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I Introduction 

Our object here is to investigate the structure of the crossed product A >% G 
of a C*-algebra A by a locally compact abelian group G. One goal of any such 
program is to characterize the ideal structure via a description of the primi- 
tive ideal space together with its Jacobson topology. While it is theoretically 
possible to describe Prim(A >% G) as a set using the Mackey-machine as devel- 
oped by Green, Gootman, and Rosenberg [15, 17], characterizing the topology 
is quite another matter - even when A ~ Co(O, ~ )  - due to the appearance 
of non-trivial Mackey obstructions while employing the Mackey-machine. In 
the event that all the Mackey obstructions vanish, considerable progress has 
been made in the case of constant stabilizers [23, 25, 21, 27, 28, 29, 30], and 
similar, but more modest, progress has been made when the stabilizers vary 
continuously [26]. When it is not assumed that the Mackey obstructions vanish, 
the situation is very murky. Although progress has been made in general [2], 
and especially in the case of constant stabilizer and constant (non-vanishing) 
Mackey obstruction [18, 6], the examples in [18, 6] illustrate the difficulties 
and subtleties inherent even in this restricted approach. 

One of the reasons that the approach in the constant stabilizer (and con- 
stant Mackey obstruction) case has been so successful, is that one can employ 
the machinery of classical algebraic topology - especially the theory of prin- 
cipal bundles. In the general case, the "bundles" that will arise will not have 
isomorphic fibers, let alone be locally trivial or principal. However in [26], 
Iain Raebum and the second author introduced the notion of locally a-trivial 
G-spaces which we believe appropriately generalize the notion of principal 
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bundles. To elaborate, recall that a locally compact G-space ~2 is called a- 
proper if the stabilizer map x H Sx is continuous and if  the map (x,t) 
(x,t.x) defines a proper map of the quotient f2 • G/N (where (x,s),,~ (y, t)  i f  
and only if  x = y and ts -1 E Sx) into 12 • f2 [26, Definition 4.1]. It is clear 
that a-proper spaces are the natural extensions of free and proper G-spaces 
to non-freely acting transformation groups. This is evidenced by the rfile they 
and free and proper spaces play in the investigation of crossed products with 
continuous trace [16, 33, 21, 26, 4, 5, 1] Also recall that a G-space O is called 
a-trivial if K2/G is Hausdorff and if it is G-homeomorphic to I2/G x G/,,, (where 
(G.x,s) ,,~ (G.y , t )  if  and only if  G.x = G.y and ts - l  E Sx). Of course, O is 
called locally a-trivial if K2 is the union of G-invariant open a-trivial subsets 
[26, Definition 4.2]. The connection between a-trivial spaces and a-properness 
exactly parallels that between free and proper spaces and principal bundles: a 
a-proper G-space is (locally) a-trivial if and only if there are (local) cross 
sections for the orbit map [26, Proposition 4.3]. 

A significant class of examples of a-trivial spaces are provided by the 
spectrums of  transformation group C*-algebras. It follows from [34] and [32, 
Theorem 5.3] that if  (C0(f2)>~ G) A is Hausdorff, then it is a a-trivial G- 
space for the dual action. It was shown in [26], that when A is non-abelian, 
one can have (A >,a~ G) ̂  locally, but not globally, a-trivial. One of the original 
motivations for this paper was to classify those crossed products with a-trivial 
primitive ideal space (with respect to the dual action). Unlike [26], we make 
no assumption on the action, the algebra A, or the Mackey obstructions. 

The crucial concept is that of  a (generalized) Green twisting map. Recall 
that if  (.4, G, a)  is an abelian dynamical system, then a Green twisting map 
r with domain N is a strictly continuous homomorphism "c : N ~ ag(A) sat- 
isfying an(a) = ~,arT, and as(~,) = ~,, for all a E A, n E N, and s E G. If r 
is a Green twisting map for (A, G, a), then Olesen and Pedersen [20, Theo- 
rem 2.4] have shown that A >~  G is covariantly isomorphic to an induced 
algebra Ind~• >~,, G), where A :,a~,~ G is Green's twisted crossed product 
(see [17, Sect. 1] for the relevant definitions and background). In fact, if  
denotes the dual G-action on A >~  G and N = ~(a).l_, where ~(~) = {y E G : 
~r(P) = P for all P E Prim(A >~: G)}, then ~(a) is a subgroup of the usual 
Connes spectrum F(a) [22] and A >,a~,~ G is simple if and only if A is G- 
simple and N = {e} is the trivial subgroup [20, Theorem 5.7]. In particular, 
Prim(A >~  G) is G-homeomorphic to N and is the simplest sort of a-trivial 
G-space. 

To generalize these ideas, recall that if  R : Prim(A) ~ O is a continuous, 
open G-invariant surjection onto a locally compact Hausdorff space ~, then 
A >~a G is the section algebra of  a C*-bundle with fibers Ax >~* G, where 
Ax =A/ker(R-~({x}))  and ~x is the induced action [35]. Then, if x ~--~Nx 
is continuous from 12 into the normal subgroups of G, a generalized Green 
twisting map t with domain ~ = {(x,s) E 12 x G : s E Nx} is a "compatible" 
choice of Green twisting maps t x for each quotient system (Ax, G, ax) (see 
Definition 2.7 below). Naturally, there is an associated twisted crossed product 
A >'~,t G which behaves as if it were fibered over 12 with fibers Ax >~.tx G (see 
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Definition 2.9 below). Our main result (Theorem 4.1) is that Prim(A x ~  G) 
is a a-trivial space if and only if (1) the quasi-orbit space .~G(Prim(A)) is 
Hausdorff, (2) the map x H Cx = f'(0~) • is continuous, and (3) there is a 
generalized Green twisting map for (A, G, ~) with domain f2 c. In this event, 
C~ = F(o:), the usual Connes spectrum. If A is type I and (A, G, ~) is reg- 
ular, then we can replace C with the symmetrizer map S (Corollary 4.3). Of 
course, as a special case of our results we obtain conditions (Corollary 4.7), 
which characterize when the primitive ideal space of A x ~  G is a trivial C- 
bundle for some closed subgroup C of G, which generalize those given in [27, 
Theorem 7.2]. 

The majority of the work required to prove Theorem 4.1 involves an ex- 
tensive generalization of a theorem of Olesen and Pedersen [20, Theorem 2.4]. 
Namely, we show in Theorem 3.1 that there is a generalized Green twisting 
map t for (A, G, ~) with domain I2 N if and only if  the dual system is co- 

variantly isomorphic to a (generalized)induced system ( I n d , •  G, Ind t )  
as defined in [5, Sect. 3] (or at the end of Sect. 2 below). In fact, in complete 
analogy with [20, Theorem 2.4], we can take B = A x~,t G. 

Our work is organized as follows. In Sect. 2, we recall some of  the 
basic definitions of subgroup actions and subgroup crossed products from [5]. 
We also give formal definitions of generalized Green twisting maps and the 
resulting twisted crossed products. In Sect. 3 we prove our first main result 
characterizing the crossed product of a twisted system as an induced algebra. 
Finally, in Sect. 4 we prove our main result characterizing crossed products 
with o--trivial primitive ideal space. We close with a number of interesting 
special cases. 

2 Subgroup actions and generalized Green twisting maps 

For any locally compact group G we denote by R(G) the space of all closed 
subgroups of G equipped with Fell's topology [7]. Then R(G) is a compact 
Hausdorff space. If I2 is a locally compact space (here, and in the sequel, locally 
compact always means locally compact Hausdorff) and H : f2 ~ R(G);x  ~ Hx 
is any continuous map, then we define 

~ "  = {(x,~) c ~ x o :~ e n x } ,  

which is a closed subspace of I2 x G and which may be thought as a trivial 
bundle over g2 with varying fibers Hx. 

Suppose now that A is a C*-algebra such that there exists a continuous, 
open and surjective map P : .4 ~ I2 for some locally compact space f2. Then by 
Lee's theorem [19] (and [10, Proposition 1.6]) we may write A as the section 
algebra Fo(E) of all continuous sections which vanish at infinity for some C*- 
bundle P:E--~ O, such that the fibers Ax are isomorphic to A/kerP-l({x}) 
for each x E I2. Conversely, it was also shown by Lee that for any C*-algebra 
A which is isomorphic to Fo(E) for some C*-bundle p : E ~ [2 there exists 
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a canonical continuous and open projection from ,,1 onto O, which is just P 
in the situation above. We now repeat the definition of a subgroup action as 
defined in [5]. 

Definition 2.1. Suppose that A is a C*-algebra such that A is isomorphic to 
the section algebra Fo(E) for some C*-bundle p : E ~ O. Assume Jurther 
that H : t2 --. R(G) ;x  ,-~ Hx is a continuous map such that [br each x E s 
there exists a strongly continuous action ~ of  H~ on the fiber A, such that 
the map 

D H ---+ E; (x,s) ~-+ aX(a(x)) 

is continuous for each a E A. Then �9 = (ax),Eo is called a subgroup action of 
I2 z-t on A. 

If ~ is a subgroup action of f2 H on A, then we may follow [5] and form 
the subgroup crossed product A >~ g2 H as follows: Let q : O n --~ s denote 
the canonical projection, and let Fc(q*E) denote the set of  continuous sections 
with compact support of  the pull-back bundle q*E. Note that the continuous 
sections of q*E are exactly given by the continuous functions f : s sr ~ E such 
that f ( x , s )  E Ax for all x E s We define convolution, involution and norm on 
Fr by the rules 

f �9 g(x,s) = ff(x,t)ct~(g(x, t - i s ) )  d~r~t, 
H~ 

f*(x,  S) = AH, (s- ' )a~(f(x ,  S-'  )* ) ,  

and 
[Ifll, = sup fllf(x,s)ll dn:, 

xE~2 Hx 

where A~rx denotes the modular function on Hx and (dn)t tea(o) is a smooth 
choice of Haar measures on R(G)  [11, p. 908]. If Ll(f2a,A,a) denotes the 
completion of  Fc(q*E) with respect to I1"111, then the subgroup crossed product 
A > ~  D n is defined as the enveloping C*-al~gebra of Li(f2H,A, a). 

It has been shown in [5] that (A ><a s '' can be identified with the set of  
pairs 

{(x,p x V) : x E I2,p • Z E (Ax><~ Hx) ̂ }  

by defining 
(x,e x V ) ( f )  = p x Z( f (x , . ) ) .  

More generally, every representation of a fiber Ax > ~  H,  defines a rep- 
resentation of  A >,a~ O n in this way and the collection 5~(A >~  s n )  of all 
equivalence classes of  those representation is called the space of subgroup 
representation~ of  A >a~ 0 to. I f  we restrict to representations with dimension 
bounded by a fixed cardinal, say R, then we may topologize St(A >~  s H) by 
viewing S~(A >,~ lti c) as a subset of  the space Rep(A >~, s162 of  all equiv- 
alence classes of representations of A :x~ I2 n with dimension bounded by R 
equipped with Fell's inner hull kernel topology (see [8, 9]). Note that the 
canonical projection of 5~(A >,~ ffl4) onto D is always continuous. Moreover, 
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it has been shown in [5, Corollary 4] that in case where H~ is amenable for all 
x E t2, the restriction of this projection to (A > ~  f2~) ̂  is also open, so that by 
Lee's theorem we may write A >% f2 s as a section algebra Fo(F) of a section 
bundle r : F --o f2 with fibers Ax >,a~x Hx. 

The definition of a subgroup action on a C*-algebra as above was motivated 
by the desire to be able to restrict an action of G on a C*-algebra A to a set 
of  continuously varying subgroups of G. Before we make this more precise we 
first want to introduce the notion of a regularization of a dynamical system. 

Definition 2.2. Let (A, G, ~) be a dynamical system. A regularization (O,R) 
of (A, G, ~) consists of a locally compact G-space f2 together with a G- 
equivariant continuous map R : Prim(A) ~ f2. lJ~ in addition, R is open and 
surjective, then (f2,R) is called an open regularization of  (A, G, ~). I f  the 
action of G on f2 is trivial, then (f2,R) is called a G-invariant regularization. 

Remark 2.3. Since f2 is Hausdorff, any continuous map from A into O must 
factor through Prim(A). Thus whenever convenient we can, and will, think of  
the regularizing maps R as being defined on .4. 

Note that the definition of a regularization as given above is much weaker 
than the definition of regnlarizations as defined in [5]. Please see [5, Sect. 1] 
for situations where both definitions automatically coincide. We now come to 
the motivating example for subgroup actions. 

Example 2.4. Suppose that (f2,R) is an open regularization of (A, G, ~). As- 
sume that H : I2 ~ JR(G) is a continuous map such that Hx C_ Sx for all x E I2, 
where Sx denotes the stabilizer of x. Then we may define for each x 6 t2 an 
action ~x of H~ on the fiber Ax =A/kerR- l ({x})  of the corresponding C*- 
bundle r : E --o f2 with A ~- Fo(E), by first restricting ct to Hx, and then taking 
the canonical action of H~ on the quotient of  A by the Hx-invariant ideal 
kerR-l ({x}) .  Then ( ~ ) ~ o  is a subgroup action of f ~  on A. We will call 
this action the restriction oJ'~ to 0 n and will denote it usually also by the 
letter ~. This will cause no confusion as it will be clear from context whether 

refers to an action of  G on A, or the restriction of  an action to f2 ~ as defined 
above. 

The construction of the subgroup action in the example above gives rise to 
many different constructions of subgroup algebras. One very important case is 
the following. 

Example 2.5. Suppose that (A, G, ~) is a dynamical system, f2 is a locally 
compact space and H :  f2 ~ R(G)  is a continuous map. Let id | ~ denote 
the diagonal action of G on Co(I2,A) with respect to the trivial action of G 
on ~ and let R : Co(f2,A) ̂  --o f2 denote the canonical projection. Then (f2,R) 
becomes an open regularization for (Co(t2,A), G, id | 0~) and as in Example 2.4 
we may form the subgroup action id | 0t of  O n on Co(f2,A) and the subgroup 
crossed product C0(O,A)>~id| ~H, which we will denote in the following 
simply by C*(f f l ,A,  ~t). 
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Note that we could have constructed C*(f~,A,  c~) easily by defining con- 
volution and involution on Cc( f~ ,A)  by the usual operations on the fibers 
Cc(Hx,A) with respect to the restriction of ~ to Hx. The space S~(f2ti,A, 00 of 
subgroup representations of C*( f~ ,A,~)  consists of all pairs (x,p x V) with 
x E f2 and p • V E Rep(A >,~ Hx). In the case where g2 is equal to R(G)  
and H equals the identity I : R(G) ~ R(G),  we obtain the subgroup alge- 
bra C*(R(G)I,A, ~) whose subgroup representations give the collection of all 
subgroup representations for the system (A, G, ~). 

The following proposition shows that there is a very strong connection 
between the constructions in Examples 2.4 and 2.5. 

Proposition 2.6. Suppose that (12,R) is an open reoularization of(A, G, ~) and 
assume that H : f2 ~ $1(G) is a continuous map such that Hx is contained m 
the stabilizer Sx jbr all x E f2. Let A >~ f2 ~r be the subgroup crossed product 
of  A by (2 lr with respect to the restriction of ~ to 12 H, and let C*(Y2~,A,a) 
denote the subgroup algebra as constructed in Example 2.5. Let 5e~ denote 
the set of  all irreducible representations of  C*(~2~q,A,~) which are given by 
pairs (x,p x V) such that p x V E (A >,~Hx) ̂  satisfies kerp D kerR-l({x})  
(i,e. p E Rep(Ax)). Then C*(f2H,A,a)/kerSa~ is canonically isomorphic to 
A ~ O ~I, 

Proof Let r : E --~ f2 be the C*-bundle given by R : A ~ g2 and Lee's theorem, 
and let as usual q*E denote the pull-back of E via the canonical projection 
q:  O H ---* O. Then define 

q~: Cc(f2fl,A) --~ Fc(q*E); qb(f)(x,s) -= f ( x , s ) ( x ) .  

Then it is easily seen that �9 extends to a surjective ,-homomorphism from 
C*(f2~q,A, c0 onto A >~  f2 ar with kernel kerSa~ (compare with [5, Proposi- 
tion 9]). [] 

Recall that a Green twisting map z for a dynamical system (A, G, ~) is a 
strictly continuous homomorphism z :N, ~ q/(A) from a closed normal sub- 
group NT of  G into the group of unitaries q/(A) in the multiplier algebra ./I(A) 
of A such that the conditions 

o~n(a) = ~nav* and as(v,) = rs,~-I 

are satisfied for all n E N~, a E A and s E G. The twisted crossed product 
A >4~,z G is defined as the quotient of  A >~  G by the intersection of  all kernels 
of representations n • U of A >~  G which preserve z in the sense that 

n(z,)  = U, for all n E N~. 

Our first aim here is to generalize the notion of  Green twisting maps to 
something which has as the domain a set of  varying subgroups of G, rather 
than just one fixed normal subgroup N~ of  G. For this note first that if (O,R) 
is a G-invariant open regularization of a system (A, G, ~), then kerR- l ({x})  
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is a G-invariant ideal in A for each x c f2 and we have a canonical action 
of  G on each fiber Ax = A/kerR- l ({x}) .  

Definition 2.7. Assume that (O,R) is a G-invariant open reyularization of  
the dynamical system (A, G, ~), r : E ~ s the corresponding C*-bundle with 

fibers A~ = A/kerR- l ( {x} ) ,  and let N : 12 ~ R ( G )  be a continuous map such 
that Nx is normal in G Jbr all x E s A generalized Green twisting map with 
domain ~ Jbr (A, G, ~) is a map t :  ~ ~ Ux~a ql(Ax) such that 

(1) Each map i x : Nx --~ ~ t~ = t(x,n) is a Green twisting map jor 
the system (Ax, G, ~x). 

(2) T h e  m a p s  ~'2 u ~ g given by (x,n) ~ ff~a(x) and (x,n) ~ a(x)~ are 
continuous j o t  each a c A = Fo(E). 
I f  t is a generalized Green twisting map Jbr (A, G, ~), then we call (A, G, ~, t)  
a generalized twisted dynamical system. 

Remark 2.8. Note that i f  we do not require that x x x %(tn) = t n for each x E g2, 
s E G and n C Nx - that is, each 1 x is merely a strictly continuous homomor-  
phism into ql(A~) implementing ~x _ then we simply have a unitary subgroup 
action of  O N on A as defined in [26, Definition 5.1]. 

As in the case of  ordinary twisted dynamical systems, there is a canonical 
procedure for defining twisted crossed products of  generalized twisted dynam- 
ical systems. The easiest definition is the following. 

Definition 2.9. Suppose that t is a generalized Green twisting map for 
(.4, G, ~) with domain 12 'v. We say that a representation n x U of  (A, G, c~) 
preserves t /3" rc(t~) = Us Jbr all (x,s) E O N such that k e r n  _D kerR- l ({x}) .  
Let It be the intersection o f  all kernels of  representations of  A >~ G which 
preserve t. Then we define the generalized twisted crossed product A >~,t G 
as the quotient of  A >~ G by It. 

The following observation will be useful in considering the structure of  
generalized twisted crossed products. The proof  is straightforward. 

L e m m a  2.10. Suppose that (I2,R) is a G-invariant open regularization of  
(A, G, ~). We identify G with the constant map G : f2 ~ R ( G ) ; x  ~ G. Let 

= (~x)x~a be the subgroup action ofI2 6 on A as in Example 2.4. Then 

: Cc(G,A) --* Fc(q*E); ~ ( f ) ( x , s )  = f ( s ) (x )  

extends to an isomorphism between A >~ G and A >,~ f2 c. 

Note that by the identification o f A  > ~  G with A > ~  QG via Lemma 2.10, 
we know that for every irreducible representation n • U of  A > ~  G there ex- 
ists exactly one x E 12 such that k e r n  D ke rR- l ({x} ) .  Hence it follows that 
the collection of  irreducible representations of  A > ~  G which preserve I may 
be viewed as the union over all x E f2 of  the spaces (Ax >~, tx  G)  ̂ , where 
Ax :~i,.tx G denotes the usual twisted crossed product with respect to the ordi- 
nary twisted action (~ ' ,  t x) of  G on Ax. It is straightforward to see that It is 
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equal to the intersection of all kernels of  the irreducible representations which 
preserve t. We will later see that these are exactly the irreducible representa- 
tions of  A >~,t G. 

As for ordinary twisted crossed products it is quite useful to have another 
realization of the generalized twisted crossed product. For this we have to 
define first what we will understand as a quotient of  G by 12 N. 

Definition 2.11. Assume that G is a locally compact group, f2 a locally com- 
pact space and H : f2 ~ R(G)  is a continuous map Then we define an equiv- 
alence relation ~n  on f2 x G by 

(x,s) ~ ,  (y , t )  i f  and only i f  x = y and s E tHx . 

The quotient space f2 • H G = ( f2 x G)/,~r under this equivalence relation 
is called the quotient o f  G by f2 ~. 

Note that the elements of  f2 xH G as in the definition above are just given 
by the pairs (x,~), where i denotes the left coset sH.~ of s 6 G. 

Assume now that N : I2 ---, R (G)  is a continuous map such that Nx is nor- 
mal in G for all x 6 f2. Then we may define (left) Haar measures on G/Nx by 
normalizing with respect to a fixed Haar measure on G and a smooth choice 
of Haar measures on R ( G )  such that 

f g ( s ) d s =  f fg(sn)dN~ndc/~fi,  
G G/Nx Nx 

for any g 6 Co(G). (While a similar family of measures is defined in [33, 
Lemma 2.20], the reader should be cautioned that in the case the subgroups Sx 
are normal the measures #x defined in [33] are right Haar measures (see [33, 
Lemma 2.21]).) We record some properties that these measures enjoy for later 
use.  

Lemma 2.12. Suppose we have chosen Haar measures on the quotient groups 
G/Nx as above. 

(1) Let A be a locally compact space and suppose F E Cc( A, ( Q X N G ) ). 
Then 

f ( 2 , x )  = f F(X,x,~)dG/Ar~fi 
G/Nx 

defines an element of  Cc(A x t2). 
(2) For each f 6 Cc(s •162 G), 

f ( x )  = f f(x,s)d6/N~$ 
G/Nx 

defines the element o f  Cc(12). 
(3) The map ( x , g ) ~  AG/N~(~) is continuous on O xNG. 

Proof The first assertion can be proved along the same lines as [33, Lemmas 
2.5(iv) and 2.22]. The second and third assertions follow from the first: (1) 
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(2.1) 

(2.2) 

and 

follows immediately and (2) follows by considering F ( f , x , ~ ) =  f(x,  fg) for 
appropriate choices of f in Cc(O XN G). [] 

If  t is a generalized twist for (A, G, ~) with domain f2 tr as in Definition 2.7, 
then we define Cc(G,A, t) as the set of all continuous A-valued functions f on 
G which satisfy 

f(ns)(x) = f (s)(x)~-i  

for all s E G and (x,n) E O ar such that the resulting function 

(x,g) ~ Ilf(s)(x)l[ 

has compact support in O • G. Then, as usual, we define multiplication, in- 
volution and norm on Cc(G,A, t) by 

f .  g(s)(x) = f f ( t )(x)~(g(t- ls)(x))  do~N~, 
GINx 

f*(s)(x) = AGlar~(s -I )ax(f (s - I  )(x)*), 

I l f l l~ : sup f IIf(t)(x)lldmlN/. 
xC=~ GINx 

Note that if  we define fx  by fX(s)= f(s)(x) for all x E f2 and f E 
Cc(G,A,I), then fx  is an element of  the dense subspace Cc(G, Ax, IX) of the 
ordinary twisted crossed product Ax >%xt~ G as constructed by Green in [17, 
Sect. 1]. Moreover, if we define I1"111 on Cc(G, Ax, t x) by 

Ilgll~ = f IIg(s)tldc/arxS, 
GINx 

then it was shown also in [17, Sect. 1] that the twisted crossed product 
A~ >~x t, G is just the enveloping C*-algebra of the completion L i (G, Ax, if) of  
Cc(G,A, t) with respect to [[.[[~. Now it follows directly from Lemma 2.12 that 
for each f E Cc(G,A,t) the map O ---+ lR;x ~ [[ff[[~ is continuous with com- 
pact support. Thus we see that the completion LI(G,A,t) of Cc(G,A,~) with 
respect to i[']]1 is isomorphic to Fo(F), for some Banach bundle p : F ~ O 
with fibers B~ = Ll(G, Ax, t~). Observe also that multiplication and involution 
on Cc(G,A, t) are just defined fiberwise by the multiplication and involution 
on the fibers Ll(G, Ax, tx). We use this observation to prove 

Proposition 2.13. Multiplication and involution on C~(G,A,t), as defined in 
Equations (2.1) and (2.2), are well defined and extend to all of  Lt(G,A, t). 
Thus Lt(G,A,t) is the section algebra Fo(F) of a Banach .-algebra bundle 
p : F ~ i2 with fibers LI(G, Ax, ix). Moreover, the map 

�9 :Cc(G,A) ~ C~(G,A,T); r  f f (sn)(x) t~_~ dN~n 
N~ 

extends to a .-homomorphism from A >~ G onto the enveloping C*-algebra 
C*(G,A,t) of Lt(G,A,t) with kernel It. Thus C*(G,A,t) /s canonically iso- 
morphic to A >~.t G. Moreover, the irreducible representations of  A >%.t G 
are exactly the irreducible representations o f  A >~ G which preserve t. 
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ProoJ: That (2.1) and (2.2) define elements of Cc(G,A,t) is clear except for 
possibly the continuity of f *  9. But if  f , 9  E Cc(G,A,t), then the function 
(x,r) H f(r)(x)~(g(r-ls)(x)) defines an element ~bs E Co(12 xN G,A). In fact 
if  p : f2 • G ~ I2 xN G is the quotient map, and if So E G is fixed, there are 
compact sets C C I2 and K C_ G such that supp(q~) C_ p(C x K) for all s near 
so [33, Lemma 2.3]. Now choose a generalized Bruhat approximate cross sec- 
tion ([33, Proposition 2.18]) b E C,.(12 x G) such that 

fb(x, st)dNx t = 1 
Nx 

provided x E C and s E KNx. Then ,are can define a continuous function F : 
G--* A by 

(2.3) F(s)(x) = f qS,(x, i")b(x, r)dr . 
G 

Of course, near so, (2.3) equals 

f f ( r ) (x )4  (o(r-~s)(x))da/Nxi = f * g(s)(x). 
G/Nx 

Next observe that by the properties of  a continuous choice of Haar mea- 
sures, together with the continuity of t, it is straightforward to see that ~ ( f )  E 
Cc(G,A,t) for any f E C~(G,A). In fact, ~ maps Cc(G,A) onto Cc(G,A,t). 
To see this, consider f E Cc(G,A,t) with support contained in p(C • K) as 
above. Also as above choose b E Co(12 • G) with 

f b(x, st)dlc, t = 1 
N~ 

for all x E C and s EKNx. Then F E Cc(G,A) defined by F(s)(x)= 
f(s)(x)b(x,s) satisfies ~ ( F )  = f .  

Now, for each x E 12, let us look at the map 

~b x : Cc(G,A) --* Ll(G, Ax, tx); ~x( f )  = ~(f)x = f f(sn)(x)t~,~_~ dNxn. 
Nx 

Observe that ~,x is the composition of the natural maps 7 jx : Cc(G,A) --* 
Cc(G, Ax) given by tPx(f)(s)= f(s)(x) and ~ : Cc(G, A x ) ~  LI(G, Ax, IX) 
which is given by integration against t x . Since all these maps extend to ,-homo- 
morphisrns from the appropriate L 1-completions onto their images, we conclude 
that each ~x extends to an ,-homomorphism from LI(G,A) onto LI(G, Ax,IX). 
Thus we see that �9 is a ,-homomorphism with respect to multiplication and 
involution on Cc(G,A,t) as defined above. 

It has now become clear that LI(G,A,I) is equal to Fo(F) for a Banach , -  
algebra bundle p : F  ~ f~ with fibers LI(G, Ax, IX). But for these algebras it is 
clear that the irreducible representations of  LI(G,A, t) are canonically given by 
the representations of  the fibers LI(G, Ax, IX). This shows that the representations 
of  LI(G,A,t), and hence also of C*(G,A,t)  are given by the union over all 
x E 12 of  the spaces (Ax :,,a~,t~ G) ̂ . 
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Finally, i f f  E Cc(G,A) and i fn  x U E (A~>~,t~ G) ̂  is viewed both as an 

element of (A > ~  G)  ̂  on the one hand, and as an element of C*(G,A, t)  ̂  on 
the other, then it follows directly from the constructions that n x U ( ~ ( f ) )  = 
n x U ( f )  for all f E C~(G,A). Thus �9 extends to a .-homomorphism from 
A > ~  G onto C*(G,A, t) such that ker �9 is equal to It. But this implies that 

factors through an isomorphism between A >~,t G and C*(G,A,t),  which 
finishes the proof. [] 

As in the case of ordinary Green twisting maps there is a canonical example 
for generalized Green twisting maps. 

Example 2.14. Suppose that (s is a G-invariant open regularization of 
(A, G, 0Q, and let N : O ~ R(G)  be a continuous map such that Nx is a normal 
subgroup of G for all x E I2. Then we may restrict ~ to ON as in Example 2.4 
and we may form the subgroup crossed product A > ~  I2 N. Let yN denote the 
action of G on A > ~  I2 N, which is defined by 

(2.4) ~ ( f ) ( x ,  n) = 6(x, s)a~ ( f (x ,  n - ' s ) )  , 

f E Fo(q*E), where 6 : f2 x G ~ ]R + is defined by b(x,s) = Aa/Nx(~)Aa(s-a). 
(Recall that 6 is continuous by virtue of  Lemma 2.12.) 

Note that the quotient action 7 Nx of G on Ax >~x Nx is the action defined 
by Green in [17, Proposition 1]. Consequently, there is a Green twisting map 
t Nx : N, ~ ql(A~ >~x Nx) for the quotient system (A~ X~x Nx, G, 7 N-, ). 

Recall that A x ~  O N is a section algebra Fo(D) of a C*-bundle p : D ~ ~2 
with fibers Ax > ~  Nx if  and only if the canonical projection P : (A x ~  ON)^ --, 
f2 is open (recall that this is always true if all Nx are amenable). I f  P is open, 
then we claim that the map 

ev : ~ ~ U '~(Ax ~ ,  Nx); tN(x,n) = ~ 
xEfl 

is a generalized Green twisting map for the system (A ><~ O N, G, yN). In order 
to see this we only have to check the continuity of  the maps from O N ~ D 
defined, for each d E A >,% s'2 N, by 

(x,n) ~ ~ d ( x )  and (x,n) ~-* d ( x ) ~  ~ . 

But if d = f . a  is defined as f .a (x , s )  = f (x , s )a(x)  for f E Co(f2 N) and 
a E A, we see that ( t~f .a(x))(s)  = f ( x , n - ' s ) ~ ( a ( x ) )  and ( f . a ( x )~ ) ( s )  = 
ANx(n-l) f (xsn-1)a(x) ,  and it is clear that these expressions are continuous 
with respect to all variables x, s and n (see [33, Lemma 2.5(ii)]). Thus the 
two maps given above are easily seen to be continuous for such d. Since 
the set { f . a  : f E Cc(~2N),a E A} generates a dense subset of A > ~  O N, the 
continuity follows for all d E A > ~  O N. 

Next, let us consider the generalized twisted crossed product (A > ~  g2 N) 
>%v,ts G. In analogy to the situation of ordinary twisted crossed products [17, 

Proposition 1], we want to show that (A > ~  f2N)>~rN,tN G is isomorphic to 
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A > ~  G. For this let r : E --+ t2 denote the C*-bundle belonging to A and let 
F~ (q*(E)) denote the dense subalgebra ofA >~= ~ of continuous sections with 
compact support of  the pull-back bundle q*E with respect to the projection 
q : g2 N --~ f2. We define 7 j : C~(G,A) ~ C,(G, Fc(q*E),t N) by 

(~P(f)(s)) (x, n ) = 6(x, s) f (ns)(x) .  

Then it follows from the remarks preceding [2, Proposition 8] that kr is 
given fiberwise by the canonical isomorphism between the fibers Ax >%x G and 
(Ax>%~Nx)>~.tN~ G. Since it is also clear that 7~(Cc(G,A)) is invariant 
under pointwise multiplication with bounded continuous functions on f2 we 
conclude that ~t(Cc(G,A)) is dense in (A > ~  O ~r >~r~,tN G. Thus 7 j extends 

to the desired isomorphism between A >% G and (A >% f2 N) >~rN,tN G. 
Before we close this section we want to recall from [5] some basic results 

about a-trivial regularizations and induced dynamical systems. For this recall 
first that a locally compact G-space t2 is called a a-proper G-space i f  the 
stabilizer map S : f2 ~ R(G) ;x  ~ Sx is continuous and the canonical map 

~2 Xs G --* t2 x O; (x,~) ~ (x, sx) 

is proper in the usual sense that inverse images of  compact sets are compact. 
I f  I2 is a ~r-proper G-space, then we say that I2 is a-trivial, i f  there exists a 
continuous section ~ : ~2/G ---+ 0 for the quotient map ~ ~ O/G. Moreover, f2 
is called locally a-trivial, if  I2 is a a-proper G-space with local sections, which 
just means that each x E I2 has a G-invariant neighborhood U such that U is 
a a-trivial G-space. 

Now let (A, G, ~) be any dynamical system, and let (O,R) be a regular- 
ization of (,4, G, ~). Then we say that (~2,R) is a a-trivial reoularization of 
(A, G, ~t) i f  t2 is a tr-tdvial G-space. 

It was shown in [5] that the dynamical systems which possess a a-trivial 
open regularization are exactly those which are induced from a subgroup ac- 
tion as follows. Start with any action fl of  f '~  on a C*-algebra B as in Defini- 
tion 2.1, where B = Fo(E) for some C*-bundle p : E ~ 12, a n d H  : O ~ ~ ( G )  
is a continuous map. Then the induced C*-alaebra Ind~nD is defined in [5, 
Definition 5] as 

I n d ~ B  = ( f E Cb(G,B) : f ( sh - l ) (x )  = ot~(f(s)(x)) for all (x,h) E 0 u , 
and such that (x,s ~ llf(s)(x)l[ is a function in Cc(f~ xh, G)} .  

The induced action Indfl of  G on Inda~ is given by (Indfl.~(f))(t)= 
f ( s - l t )  for all s, t e G. 

For each ~ E/~ and s E G let M(~, s) denote the irreducible representation 
of  I n d ~ B  given by 

M(~ , s ) ( f )  = 7r(f(s)), f E Ind~nB. 
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Then M(n,s)  = M(p, t) in (Ind~HB) A if and only if (It, s ) ~  (p, t), where 
,-~ denotes the equivalence relation on/~ • G which is given by 

Or, s) ~ (p,t)  if and only if P(n) = P(p) = x and there exists 

h E Hx such that (n,s) = (po flxh, th ) . 

Here, P :/~ ~ ~2 denotes the canonical projection corresponding to p : E ~ f2. 
Moreover, each representation of IndaaHB is given in this way and ( Ind~B)  ̂  
is homeomorphic to (B x G)/~,, (see [5, Proposition 10]). 

Hence we observe easily that there exists a canonical continuous open 
and surjective G-map R : (IndgnB) ̂  --~ f2 xn  G, which is given by mapping 

M(rc, s) E (IndgnB) A to the pair (P(Tz),~)E f2 xHG. Thus the pair (O xn  G,R) 

becomes an open a-trivial regularization of (IndgnB, G, Ind fl). 
For the converse, let (I2,R) be any open a-trivial regularization of the 

dynamical system (A, G, a). Then t2 = A xn  G, where A is the image of a 
section for f2/G and H is the restriction of the stabilizer map to A. Let 1 = 
kerR-l(A) and let B = A/1. Then it is easily seen that the canonical action 
of O s on A given by Example 2.4 restricts to a subgroup action of A n on B, 
and it was shown in [5, Theorem 3] that there is a canonical G-equivariant 
isomorphism between A and Ind~nB which is given by 

= + I .  

One reason that induced systems are interesting in the investigation of 
crossed products is the following result. 

Proposition 2.15 ([5, Corollary 3]). Let fl be an action of fl ~" on B. Then 
Inda aHB >'alnd l~ G is Morita equivalent to B x #  12 ~. 

3 Twisted systems and induced crossed products 

Our main result in this section is the following theorem which is a generaliza- 
tion of a result of Pedersen and Olesen [20] (which is essentially (1) =~ (3) 
in the theorem below in case of ordinary Green twisting maps) to generalized 
twisted systems. In the following we say that a covariant system (A, G, ~) is 
abelian, i f  G is an abelian group. 

Theorem 3.1. Suppose that (A, G, a) is an abelian dynamical system and that 
12 is a locally compact Hausdorff space. Let N : I2 ~ R(G) be a continuous 
map. Then the jbtlowing conditions are equivalent. 

(1) There exists an open G-invariant regularization (I2,R) for (A, G, a) 
Jor which there is a generalized Green twisting map with domain I2 ~v. 

(2) There exists an open a-trivial regularization _ ~ : ( A > ~ G ) ^ ~  
I2 • G Jbr the dual system (,4 >% G, G, ~). 

(3) The dual system (A x ~  G, G, ~) is isomorphic to an induced system 

(IndadN• <~, Ind/~), Jbr some C*-algebra B and some action ~ off2 N• on B. 
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Moreover, i f  the conditions (1) to (3) are satisfied, then the algebra B in 
(3) may be chosen to be A >%,t G, where the action oJ" ~ ~ oJ" N~  is given on 
the fiber Ax >~,t~ G by the dual action of  Nx a- on this fiber. 

Note that the equivalence o f (2 )  and (3) is a consequence of [5, Theorem 3] 
(see also the remarks at the end of Sect. 1). Thus in order to prove the equiv- 
alences of our theorem it is enough to prove the implications (1) ~ (2) and 
(3) =~ (1). Before we start with the proofs we have to recall some facts about 
the space Rep(D) of equivalence classes of  ,-representations (with bounded 
dimension) of a C*-algebra D. 

Proposition 3.2. Let D be a C*-atgebra and let (7~i)i~i be a net in Rep(D) 
which converges to z~ E Rep(D). 

(1) I f  p E Rep(D) is such that kerp _D kern, then ~i --~ P in Rep(D). 
(2) Suppose that p E D is such that ker p _D ker n, and let ~i C Z) be 

such that ker~i  = ker~i /br  all i E L Then there exists a subnet (rcj)j~s and 
elements p]E ~ j  such that pj ~ p in D. 

Proof  The first assertion is just [8, Proposition 1.2], while the second is a 
consequence of [31, Theorem 2.2] (note that Schochetman proves his result 
only for separable D, but the same proof applies in the general case). [] 

In the sequel we need an explicit description of C*(ffl v) in case where G 
is abel• 

Lemma 3.3. Suppose that f2 is a locally compact space and N :  f2 
R(G);x  ~ Nx is a continuous map for some locally compact abel• group 
G. Then the map 

M : 12 x 0 ~ C*(f2N)n;(x,x) ~ (x,z[~v) 

defines a homeomorphism between 12 • ~.rx G and C * ( f ~ )  ^. As a consequence, 

C*(f~ v) is isomorphic to Co(O xlv• G). 

Proof. It is clear that M defines a bijection between f2 xN• G and C*(fflv) ̂ , 
so it is enough to show that M is continuous and open. The continuity is a 
direct consequence of  continuity of  restricting representations (see [2, Propo- 
sition 7]). For proving the openness, let {(xi, ~i)}iE1 be a net in f2 x G such 
that {(xi, xiiNi) } converges to (x, ZIN~) in C*(fflv) ̂ . Then xi ~ x  in f2. By 

the continuity of induction [2, Proposition 6] we know that Index ~ (Zi[Nxi) con- 

verges to Ind x(XlN,) in Rep(C*(G)). But it is well known that Ind~x~(XilN~,) 

is weakly equivalent to the coset xiNj~ C ~ for each i E I, and that Index(•177 
is weakly equivalent to xN~ (see, for example, [32, Lemma 5.1]). Thus it is a 
consequence of Proposition 3.2 that we may pass to a subnet in order to find 
elements #i E N~  such that (x~-,Zi#i) converges to (x ,z)  in I2 x G. But this 
shows the openness of M. [] 

We use this temma to prove 
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Lemma 3.4. Suppose that (YI, R) is a G-invariant open regularization ]'or the 
covariant system (.4, G, ~) and that r : E -+ g2 is the corresponding C*-bundte 
such that A = Fo(E). Assume that t is a generalized Green twisting map ]or 
(A, G, ~) with domain ON. Then A >~ f2 N is isomorphic to A >~id f2g, the 
subgroup crossed product o f  A with f2 N by the trivial action t f  G is abelian, 
then this implies that A >~ ON is canonically isomorpllic to the balanced 
tensor product A | Co(S2 xNj_ G). The corresponding homeomorphism o f  

(A | Co(~ •177 0 ) )  ̂  = { (p , (x , z ) ) ;R(p)  = ~} c ~ • (O •177 0 )  

onto (A x ~  ~2~) ̂  is given by the map 

(3.1) (p,(x,x))  ~-* (x,p x X(P o i f ) ) ,  

where the latter term denotes the representation of  A x ,  ON given by p x 
X(P o t x) acting on the quotient Ax >~x Nx. 

Proof: Let q : O N ~ f2 denote the projection. Then it follows by straightfor- 
ward computations that the map 

: re (q 'E)  ~ re(q'E); T ( f ) ( x , n )  = f(x,n)ff~ 

extends to an isomorphism from A >,~ O N onto A >~id Y~Y. Suppose now that 
G is abelian. Consider the map �9 : A | C,.(f2 N) --* A >~id f2 v which is defined 
by 

ai • f i  X, n) =- ~a i (x ) f i ( x ,  n ) .  
i=1 

It is easily seen that (P extends to a surjective ,-homomorphism from A | 
C*(O ~)  onto AXidf2  Ar such that the kernel of this map is exactly the in- 
tersection of all representations (p, (x, :~)) E J • C*(s ^ such that R(p) = x. 
This implies that ~ factors through an isomorphism between A | 
and A ><id (iV. ThUS we conclude from Lemma 3.3 that A >% O N is canonically 
isomorphic to A | Co( f2 xN• 0).  

Finally, let (p , (x ,z))  c (A | Co(Y2 XN• ~))A, and let a E A and f E 

C c ( ~ ) ,  the latter viewed as an element of C0(f2 XN_L G) via Fourier transform. 
Then we compute 

(x, p x Z(P o t x)) ( T  - t  r  | f ) )  = p • )~(p o f '  )((a(x)f(x,.)(ff)*) 

= f p(a(x)) f (x ,  n)z(n)  dNxn = (p, (x, Z))(a | f ) ,  
Nx 

which finishes the proof. [] 

In the sequel, it will be necessary to use some continuity results for inducing 
and restricting representations, which are not explicitly stated in [2]. 

Proposition 3.5. Suppose that (f2,R) is a G-invariant open regularization o f  
the system (A, G, a) and/e t  N : f2 ~ R(G) be a continuous map such that 
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N~ is normal in G Jbr all x E 12. Then the maps 

Ind : 5e(A >,% I2 N) ~ Rep(A >~a G);(x,p x V) ~ Ind~(p x V) 

and 

Res : (A ~ ,  G) ̂  ~ 5"(A ~ ,  f/v); rc x U ~ (P(rc • U), 7r • UlNp(~• 

are continuous, where P : (A >.a, G) ̂  ~ f2 denotes the canonical projection. 

Proof By Proposition 2.6 we may view ~e(A >% f2 r162 topologically as a subset 
of S~(f2N,A,a). But it is a direct consequence of  [2, Corollary 2] that the 
extension of Ind to SP(I2~V,A, ~) is continuous. Thus our map is continuous, too. 
The continuity of  Res follows easily from Proposition 2.6 and [2, Proposition 7] 
by identifying A >o~ G with A >% f2 c as in Lemma 2.10. [] 

We now prove the openness of the canonical projection from (A >%,t G) ̂  
onto I2 when t has domain ~ ' .  In fact we will prove a slightly more general 
result which we will need in the proof of Theorem 3.1. 

Proposition 3.6. Suppose that (f2,R) is a G-invariant open regularization, 
N : 12 ~ R(G)  a continuous map, and t a generalized Green twisting mapJbr 
(A, G, ~) with domain g2 N. Suppose further that (A ,P)  is another G-invariant 
open regularization of(A,  G, oQ such that there exists an open continuous map 
q : A ~ f2 satisfying R = q o P. Let Q : (A >%,t G) A --~ A denote the restric- 
tion to (A >~,t G) ̂  o f  the canonical projection from (A >~ G) ̂  onto A. Then 
Q is open and surjective whenever G/N~ is amenable for all x E f2. 

Proof Recall that Q0z x U )  = y if  and only if kerlr 2 p - t ( { y } ) .  This im- 
plies that ~r x U factors through the quotient A r x~y,ty G, where ~Y denotes 
the canonical action of G on Ay : A / k e r P - l ( { y } )  and t y denotes the im- 
age of [q(Y) under the canonical quotient map Aq(y) --~ Ay (which exists due 
to the fact that k e r R - l ( { q ( y ) } ) _ C P - l ( { y } ) ) .  Now let p be a faithful rep- 
resentation of Ay. Then we may produce a covariant representation p x V of  
Ay ><10o,,ty Nq(y) by defining V = p o t y, Then p x V preserves the twist t y, 
and Ind~q(y)(p x V) is a representation of Ay x ~  G which preserves t y by 

[17, Corollary 5]. It follows from [17, Proposition 13] and the amenability 
of  G/Nq(y)"that this induced representation defines a faithful representation of 
A x~yty  G. Regarding Ind~r x V) as a representation ofA x~,t G, we have 

ker(Ind~,r x V)) = ker Q- l ({y}) .  

Now let {Yi}ir be a net in A such that Yi--~y and let rex U E  
Q-l ({y}) .  We have to show that there exists a subnet {yj}y~j of {Yi}i~h 
and a net {zcj x UJ}j~j C (A >%,t G) ̂ , converging to zr x U, such that 
QQrj x U j )  = yy for all j E J .  

For each i E I, let Pi E Rep(A) be such that kerpi = kerP- l ({yi}) ,  and 
let p E Rep(A) be such that kerp  = kerR- l ({y}) .  Then the same arguments 
as used in the proof of  [5, Proposition 11] show that Pi "-~ P in Rep(A). 
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Looking at the subgroup crossed product A :><lid ~dg by the trivial action 
of IT v on A, we observe that (q(yi),pi x l~epi ) converges to (q(y) ,p  • lxe,) 
in 6P(A >~ia f2~r where ls%i denotes the trivial representation of Nq(yi) into 
J/t~ and lxep is defined similarly. If 4~ : A >~  f2 N --~ A >~ia f21v is given as 
in Lamina 3.4, then we see that the representations (q(Yi),Pi • l~'rm) o ~ of 
A >% O N are just given by the subgroup representations (q(Yi),Pi x V i) with 
Vi = Pi o tq(YD. 

It follows that (q(Yi),Pi x V i) converges to (q(y) ,p x V) in 6P(A x ~  ON). 
Now the continuity of induction implies that Ind~q(ei~(pi x V i) conver- 

ges to Ind~q(y)(p x V) in Rep(AxeG) .  But as above, we know that 

ker (Ind~qo0(p, x Vi)) = ker Q - ' ( { y i } )  for each i e I. Thus by Proposition 3.2 

we may pass to a subnet in order to find elements rci x U i E Q- l ( {y i } )  such 
that rci x U i converges to rcx U in A x~,t G. This finishes the proof. [] 

Corollary 3.7. Suppose that t is a generalized Green twisting map ]'or 
(A, G, ~) with domain O N such that G/Nx is amenable :/'or all x ~ O. Then 
A >~,t G is isomorphic to the section algebra Fo(D) o fa  C*-bundle q : D ~ f2 
with fibers' Ax x~x tx G. 

Proof The Corollary follows from Lee's theorem [19, Theorem 4] and by 
taking A = f2 in Proposition 3.6. [] 

Our next proposition gives the implication (1) ~ (2) in Theorem 3.1. 

Proposition 3.8. Suppose that (O,R) is an open G-invariant regularization 
for an abetian dynamical system (A, G, ~), and that N : f2 ~ 5t(G) is a con- 
tinuous map such that there is' a generalized Green twisting map t with 
domain I2 Iv. 

(1) I f  we identify the spectrum of  A ><~ O N with {(p , (x ,z ) )  : R(p) = x} 
(via Lemma 3.4), then R(p,(x, Z)) = (x, Z) defines an open O-equivariant and 
G-invariant regularization o f  the iterated system (A >,% 12 N, G, yN) as defined 
in Example 2.14. 

(2) I f  Tz x U is an irreducible representation of  Ax >% G, then there 

is a unique (x ,z)  ~ f2 Xu• G with ker(zr x UlNa) D ker (/~-l({(x,z)})). In 
particular, _R(rc x U ) =  (x ,z)  defines an open a-trivial regularization ./'or the 
dual system (A >% G, G, ~). 

Proof Let (3/v,t N) denote the canonical generalized twisted action of G 
on A >~ f~N as given in Example 2.14. We show that there is a continu- 
ous open G-equivariant and G-invariant surjection/~ from (A >~  f2 N)^ onto 
12 x jr• G. By Lemma 3.4 we know that (A >4, if'C)A is homeomorphic to 
{ (p , (x , z ) ) ;R(p)  = x} C_ .,1 x (12 xN• G) via the homeomorphism (p,(x,z))  

(x,p x Z(P o P)). We define R((x,p x X(P o P))) = (x,)0. It follows di- 
rectly from the openness and surjectivity of R that R is open and surjective, 
too. It is also clear that/~ is G-equivariant, since on both spaces the action of 

is given by pointwise multiplication of characters. In order to show that/} is 
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G-invariant note first that by the definition of a Green twisting map a~. a IX = l x 
for all x E f2 and s E G. Thus we conclude for f E Fc(q*E): 

(x,p • Z(p o if)) (TY(f)) = f P(as( f (x ,n) )~)z(n)dNx n 
Nx 

= = (x,p o • X(P o o t x ) ) ( f ) .  
Nx 

Thus we see that (x,p • X(P ~ is equal to (x, • X(P o e ) )  
which has the same image under R. 

We have seen above that R : (A  >~  t2N)^--~ f2 •177 (~ is an open G- 
invariant regularization for the system (A>~ t'2 u, G, ~v) such that the 
projection, say r, from t2 xNl  G onto f2 satisfies the relation r~  = P, 

where P denotes the projection from (A >~  f]N)A onto t2. Thus it follows 
from Proposition 3.6 that there is a canonical open map Q from ((A >~  O N) 
>~.tN G) ̂  onto t? • G, and we define /? as the corresponding open map 

from (,4 >~  G) ̂  onto f] xN• G via the isomorphism 7 s between A > ~  G and 
(,4 > ~  if'c) >~v,t N G constructed in Example 2.14. 

Now let 7r x U E (,4 >~  G) ̂ . Then rr x U factors through some quotient 
Axz,~ax G, and is transported to the representation (re x Ular~)x U of the 
fiber (Ax : ~  Nx) >,~7v~,tN~ G of (,4 >~  ON) >~v,~N G via 7-'. Thus we see that 

/~(rc • U) = (x,#)  for some (x,~0 E f2 x~,• G if and only if the kernel of 

the representation (x, rcx UlNa) of A~ > ~  Nx contains ker/~-l({(x, p)}). Now 
the dual action of Z E G on the element ~r • U E (A : ,~  G) ̂  is given by 
multiplication of X with U, i.e., (rr x U)a~x-~ = rcx )~U. This representa- 
tion corresponds to the representation (~r • zUIN~) x )~U of  the fiber (A~ > ~  
N~) >~r G. Hence it follows from the G-equivariance of /~  that J~(~r x 

)~U) = (x, D0  if  and only if  Q(zr • U) = (x,/~). Thus we see that (12 xN• G,/~) 
is a a-trivial open regularization for the dual system (A >,~ G, G, ~). [] 

Since G is abelian, the continuity of the map N : f2 ~ R(G)  implies that 
N J- : t2 ~ R(G),  defined by N~ = (Nx) -t, is also continuous [34]. The impli- 
cation (3) ~ (1) in Theorem 3.1 will follow from the next result. 

Proposition 3.9. Suppose that (A, G, ~) is an abelian dynamical system. As- 
sume that q : E ~ ---+ I2 is a C*-bundle such that D = Fo(E ~) admits an action 

of t2 ~v• on D such that there is a covariant isomorphism from (A >.~ G, G, ~) 

onto (Ind~u• D, G, Ind ~). Then there is an open G-invariant regularization 
]'or (.4, G, a) Jbr which there is a 9eneralized Green twisting map with domain 
ON. 

The proof of  the above proposition will depend heavily on the following 
two lernmas which may be of  independent interest. 

Lemma 3.10, Suppose that ~ = {ax}x~a is an action o f  ON on a C*-aloebra D, 
and that (A, G, [3) is the induced system (Ind~6~D, G, Ind,) .  Then there is a 

G-invariant open regularization (P, 12) of  the dual system (A >~  G, G, t )  with 
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respect to which there is a generalized Green twisting map jbr (A :,q# G, G, ~) 
with domain O N• 

Proof It follows from [5, Theorem 3] that there is an open G-invariant regu- 
larization (P, f2) for (A, G, fl). As a consequence of  [35, Theorem 2.1], there 
is an open surjection /5 : Prim(A >,~# G) --~/2, and this map is easily seen to 

be G-invariant. 
In particular, we may assume that A = Fo(E') and that D = Fo(E) where 

E and E r are C*-bundles over g2. Furthermore, Ax = Ind~ Dx. Thus if  cr E Nx -L, 

then we can define ~'x E q/(Ax) by 

(tx f ) ( s )  = cr(s)f(s) = ( f tX)(s ) .  

We let t x be the image of  t~'~ under the natural inclusion of  q/(A~) into 
q/(Ax x ~  G). Thus, if  we view elements of  Cc(G,A) as functions on G • 
/2 • G, we have 

(~ f ( s ) (x ) ) ( t )  = a(t) f (s)(x)( t)  and (f(s)(x)t~)(t) = a(s-~t) f (s)(x)( t ) .  

The first step will be to show that ( x , a ) ~  txf(-)(x) and (x, a ) ~  f(-)(x)t~ 

are continuous from f2 N• into E for a suitable collection of  f E Cc(G,A). 
Certainly we may assume that f ( s ) ( x ) ( t )=  9(s)a(t)(x) for 9 E Cc(G) and 
a E A. So it suffices to see that (x, a) H l~a(x) is continuous. Using the defi- 
nition of  the topology on E (see [10, Proposition 1.6]), it will suffice to show 

~,-~/V • '~r that given any (x0,a0) E and some b E A satisfying b(.)(Xo) = t~0a(.)(Xo), 

I l t '%a( ' ) (x)  - b(-)(x)l lA~ 

goes to zero as (x,~r) approaches (Xo, ao). However, 

Ili'~a(')(x) - b(')(x)llA~ = sup Ila(t)a(t)(x) - b(t)(x)llox. 
tEG 

Furthermore the map (x, a , t ) ~  I l a ( t ) a ( t ) ( x ) -  b(t)(:c)llz,x is continuous from 

O N• • G into IR +. (Just consider the map from /2 x (~ • G with any a, b E 
Cb(G,D).) 

We may assume that a, and hence b, have compact support in g2 xN G. 
Let K : f2 • G --~ O • G be the quotient map. Observe that there is a com- 
pact set C C O x G such that to(C) D supp a U supp b [33, Lemma 2.3]. Now 
choose ~ b E C c ( g 2 x G )  such that 0 < qb < 1 and q ~ = l  on C. Then de- 
fine ~k(x,a,t) to be qS(x,t)llcr(t)a(t)(x)-b(t)(x)IIz~x. The point being that 
II~r(t)a(t)(x)  - b( t ) (x) l lox  depends only on the class of  t in G/Nx so that 

llt'~oa(.)(x) - a(.)(x)llA ~ = sup HtXa(t)(x) - a(t)(x)lID x 
tEG 

= sup ~,(x, ~r, t ) .  
t~_G 
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But we may assume that a lies in a compact neighborhood of ao, and, hence, 
that ~k has compact support in I2 • G x G. Then, i f  ~<~,~) E Co(G) is defined 
by O(x,~)(s) = ~b(x,a,t), the map (x,a) ~ ~k(~:) is continuous from O x G to 
Co(G). Since ~k(xo:0) = 0, we have IIIP(~:)[[oo < ~ for (x, ~r) near (x0, r which 
is what we wanted. 

It is now immediate that a ~ t~ is strictly continuous on N~, and it follows 
from straightforward calculations that ~p = t~t~ if a, p E N~,  that if o- E N~, 

then Ad ~ = ~x, and that ~(ff~) = ffa for all p E G and o- E N~. Thus a ~ t~ 

is an ordinary Green twisting map for (A~, G, 8~). This completes the proof of 
the lemma. [] 

Lemma 3.11. Suppose that (A, G, a) and (B, G, t )  are Morita equivalent via 
(X, u). Let hx : Prim(B) ~ Prim(A) be the Rieffel homeomorphism. I f  (P, I2) 
is an open G-invariant regular~zation of  (B, G, fl) such that there is a gen- 
eralized Green twisting map with domain ON, then (P o hx, f2) is an open 
regularization o f  (:t, G, a) for  which there exists a generalized Green twist- 
ing map with domain 12 N 

Proof Let t be a generalized Green twisting map for ft. We may assume 
that B = Fo(E) for a C*-bundle p : E --* 12 induced by the map P and that 
A = Fo(E r) for a C*-bundle E ~ induced by the map P o hx. Then (A~, G, a x) is 
Morita equivalent to (Bx, G, fix) via (X ~, u ~), where X x = X/X.  ker (p- i ({x})) ,  
and n ~ fin is, by definition, a Green twisting map for (Bx, G, /~) .  Then [3, 
Proposition 2] implies that ~x, defined by ~,~-~ = ~(~).t~,  ~ E X x defines a 

x defines a Green twisting map for a x. Naturally, we claim that ~(x,n)= sn 
generalized Green twisting map for (A, G, a). At this point, we need only 
show that the maps ( x , n ) ~  ~a(x)  and ( x , n ) ~  a(x)~,*, are continuous from 
O N to E '  for each a E A. 

Using [10, Propositions 1.6 and 1.7], realize X as the section space of a 
Banach (space) bundle q : F ~ O. We claim that the maps from F * F to A 
and B, respectively, defined by (a,b)~-+~q(~)(a,b) and ( a , b ) ~  (a,b)B~(~, are 
continuous. To see this, consider a convergent net (at, bi) ~ (a, b) in ~ff * F. 
Suppose q(a i ) :  q(bi)= xi. Choose sections ~,r/E X such that ~ (x )=  a and 
r/(x) = b (where, of course, q ( a ) = x  = q(b)). Then I l a ; -  ~(x~)ll--' 0 as does 
Ilbi- r/(x,)ll. Thus 

A+ (at, bi) --'*A~ (r tl(x)) =ax (a, b) . 

(And similarly for (., ")ax.) 
The hypotheses that ( x , n ) ~  t~.a(x) and ( x , n ) ~  a(x).~ are continuous 

into E implies that ( x , n ) ~  r is continuous into F. (Simply expand 
I I ~ ( x ) ' t ~  - n(x)ll 2 in terms of (., ")a~.) 

Finally, we may check continuity for a E A of the form a(x) =A~(((x), ~/(x)). 
But then 

X ~ .Ir �9 .a(x) 
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which is continuous in view of the above discussion. A similar argument applies 
to a(x)~ and completes the proof of the lemma. [] 

Remark 3.12. Suppose that X is an ,4-B-equivalence bimodule and that A and B 
are both section algebras of  C*-bundles over f2, say determined by continuous 
open maps P : Prim(B) ~ I2 and P' : Prim(A) --+ f2. There is, unfortunately, no 
reason to suspect that P' = P o hx in general. However, note that the actions 
of 14 and B on X define left and fight C0(O) module actions on X (see [24, 
p. 187]). Then P' = P o hx exactly when we have r = x.r  for all x E X and 
r ~ c0(o). 

Proof of Proposition 3.9. More or less by assumption, there is a covariant 
C0(O)-isomorphism of the double-dual system ((14 >~  G ) > ~  G, G, ~) onto 

(Ind~N• ~ G, G, (IndT)^). However, it follows from [3, Corollary 2] 
that the double-dual system is Morita equivalent to (,4, G, ~). Therefore, 

(Ind~N• >~Ind~ G, G, (IndT) ̂ ) is Morita equivalent to (A, G, ~). The propo- 
sition now follows from Lemmas 3.10 and 3.11. [] 

Proof of Theorem 3.1. It is a consequence of Propositions 3.8 and 3.9 as well 
as [5, Theorem 3] that conditions (1), (2), and (3) are equivalent. Thus all 
that remains is the final assertion. 

So suppose that t is a generalized Green twisting map for (A, G, ~) 
with domain ~g,  and that /~ and R are as in Proposition 3.8. Then [5, 
Theorem 3] implies that the algebra B in (3) is simply (A >% G)/I, where 

I = ker (R-l({(x,  l ) e  ~ •177 G})). A moments reflection shows that it will 
suffice to show that I -- I t. 

If  (x, ~ • U) is an irreducible representation of Ax >% G, then 

I = ["l{ker(x,n x V ) : x  e f2 and ker(x,n x UINx) D_ ker ( k - l  ({(x, 1)}))}.  

But n • U preserves t x if  and only if n x UIN x does. Although n x UIN x may 
not be irreducible, n x UIN x preserves t x if and only if every irreducible repre- 
sentation p x V ofAx >~N:, which satisfies ker(p x V) _D ker(n x UINx) pre- 
serves t x. But if ker(p x V) _D ker(rc x UlNa), then /~(p x V) = (x, 1). Then 
Lemma 3.4 implies that V = p o tx; that is, p x V preserves t x. It follows that 
I = I t as claimed. [] 

4 Main Theorem 

In this section (,4, G, ~) will be a separable abelian dynamical system. One of 
the basic invariants employed in the study of crossed products is the Connes 
spectrum F(~). In our situation, Gootman has shown [13, Lemma 4.1] that 

F(0t) = N{S,, : P  is separated in Prim(,4 >% G)} ,  

where ;~e denotes the stabilizer of P in G. (Recall that a point p in a topolog- 
ical space X is called separated if for all q E X \ {p} ,  p and q have disjoint 
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neighborhoods.) Actually, we will be most interested in the subgroup ~(00 as 
defined in [20, Sect. 5]. Note that 

~'(~) = f']{Se : P E Prim(A >% G)}. 

It is the fact that one can have ~(~) ~ F(~) even for G-simple systems which 
makes characterizing simple crossed products so subtle (see, for example, [20, 
Theorems 5.5 and 5.7]); it also makes it necessary to employ ~ rather than F 
in our next theorem (but see Remark 4.2). 

Theorem 4.1. Suppose that (A, G, ~) is a separable abelian dynamical system. 
Then, with respect to the dual G-action, Prim(A :,~ G) is a a-trivial G-space 
if  and only i f  the following three conditions are satisfied 

(1) The quasi-orbit space f2 = .~~ is HausdorJJ? 
(2) I f  ~x is the action on the quotient Ax corresponding to x E s and if  

Cx = ~(~x)3., then C : 12 --~ R(G) is continuous. 
(3) There is a generalized Green twisting map for (14, G, ~) with 

domain 12c. 
In this event, Prim(A >~ G) is G-homeomorphic to I2 x c• G. 

Proof of' necessity. In the case that Prim(A >% G) is a a-trivial G-space, 
then certainly .~d(Prim(A > ~  G)) = Prim(A >~ G)/G is Hausdorff. But O = 

.~~ is homeomorphic to .~d(Prim(A >% G)) by [12, Corollary 2.5]. 
This establishes the necessity of (1). 

Now fix x E 12, and consider the system (Ax, G,~x). Since .~C(Prim(Ax)) -- 

{pt}, we employ [12] again to conclude that .~d(Prim(Ax > ~  G ) ) =  {pt}. 
Since Prim(A• >~,x G) is a closed irreducible subset of a a-trivial space, it must 
consist of a single orbit. Therefore there is a single stabilizer group Sx = Sp 
for all P E Prim(Ax > ~  G). Since P ~ ,gp is continuous by assumption, so is 

^3_ 
x ~ S x = Cx [34]. Condition (2) follows. 

Using (1) and (2) above, we now have a continuous G-homeomorphism R : 
Prim(A >~  G) ~ 12 x c .  G. Now the necessity of (3) is a corollary of (2) =~ 
(1) in Theorem 3.1. [] 

Remark 4.2. In the proof of necessity, we actually showed that C~ = F(~X) 3" 
rather than ~(U)_t This follows because Prim(A>,~G), and therefore 
Prim(A• >,a~, G), is Hausdorff; hence [13, Lemma 4.1] implies that F(~ x) = 
~eePam~A~o) Se in this case. 

Proof o f  su]ficiency. Let q : Prim(A) ~ .~c (Prim(A)) be the quasi-orbit map. 
Recall that q is continuous and open by [17, p. 221]. Therefore, (q, I2) is 
a G-invariant regularization of (A, G, ~), and by assumption, there is a gen- 
eralized Green twisting map t with domain 12c for (A, G, ~). By Proposi- 
tion 3.8 (or (1) =~ (2) of Theorem 3.1), there is an open a-trivial regularization 

27 : Prim(A >,~ G) ~ 12 Xc• G such that the composition of R with the projec- 
tion pr : 12 Xc• G ~ 12 is the open surjection P : Prim(A >% G) --+ f2 arising 
from q via [35] and [19]. 
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It will suffice to prove that /~ is a homeomorphism - which amounts to 
showing that/~ is injective. Since 

Prim(A) k (~ QXc.L 
e \  /pr 

0 

commutes, it will suffice to consider a single fiber. Thus we fix x E ~ and 
consider Rx : Prim(Ax >%~ G) ~ G/C~ ~- C~. Since Rx is G-equivariant and 
surjective, it will suffice to show that Prim(Ax > ~  G) is homeomorphic to Cx 
as a G-space. 

Since I x is an (ordinary) Green twisting map for (Ax, G, ~ )  with domain 
Cx a-, we have from [20] or Theorem 3.1 that Ax > ~  G is covariantly isomor- 

phic to Indc0.(A~ >'%~,t~ G), where the action on Ax >%~,1~ G is the dual action. 
But A~ >~,t~ G is simple by [20, Theorem 5.7]. An application of [5, Propo- 
sition 10] completes the proof. [] 

Recall that (A, G, ~) is called regular [17, p. 223] if each quasi-orbit 
Q E .~(Prim(A)) is locally closed, and there is a P E Q such that the map 
Rp defined by s.Se ~ ~ (P)  defines a homeornorphism of G/Sp onto Q, Sp 
denoting the stabilizer of P. (This implies that the quasi-orbit space coincides 
with the orbit space.) Also recall that if A is type I and 7r E A, then the sym- 
metrizer subgroup Z k ~  = X~ [14, 18, 13] is the image in G of the center of 
the extension of S~ = Sk~ ~ by 1[ determined by the Mackey obstruction at rr. 

Corollary 4.3. I f  A is type I and (A, G, ~) is regular, then condition (2) in 
Theorem 4.1 can be replaced by 

(2)~: The symmetrizer map P v-~ rq, is continuous, constant on quasi- 
orbits, and defines a continuous map C : I2 ~ ~(G).  

Proof Since A is type I, the symmetrizer map will be constant on quasi-orbits 
by [13, Theorem 2.3]. Hence we obtain a well defined map 27 : f2 --~ R(G). 
Thus we only have to check that Se = "~(e)-t for each P E Prim(A >~  G), 

where /~ : Prim(A >~  G ) ~  Q denotes the canonical map. By the regularity 
assumption we know that Pdrn(Ax) is homeomorphic to G/S: via sSj ~-* ~s(J), 
where J denotes any element in the quasi-orbit x. 

So let J E X = /~(P) .  Then [17, Theorem 17] implies that Ax > ' ~  G is 
(strongly) Morita equivalent to (Ax/J)>~x S~,. Thus a typical primitive ideal 
in Ax ><~x G is the kernel of a representation of the form IndsGjQr • U) where 
rt • U is an irreducible representation of (Ax/J) : , ~  S.r. Furthermore, if 
is the dual action of t~ on Ax > ~  G and fl is the dual action of (sj)A on 
(,'Ix/J) >~, Sj, then [25, Lemma 2.3] implies that 

Inds~ (re • U) o ( ~ ) - '  = Ind~s(n • ?ls jU)= Inds~ ((n • U)o/~sl  ) . 

It follows that the isotropy group S? for the dual action at P = 
ker (Inds~,(Tt x U)) is 
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(4.1) 

where Sk~(~• is the stabilizer group for the dual action of (Sj)  ̂  on 
(Ax/J) >~o~ Sj at ker(rc x U). But, since A is type I, ( A x / J ) ~  off and it is 
well known that in this situation Prim((Ax/J)>,a~ S j)  is (Sj)A-homeomorphic 

to (~ j )^  (see for instance [18]). This implies that ,~p ~ _L = = Z~(e) which 
completes the proof. [] 

Remark 4.4. In a forthcoming paper [1] the first author shows that for any 
separable abelian system (A, G, ~) such that A and A >% G are type I the G- 
stabilizer of a primitive ideal P of A >% G is always equal to the annihilator 
of  the symmetrizer 2~R~se, where Res: Prim(A >% G) ~ .~G(Prim(A)) is the 
canonical restriction map as given by [17, Corollary 19]. Using this we see 
that Corollary 4.3 holds under the assumption that A and A >~  G are type I 
without assuming that (A, G, ~) is regular. 

A rather special case of  regular actions, but one which is still of consider- 
able interest, is the case where the induced G-action is trivial on the spectrum. 
In the type I case, our theorem specializes as follows. 

Corollary 4.5. Suppose that (A, G, ~) is a separable abelian dynamical sys- 
tem such that A is type I and the action o f  G on Prim(A) is trivial. Then 
Prim(A >~ G) is a a-trivial G-space ~'and only if the following three condi- 
tions are satisfied 

(1) O = Prim(A) is Hausdorff; 
(2) The symmetrizer map Z : f2 ~ R(G);x  ~ Zx is continuous. 
(3) The restriction of  ot to 12 z defines a unitary subgroup action o f  12 z 

on A. 
In particular, i rA  is Hausdorff~ then (A >% G) ̂  ~ 0  f2 x G if and only i f  

is unitary. 

Proof  Since a generalized Green twisting map is unitary on its domain (see 
Remark 2.8), the necessity of (1)-(3)  follows from Theorem 4.1 and Corol- 
lary 4.3. So assume that (1) - (3)  hold. If ~t~E is implemented by u, then, to 
apply Theorem 4.1, we only need to see that ff = u(x,.) is an (ordinary) Green 
twisting map for the fiber Ax > ~  G with domain ~x. But this follows from [6, 
Lemma 6]. 

Finally, the "only if" direction of the last assertion is immediate: if ~ is 
unitary, then A >% G ~ A | C*(G). On the other hand, if Prim(A >% G) 
A x G, then ~ = { 1 }, and ~ = f2 x G. It is straightforward to check that 
must be unitary if  the restriction of ~ to 12 z is unitary. [] 

It is interesting to consider a local version of Corollary 4.5. Recall that if 
is locally unitary, then (A >% G) ̂  is a locally trivial principal G-bundle over 

[23]. Conversely, if (A > ~  G) ̂  is a locally trivial principal G-bundle over .4, 

t There are two "Lemma 4"s in [6]; presumably this reference will change 



Crossed products 293 

then we may apply Corollary 4.5 to the 
is locally unitary. In summary, we have 

Corol la ry  4.6. Suppose that (A, G, ~) is 
with ,4 HausdorJf Then (A >~ G) ̂  is a 
,4 if  and only i['~ is locally unitary. 

More generally, we can consider the 
cipal bundle. Our result generalizes [27, 
that A is type I. We omit the proof. 

local trivializations to conclude that 
the following corollary. 

a separable abelian dynamical system 
locally trivial principal G-bundle over 

case where Prim(A x ~  G) is any prin- 
Theorem 7.2]. Here we do not assume 

Corol la ry  4.7. Suppose that (A, G, ~) is a separable abelian dynamical system, 
and that C is a closed suboroup of G. Then, with respect to the dual action, 
Prim(A x ~  G) is a trivial C-bundle (that is, Prim(A x ~  G) ~ f2 x C)  / f  and 
only i f  the Jbltowin9 three conditions are satisfied. 

(1) The quasi-orbit space f2 : .~a (Prim(A)) is Hausdorff 
(2)  For all x E I2, C = ~(~).  
(3)  There is an (ordinary) Green twisting map T for (A, G, ~) with 

domain C. 

Let us finally remark that our results here have analogues in the case o f  
abelian twisted covariant systems (A, G, ~, z) (i.e. G/N~ is abelian). These can 
be obtained by passing to Morita equivalent ordinary actions by applying [3, 
Theorem 1]. To see that this works well, one only has to use the results about 
Morita equivalent twisted actions as presented in [3]. We omit the straight- 
forward details. 
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