXG (A,α).) Therefore we get an
induced map ū : Xker Φ̄G → Y. If we identify IndXG (A,α)/ ker Φ̄G with Aα, then
ū is a Hilbert Aα-module isomorphism. For convenience, we retain the notation
from the proof of Lemma 4.2: J = ker Φ̄G, K = IndJ , and C = C0(X,A)oτ⊗α G.
Note that XJ := X/X · J is a C/K – IndXG (A,α)/J-imprimitivity bimodule [25,
Proposition 3.25]. In view of Remark 4.3 and Lemma 4.2,

C/K
〈x+ X · J , y + X · J〉 7→

E

〈
u(x) , u(y)

〉
(4.8)

defines an isomorphism of C/K = C0(X,A) oτ⊗α G/K onto A oα,r G. Since
C0(X,A)oτ⊗αG/K = C0(X,A)/ ker Φoτ⊗αG by Lemma 4.2 and [13, Proposition
12], and since Φ induces an equivariant isomorphism of C0(X,A)/ ker Φ onto A, it
follows that C/K ∼= A oα G. Since this isomorphism is the identity on Cc(G,A),
the universal norm and the reduced norm coincide on Cc(G,A).

Lemma 4.4. Let X, G, and H be as in Theorem 3.1, and let Y be as in Prop-
osition 4.1. Suppose that (A,α × β) ∈ SG×H(X). Then there is a dynamical
system βo ι : H → Aut(AoαG) such that β o ιh(f)(s) = βh

(
f(s)

)
for h ∈ H and

f ∈ Cc(G,A). Furthermore, (AoαG, βo ι) belongs to SH(G\X), and is equivalent
to (Aα, β̄) via (Y, u), where uh(x) = βh(x) for h ∈ H and x ∈ A0.

Proof. The assertions concerning β o ι are verified by routine computations as are
the formulae

E

〈
uh(x) , uh(y)

〉
(s) = βh

(
E
〈x , y〉

)
(s), and

z
〈
uh(x) , uh(y)

〉
D

= βh
(
β−1
h (z)〈x , y〉

D

)
= zβ̄h

(
〈x , y〉

D

)
,

where x, y, z ∈ A0. Now it follows that u extends to an action of H on Y such that

(Aoα G, β o ι) ∼(Y,u) (Aα, β̄)

as claimed.
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Suppose that π0 : A→ B(H) is a nondegenerate representation. Let λG denote
the left-regular representation of G on L2(G). Then the representation IndGe (π0, ι)
of AoαG induced from π0 is the integrated form of the covariant pair (IndG π0, λ

G⊗
1H) on L2(G,H) ∼= L2(G) ⊗H given by

(λG ⊗ 1H)sξ(r) = ξ(s−1r) and(
IndG π0(a)

)
ξ(r) = π0 ◦ α−1

r (a)ξ(r).

When π0 is faithful, IndGe (π0, ι) is a faithful representation of the reduced crossed
product Aoα,r G called a regular representation [19, Theorem 7.7.4].

Theorem 4.5. Suppose X, G, and H are as in Theorem 3.1, and (A,α × β) ∈
SG×H(X). Then regular representations of (Aα, β̄) are faithful if and only if regular
representations of (Aβ , ᾱ) are faithful.

Proof. Assume that regular representations of Aα oβ̄ H are faithful. Let

L : Cc(G×H,A) ⊂ Aoα×β (G×H)→ Cc
(
H,Cc(G,A)

)
⊂ (Aoα G)oβoι H

be the natural ∗-homomorphism. If (π, U × V ) is a covariant representation of
(A,G×H), then a straightforward calculation shows that(

(π o U)o V
)
◦ L = π o (U × V ).(4.9)

It follows immediately from (4.9) that L is isometric for the universal norm and
extends to an isomorphism of Aoα×β (G×H) onto (Aoα G)oβoι H .

Let π0 : A → B(H) be a faithful representation of A, and let M be the regular
representation IndG×He (π0, ι) of A oα×β (G ×H). Note that M is the integrated
form of (IndG×H π0, λ

G×H ⊗ 1H). Let λG×H ⊗ 1H = U × V , and write, abusing
notation slightly, U = λG ⊗ 1L2(H,H) and V = λH ⊗ 1L2(G,H). Then (4.9) implies
that L intertwines M with(

IndG×H π0 o (λG ⊗ 1L2(H,H))
)
o (λH ⊗ 1L2(G,H)).

Since IndG×H π0 o (λG ⊗ 1L2(H,H)) is equivalent to IndH
(
IndG π0 o (λG ⊗ 1H)

)
,

and since Proposition 4.1 implies that Π := IndG π0 o (λG ⊗ 1H) is a regular
representation of (A oα G) oβoι H , Lemma 4.4 and Combes’s corollary in [5, §6]
imply that Π is faithful. Therefore, M is faithful (and A oα×β (G × H) is QS-
regular).

Now we can interchange the rôles of G and H and reverse the argument above
to prove that regular representations of Aβ oᾱ G are faithful.

Corollary 4.6 ([20, Theorem 4.2]). Suppose that (D,α×β) ∈ SG×H(X), and that
G, H, and X are as in Theorem 3.1. Then regular representations of IndXG (D,α)
oτH⊗β H are faithful if and only if regular representations of IndXH(D, β)oτG⊗αG
are faithful.

Remark 4.7. Given commuting free and proper actions of G and H on X , it cer-
tainly may be the case that the action of G ×H is neither free nor proper. But if
G×H does act freely and properly, then regular representations of Aoα×β (G×H)
are faithful, and the proof of Theorem 4.5 shows that regular representations of
Aα oβ̄ H (and Aβ oᾱ G) are always faithful.
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The proof of Theorem 4.5 suggests another proof of the Morita equivalence of
Aα oβ̄ H and Aβ oᾱ G given in Theorem 3.1. First, recall that if two systems
(A,α) and (B, β) are Morita equivalent via (X, u), then the corresponding crossed
products are Morita equivalent via an imprimitivity bimodule X ou G which is
the completion of Cc(G,X) ([5, §6]), equipped with Cc(G,A) and Cc(G,B) actions
and inner products defined as follows. For f ∈ Cc(G,A), g ∈ Cc(G,B), and
ξ, η ∈ Cc(G,X), let

f · ξ(s) =
∫
G

f(r) · ur
(
ξ(r−1s)

)
dr,(4.10)

ξ · g(s) =
∫
G

ξ(r) · βr
(
g(r−1s)

)
dr,(4.11)

AoαG
〈ξ , η〉(s) =

∫
G
A

〈
ξ(r) , ∆G(s−1r)us

(
η(s−1r)

)〉
dr,(4.12)

〈ξ , η〉
BoβG

(s) =
∫
G

β−1
r

(〈
ξ(r) , η(rs)

〉
B

)
dr.(4.13)

Since Lemma 4.4 implies that (Y, u) implements an equivalence between
(AoαG, βoι) and (Aα, β̄), it follows that (AoαG)oβoιH (which we identify with
Aoα×β (G×H)) is Morita equivalent to Aαoβ̄H via the Aoα×β (G×H) –Aαoβ̄H-
imprimitivity bimodule Y ou H . Similarly, A oα×β (G ×H) is Morita equivalent
to Aβ oᾱ G via the imprimitivity bimodule Y ov G, where vs(x) = αs(x) for all
x ∈ A0. Therefore, we obtain an Aβ oᾱ G –Aα oβ̄ H-imprimitivity bimodule
(Y ov G)̃ ⊗C (Y ou H), where C := A oα×β (G × H) and (Y ov G)̃ is the dual
bimodule.

The bimodule (Yov G)̃ ⊗C (YouH) is isomorphic to the module arising in the
proof of Theorem 3.1 which is the quotient Zker Φ̄HoβH of the IndXG (A,α) oτH⊗β
H – IndXH(A, β) oτG⊗α G-imprimitivity bimodule Z = Cc(X,A) of the symmetric
imprimitivity theorem [21, Theorem 1.1]. We give a proof of this only in the case
A = C0(X,D) so that Rieffel’s fixed point algebra is IndXG (D,α) (see Example 2.8).
Here, Y equals the C0(X,D)oτG⊗α G – IndXG (D,α)-imprimitivity bimodule X de-
scribed at the beginning of the section by equations (4.1)–(4.4).

Lemma 4.8. Let A = C0(X,D). Also let Z be as above, and let W = (X ov G)̃
⊗M (X ou H), where M = C0(X,D) oτG⊗α×τH⊗β (G × H). The map Ω :
[
(
Cc(G×X,D)

)
� Cc(H ×X,D)→ Cc(X,D) defined by

Ω
(
[(ξ)⊗ η

)
(x)

=
∫
G

∫
H

αs−1βh−1

(
ξ(s, s · x · h−1)∗η(h, s · x · h−1)

)
∆H(h)−

1
2 ∆G(s)−

1
2 dH(h) dG(s)

extends to an imprimitivity-bimodule isomorphism Ω : W→ Z.

Proof. Since Ω
(
[(ξ) ⊗ η

)
clearly has compact support in x, to see that it belongs

to Cc(X,D) it will suffice to see that it is continuous on X . However, Ω
(
[(ξ) ⊗ η

)
is of the form ∫

G

∫
H

F (s, h, x) dH(h) dG(s)

for some F ∈ Cc(G × H × X,D), and the continuity follows from the uniform
continuity of F .
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Now we check that Ω preserves the inner products. For ease of notation, we
write L := IndXH(D, β) oτG⊗α G and R := IndXG (D,α) oτH⊗β H . The bimodule Z

is built as follows. If L0 := Cc
(
G, IndXH(D, β)

)
is viewed as a subalgebra of L and

if R0 := Cc
(
H, IndXG (D,α)

)
is viewed as a subalgebra of R, then Z0 := Cc(X,D)

admits L0 and R0 actions and inner products defined as follows. For b ∈ L0,
f, g ∈ Z0, and c ∈ R0,

b · f(x) =
∫
G

b(s, x)∆G(s)
1
2αs
(
f(s−1 · x)

)
ds,(4.14)

f · c(x) =
∫
H

β−1
h

(
f(xh−1)c(h−1, x · h−1)

)
∆H(h)−

1
2 dh,(4.15)

L
〈f , g〉(s, x) = ∆G(s)−

1
2

∫
H

βh
[
f(x · h)αs

(
g(s−1 · x · h)∗

)]
dh,(4.16)

〈f , g〉
R
(h, x) = ∆H(h)−

1
2

∫
G

αt
(
f(t−1 · x)∗βh

(
g(t−1 · x · h)

))
dt.(4.17)

Using (4.16) and viewing L0 ⊂ Cc
(
G, IndXH(D, β)

)
⊂ Cb

(
G×X,D),

L

〈
Ω
(
[(ξ1)⊗ η1

)
, Ω
(
[(ξ2)⊗ η2

)〉
(s, x)

= ∆G(s)−
1
2

∫
H

βh
[
Ω
(
[(ξ1)⊗ η1

)
(x · h)αs

(
Ω
(
[(ξ2)⊗ η2

)
(s−1 · x · h)

)∗]
dH(h)

=
∫
H

∫
H

∫
G

∫
H

∫
G

βhw−1αr−1

(
ξ1(r, r · x · hw−1)∗η1(w, r · x · hw−1)

)
βhu−1αsv−1

(
η2(u, vs−1 · x · hu−1)∗ξ2(v, vs−1 · x · hu−1)

)
v−1rs∆H(wu)−

1
2 ∆G(srv)−

1
2 dG(r) dH (w) dG(v) dH(u) dH(h)

which, after interchanging the order of integration as necessary and performing the
changes of variables, v 7→ v−1rs, u 7→ u−1w, and h 7→ hw, equals∫

H

∫
H

∫
G

∫
H

∫
G

βhαr−1

(
ξ1(r, r · x · h)∗η1(w, r · x · h)

)
βhuαr−1v

(
η2(u−1w, v−1r · x · hu)∗ξ2(v−1rs, v−1r · x · hu)

)
∆G(v)−

1
2 ∆H(wu−1)∆H(u)

1
2 dG(r) dH (w) dG(v) dH(u) dH(h).

We aim to show that this coincides with the internal L-valued tensor product on
[
(
Cc(G ×X,D)

)
� Cc(H ×X,D) ⊂ W. Recall that M := C0(X,D)oτG⊗α×τH⊗β

(G×H).

L

〈〈
[(ξ1)⊗ η1 , [(ξ2)⊗ η2

〉〉
(s, x) :=

L

〈
[(ξ1) , [(ξ2) ·

M
〈η2 , η1〉

〉
(s, x)

=
L
〈[(ξ1) , [(

M
〈η1, η2〉 · ξ2)〉 (s, x)

=
〈
ξ1 ,

M
〈η1 , η2〉 · ξ2

〉
R

(s, x)

(4.13)
=
∫
G

τGr−1 ⊗ αr−1

(
〈ξ1(r),

M
〈η1, η2〉 · ξ2(rs)〉

IndX
H

(D,β)

)
(x) dG(r)

=
∫
G

αr−1

(
〈ξ1(r),

M
〈η1, η2〉 · ξ2(rs)〉

IndX
H

(D,β)
(r · x)

)
dG(r)

(4.3)
=
∫
G

∫
H

αr−1 ◦ βh
[
ξ1(r, r · x · h)∗

M
〈η1, η2〉 · ξ2(rs, r · x · h)

]
dH(h) dG(r)
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which, using (4.10) and then (4.1), and viewing M ⊂ Cc
(
G,Cc(H,C0(X,D))

)
⊂

Cc(G×H ×X,D), equals∫
G

∫
H

∫
G

∫
H

αr−1 ◦ βh
[
ξ1(r, r · x · h)∗

M
〈η1, η2〉(v, u, r · x · h)

βu ◦ αv
(
ξ2(v−1rs, v−1r · x · hu)

)]
∆H(u)

1
2 dH(u) dG(v) dH(h) dG(r)

which, now viewing M ⊂ Cc
(
H,Cc(G,C0(X,D))

)
and using (4.12), is∫

G

∫
H

∫
G

∫
H

∫
H

αr−1 ◦ βh
[
ξ1(r, r · x · h)∗

C0(X,D)o
τG⊗αG

〈
η1(w , ·),∆H(u−1w)τHu ⊗ βu

(
η2(u−1w, ·)

)〉
(v, r · x · h)

βu ◦ αv
(
ξ2(v−1rs, v−1r · x · hu)

)]
∆H(u)

1
2 dH(u)dH(w) dG(v) dH(h) dG(r).

Using (4.4), the above is seen to coincide with the final formula for
L

〈
Ω(·) , Ω(·)

〉
.

A similar argument applies to the right-hand inner products.
To see that Ω is a bimodule map, we proceed using (4.14):

Ω
(
f ·
(
[(ξ)⊗ η

))
(x) = Ω

(
[(ξ · f∗)⊗ η

)
(x)

=
∫
H

∫
G

αs−1βh−1

(
ξ · f∗(s, s · x · h−1)∗η(h, s · x · h−1)

)
∆G(s)−

1
2 ∆H(h)−

1
2 dG(s) dH(h)

=
∫
H

∫
G

∫
G

βh−1

(
f(s−1v, x · h−1)

)
αs−1βh−1

(
ξ(v, s · x · h−1)∗η(h, s · x · h−1)

)
∆G(s)−

1
2 ∆H(h)−

1
2 ∆G(s−1v) dG(v) dG(s) dH(h)

s 7→ vs−1

=
∫
H

∫
G

∫
G

βh−1

(
f(s, x · h−1)

)
αsv−1βh−1

(
ξ(v, vs−1 · x · h−1)∗

η(h, vs−1 · x · h−1)
)
∆G(vs−1)−

1
2 ∆H(h)−

1
2 dG(v) dG(s) dH(h)

=
∫
H

∫
G

∫
G

f(s, x)αsv−1βh−1

(
ξ(v, vs−1 · x · h−1)∗η(h, vs−1 · x · h−1)

)
∆G(vs−1)−

1
2 ∆H(h)−

1
2 dG(v) dG(s) dH(h)

=
∫
G

f(s, x)αs
(
Ω
(
[(ξ)⊗ η

)
(s−1 · x)

)
∆G(s)

1
2 dG(s)

= f ·Ω
(
[(ξ) ⊗ η

)
(x).

We omit the calculation showing that Ω respects the right action.
Now Ω extends to an isometric bimodule map Ω : W → Z and Ω(W) is a closed

L –N -subbimodule. Since
L
〈Ω(W) , Ω(W)〉 = L, we must have Ω(W) = Z since the

Rieffel correspondence is a bijection. This completes the proof.

5. The Proof of the Symmetric Imprimitivity Theorem

Our purpose here is to fix a minor gap in the proof of Lemma 1.2 of [21]. The
gap occurs in equation (5): because the functions gi depend on the compact set L,
when we pass to m ≥ m0,

⋃
supp gi will increase and (5) may no longer hold. We

thank Kevin Mansfield for drawing this to our attention.
To avoid this problem, we add to our index set (N,L, ε, j) a relatively com-

pact open subset U of P such that π(U) ⊃ L, and add to the definition of m =
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(N,L,U, ε, j) ≥ m0 = (N0, L0, U0, ε0, j0) the requirement that U ∩ π−1(L0) ⊂ U0,
where π : P → P/H is the orbit map. (So that, loosely speaking, the sets U are
getting thinner in the direction of the H-orbits, and stretching out along P/H .)
Now we can proceed as in [26, p. 307], choosing the compact set C to satisfy C ⊂ U
as well as π(C) ⊃ L, and the open covering {Ui} to consist of open subsets Ui of
U . Then the functions gi will also satisfy supp gi ⊂ U .

In choosing m0, we take U0 to be a relatively compact open set such that π(U0) ⊃
L0, and j0 such that

‖d2
jb(k, p)− b(k, p)‖ < δ/8 for j ≥ j0 and (k, p) ∈ (U0 ∩ π−1(L0)).(5.1)

Now if m ≥ m0, and both gi(p) 6= 0 and b(k, p) 6= 0, then p belongs to U and
to π−1(L0), so that (k, p) ∈ K × (U ∩ π−1(L0)) ⊂ K × (U0 ∩ π−1(L0)), and the
estimate (5.1) applies.

We hope that the rest of the argument in [21] carries over.
Our proof of the strong continuity of the actions ᾱ in Theorem 3.1 depends on

the strong continuity of the diagonal action τG⊗α on IndXG (A,α). This continuity
was used without comment in [21]. We include a proof here for completeness.

Lemma 5.1. Suppose that we have commuting free and proper actions of locally
compact groups G and H on a locally compact space X. Let α and β be commuting
actions of G and H on a separable C∗-algebra A. Then the diagonal actions τG⊗α :
G→ Aut

(
IndXH(A, β)

)
and τH⊗β : H → Aut

(
IndXG (A,α)

)
are strongly continuous.

Proof. Let γ = τG⊗α. Suppose that ti → t in G. Since IndXH(A, β) is a nondegen-
erate C0(X/H)-module, functions f for which xH 7→ ‖f(x)‖ has compact support
L are dense in IndXH(A, β), and it is enough to prove that γti(f) → γt(f) for such
f . Let N be a compact neighborhood of t, and choose i0 such that i ≥ i0 implies
that ti ∈ N . Then all the functions xH 7→ ‖γti(f)(x)‖ have support in NL. From
the openness of the orbit map p : X → X/H , we deduce that NL = KH for a
compact set K ⊂ X , and then for i ≥ i0, we have

‖γti(f)− γt(f)‖ = sup
x∈K
‖γti(f)(x)− γt(f)(x)‖.

Now fix ε > 0, and choose i1 ≥ i0 such that i ≥ i1 implies that

‖f(t−1
i · x)− f(t−1 · x)‖ < ε/2 for all x ∈ K,

and ‖αti(a) − αt(a)‖ < ε/2 for all a in the compact set f(t−1 · K). Then i ≥ i1
implies that ‖γti(f)− γt(f)‖ < ε.

6. Green’s Theorem

Theorem 6.1 (Green). The inclusion of BrG(X) into SG(X) defines an isomor-
phism of BrG(X) onto the subgroup SG(X)−1 of invertible elements in SG(X).

We begin by showing that BrG(X) is saturated with respect to the equivalence
relation in SG(X).

Lemma 6.2. Suppose that (A,α) ∈ BrG(X) and that (B, β) ∈ SG(X). If
(B, β) ∼ (A,α), then (B, β) ∈ BrG(X), and [A,α] = [B, β] in BrG(X).
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Proof. Let X be a B –A-imprimitivity bimodule over X . Then B has continuous
trace by [29, Theorem 2.15], and hX is a homeomorphism of Â = X onto B̂ =
PrimB:

Â
hX //

σA=id
  

@@@@@@@@ B̂

σB
~~~~~~~~~~

X.

(6.1)

Since both hX and σA are homeomorphisms, so is σB . Thus, (B, β) ∈ BrG(X) as
claimed.

In view of Remarks 2.11 and 2.3, the above inclusion gives a well-defined injec-
tive group-homomorphism Φ of BrG(X) into SG(X)−1. To complete the proof of
Theorem 6.1, we only need to see that Φ is surjective. To do this, it will suffice
to show that if [A,α] has an inverse in SG(X), then A has continuous trace and
that σA is a homeomorphism onto X . Since [A,α] ∈ SG(X)−1 certainly implies
[A] ∈ S(X)−1, it suffices to show only that if [A] is invertible in S(X), then A is a
continuous-trace C∗-algebra and that σA is a homeomorphism.

By definition, A has continuous trace if and only if the (not necessarily closed)
ideal m(A) of continuous trace elements is dense [8]. Recall that every C∗-algebra
has a dense hereditary ideal κ(A), which is minimal among all dense ideals [19,
Theorem 5.6.1]. The ideal κ(A) is called the Pedersen ideal of A. It can be con-
structed as follows. Let C+

c

(
(0,∞)

)
be the set of compactly supported nonnegative

functions on (0,∞). Put

κ0(A) := { f(a) : a ∈ A+ and f ∈ C+
c

(
(0,∞)

)
}.

Then κ(A) is the ideal whose positive elements are exactly

κ(A)+ := { a ∈ A+ : a ≤
∑n

i=1 ai with each ai ∈ κ0(A) }.
Observe that A has continuous-trace if and only if κ(A) ⊆ m(A).

A C∗-algebra is called elementary if it is isomorphic to the compact operators
on some Hilbert space. If A is an elementary C∗-algebra and if π : A → K(Hπ)
and η : A→ K(Hη) are two realizations of A as the algebra of compact operators,
then there is a unitary operator U : Hπ → Hη such that Uπ(a) = η(a)U . It follows
that the the usual traces on B(Hπ)+ and B(Hη)+ satisfy tr

(
π(a)

)
= tr

(
η(a)

)
.

Consequently, there is a canonical trace, tr, on an elementary C∗-algebra.

Lemma 6.3. Suppose that A and B are C∗-algebras and that A⊗maxB is elemen-
tary. Then A and B are elementary.

We thank Siegfried Echterhoff for suggesting the following argument.

Proof. Since A⊗maxB is simple, it coincides with the spatial tensor product A⊗σB,
and it will be more convenient to deal with the latter here. Suppose A is not simple,
and I is a nonzero proper ideal in A. Then I ⊗σ B is a nonzero ideal in A ⊗σ B.
Let π be a nondegenerate representation of A with ker(π) = I. Then if η is any
nonzero nondegenerate representation of B, π ⊗ η is a nonzero representation of
A ⊗σ B such that π ⊗ η(I ⊗σ B) = { 0 }. This would imply that A ⊗σ B was not
simple. Thus we can conclude that A, and by symmetry B, are simple.

Let π and η be irreducible representations of A and B, respectively. Since A and
B are simple, π and η are faithful, and π⊗ η is a faithful irreducible representation
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of A⊗σ B (cf., e.g., Corollary B.11 and Lemma B.36 of [25]). Thus π ⊗ η(A⊗σ B)
is isomorphic to K(Hπ ⊗Hη).

Now suppose there is an a ∈ A such that π(a) is not a compact operator on
Hπ. There there is a sequence { hi } of unit vectors in Hπ such that { π(a)hi }
has no convergent subsequence. Choose b ∈ B and v ∈ Hη such that η(b)v 6= 0.
Then { π ⊗ η(a⊗ b)(hi ⊗ v) } has no convergent subsequence. This contradicts the
compactness of π⊗ η(a⊗ b). Therefore π(A) is an irreducible subalgebra of K(Hπ),
and hence π(A) ∼= K(Hπ) by [1, Theorem 1.4.2].

Lemma 6.4. Suppose that A and B are C∗-algebras, that a ∈ κ(A)+, and that
b ∈ κ(B)+. Then a ⊗ b ∈ κ(A ⊗γ B) for any C∗-norm γ. Moreover, the image of
a⊗ b in A⊗X B belongs to κ(A⊗X B).

Proof. We can suppose that there are elements ai ∈ κ(A)0 and bj ∈ κ0(B) such
that

a ≤
n∑
i=1

ai and b ≤
m∑
j=1

bj .

Since it is not hard to see that a⊗ b ≤
∑

i,j ai ⊗ bj, it suffices to prove the lemma
in the case a ∈ κ0(A) and b ∈ κ0(B). Then there are x ∈ A+ and y ∈ B+ as
well as f, g ∈ C+

c

(
(0,∞)

)
such that a = f(x) and b = g(y). Let h ∈ C+

c

(
(0,∞)

)
be such that h(x) = 1 for all x ∈ supp(f) ∪ supp(g). Let z = h(x) ⊗ h(y). Note
that a ⊗ b and z are positive, and that (a ⊗ b)z = a ⊗ b. It follows that a ⊗ b
belongs to κ(A ⊗γ B). But if π : A ⊗max B → A ⊗X B is the quotient map, then
π(a⊗ b)π(z) = π(a⊗ b). The last assertion follows from this.

Lemma 6.5 ([11, Lemma 2.4]). Let A and B be C0(X)-algebras. Then the map
(a ⊗X b)(x) 7→ a(x) ⊗ b(x) defines an isomorphism of the fibre A ⊗X B(x) onto
A(x)⊗max B(x) for all x ∈ X.

Lemma 6.6. Suppose that A and B are in S(X), and that A⊗XB has continuous
trace with spectrum X. Then A and B both have continuous trace with spectrum X.

Proof. We first show that A is CCR and has Hausdorff spectrum X . By assumption
A⊗XB has continuous trace and is therefore CCR. Thus (A⊗XB)(x) is elementary
for all x ∈ X . Consequently Lemmas 6.5 and 6.3 imply that A(x) and B(x) are
elementary for all x ∈ X . It follows that σA : Prim(A)→ X and σB : Prim(B)→ X
are continuous bijections, and that A and B are CCR. We still need to see that σA
and σB are homeomorphisms.

For each a ∈ A, let fa(x) := ‖a(x)‖. Note that fa is upper semicontinuous
by Lemma 2.1(a). Now fix a ∈ A and y ∈ X . Note that if fa(y) = 0, then fa
is actually continuous at y. If fa(y) 6= 0, then choose b ∈ B such that ‖b(y)‖ 6=
0. Then since A ⊗σ B has Hausdorff spectrum, fa⊗b = fafb is continuous and
strictly greater than zero near y. In particular, fb is strictly positive near y and
fa = fafb/fb. Since the product of nonnegative lower semicontinuous functions is
lower semicontinuous, the latter is lower semicontinuous (where it is defined). It
follows that fa is continuous at y in general. Thus fa is continuous for all a ∈ A,
and it follows from Lemma 2.1(b) that σA is open. Thus A is CCR with spectrum
homeomorphic to X via σA. The same holds for B by symmetry.

To show that A has continuous trace, we will show that κ(A)+ ⊆ m(A). Fix a ∈
κ(A)+ and y ∈ X . Since B is CCR and κ(B)+ is dense in B+, there is a b ∈ κ(B)+
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such that 0 < tr
(
b(y)

)
< ∞. Since x 7→ tr

(
b(x)

)
is always lower semicontinuous

[19, Proposition 4.4.9], it follows that tr
(
b(x)

)
6= 0 near y. Lemma 6.4 implies

that a ⊗ b ∈ κ(A ⊗X B)+. Since m(A ⊗X B) is dense by assumption, a ⊗ b is a
continuous-trace element and

g(x) := tr
(
a⊗ b(x)

)
defines a continuous function on X . Since the natural map from (A⊗X B)(x) onto
A(x)⊗max B(x) is an isomorphism (Lemma 6.5),

tr
(
a⊗ b(x)

)
= tr

(
a(x)⊗ b(x)

)
= tr

(
a(x)

)
tr
(
b(x)

)
.

Let ga(x) := tr
(
a(x)

)
. Then ga = g/gb near y. Since ga and gb are lower semi-

continuous and since the product of nonnegative upper semicontinuous functions
is always upper semicontinuous, it follows that ga is continuous at y. This proves
that κ(A)+ ⊆ m(A). Therefore m(A) is dense and A has continuous trace. The
same holds for B by symmetry.

Proof of Theorem 6.1. If [A] has an inverse in S(X), then there is a B ∈ S(X) such
that A ⊗X B is Morita equivalent to C0(X) over X . In particular, A ⊗X B has
continuous trace with spectrum X , and the theorem follows from Lemma 6.6.
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