The Peter-Weyl Theorem for Compact Groups

The following notes are from a series of lectures I gave at Dartmouth College in the
summer of 1989. The general outline is provided by an introductory section in [1] but with

considerable detail added by myself. The mistakes of course are mine.

Dana P. Williams

Hanover, June 1991

81 Preliminaries.

We begin with some warm-up exercises on locally compact groups; a.k.a., a long series of

definitions! At this point, G is meant to be an arbitrary locally compact group.

Definition 1: A (unitary) representation of G is a continuous homomorphism 7 from G
to the unitary group W(H,) on a (complex) Hilbert space H, equipted with the strong
operator topology.

Remark 2: The condition that © be continuous merely means that ¢ — 7(¢)¢ is contin-
uous from G to H, for each £ € H,. There are many equivalent conditions: the weakest

I'm aware of is to insist that g — (7(g¢)¢,n) be Borel for each £, € Hx.

Example 3: Let H = L*(G). The left reqular representation \ : G — B(H) is given by
Mg)f(t) = flg~'t).
Definition 4: Two representations my and wy are said to be (unitarily) equivalent if there

is a unitary operator U : Hn, — Hy, such that m1(g) = Unqe(g)U* for all ¢ € G. In this

event, we write m; = my and let x| denote the (unitary) equivalence class of .

If 7: G — U(H,) is a representation of G, then we’ll write d, for the dimension (in
{0,1,2,...,00}) of H,. Fortunately, whenever m; = 7y, then it is clear that dp, = dg,.
Thus we will often write d[; to denote the dimension of each representation in the same

equivalence class as 7.

Definition 5: A non-zero representation w is called irreducible if H, has no no-trivial

closed invariant subspaces
Remark 6: If d; < oo, then the word “closed” in redundent in the above definition.

Definition 7: The symbol G is used to denote the collection of equivalence classes of

irreducible representations of G.

Example 8: If G is abelian, then every irreducible representation is one-dimensional. In

particular, G coincides with the character group of G.

1



Definition 9: If 7 and n are representations of G, then © @& n denotes the representation

on H, @ H, defined by
m @ n(g)(&;¢) = (7(9),1(9)C)-

IfneZtU{oo}, thenn-m =G .

Definition 10: If 7 is a representation of G, then
m(G) ={A € B(H,): An(g) = 7(g)A, for all g € G }.

Remark 11: Since 7 is unitary, 7(G)' is a self-adjoint. In fact it is not hard to check that
7(G)" is a *-subalgebra of B(H ) which is closed in the weak operator topology.

Theorem 12: Suppose that 7 is a representation of G. Then the following are equivalent.

(1) = is irreducible.
(2) #(G) =CI.
(3) Every non-zero & € Hy is cyclic for m (i.e., 7(G){ =span{n(g) : g € G} = H).

Proof: Suppose that 7 is irreducible. Let A € #n(G)" and suppose for the moment that
A is normal: A*A = AA*. Then the norm closed unital *-subalgebra generated by A—
that is the C*-algebra C*(I, A)—is contained in 7(G)'. Since A is normal, C*(I, A) is
commutative and is isomorphic to C(U(A)) by the spectral theorem. If o(A) # {pt},
then we can find nonzero self-adjoint operators By and By in C*(I, A) so that By By =
By By = 0. Thus (B1{, Ban) = 0 for all £, € H,. In particular, the closures Vi and V3 of
the ranges of By and Bs, respectively, are closed, non-zero, orthogonal, invariant subspaces
for m. This contradics the irreducibility of 7; therefore o(A) must be a single point and
therefore A = o[ for some « € C. For a general A € n(G)', we apply the above reasoning
to AA* and A*A. Thus, we have AA* = o and A*A = I with «, > 0 (since A # 0).
Since aA = A(A*A) = A, we have a =  and A is normal. This shows that (1) implies
(2). -

Since V' = #(G)¢ is a closed, non-zero, invarinat subspace, in order to show that
(2) implies (3) it will suffice to show that the orthogonal projection P onto any closed,

non-zero, invarinat subspace V is in 7(G)".

Thus if £,n € Hy, then

But since 7 is unitary, V1 is also invariant.

(Pr(g)¢n) = (7(g)€, Pn)
= (7(9)P¢ + 7(g)(I — P)¢, Pn),
which, since 7(g)(I — P)é € V+ and Pp €V,
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= (m(g)P¢&, Py)
= (Pr(g)P&,n)
= (m(9)PE&,n),

because w(g)P¢ € V.
That (3) implies (1) is clear.



§2 The Peter-Weyl Theorem.

Now we’ll specialize to compact groups G. Compact groups are characterized by the fact
that any Haar measure p on G satisfies u(G) < oo. It is customary to normalize Haar
measure on a compact group by choosing the unique measure such that ¢(G) = 1. Since

there is now no possibility of confusion, I'll simply write

/G Fg)dg

for the integral of f € L'(G).

Now suppose that 7 is a finite dimensional representation of G. If b = {ey,...,¢eq. }
is an orthonormal basis for H,, then for each ¢ € G the matrix of n(¢) with respect to b
has ij*™" coordinate (m(g)ej,e;). The function ¢;;(g) = (e;, m(g)e;) is called a coordinate
function for 7. (It will be convenient to use this convention—even though ¢;; is the
complex conjugate of what you might expect. This usage and terminolgy will be justified,
somewhat, by Remark 14 below.) Notice that ¢,; € C(G). We'll write ¢, or just & when
no confusion is likely to arise, for the linear span of the all the functions ¢(¢) = (&, 7(g)n),
where 7 ranges over all irreducible representations of G and ¢ and 1 range over H,.
Since every finite dimensional representation is the direct sum of irreducibles, notice that
P(g) = (&, 7(g)n) defines an element of € for every finite dimensional representation 7—

irreducible or not.

Remark 13: When G is abelian, and sometimes in general, the functions in € are called

the trigonometric polynomials. The motivation for this probably comes from the case

where G = T = Rph 7. Then each f € Er has the form

f(o) = z_: cn exp(inf) = Z dy, cos(n@) + by, sin(nf).

n=—k n=0

]

Remark 14: It is clear that & is self-adjoint; that is, if f € &, then so is f* € &,
where f*(¢g) = f(¢g~'). This is because matrix coeflicients are themselves self-adjoint:

%= (¢F;)". It is also true that if f € &, then so is f, where f(g) = f(g~"). To see
this we need to introduce the conjugate Hilbert space H to a given Hilbert space H.
The space H coincides with H as an additive group. If j : H — H denotes the identity

map, then the Hilbert space structure on H is given by the formulas aj(¢) = j(@¢), and
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(7(6),0(m))g = (m,&)3c. If wis a given representation of G on H, then we can define a

representation 7 on H in the obvious way: w(g)j(€) = j(ﬁ(g).f) The assertion follows

from the fact that qbf;(g) = ;}(g_l). Since qb;;(g_l) = ¢7:(g), it is reasonable to call

g — (£, 7(g)n) a coordinate function. 1

Definition 15: Let M, be the n X n complex matrices. If A = (a;;) € My, then the
Hilbert-Schmidt norm of A is

I(aij)lws. = Y laij|*.
i

Remark 16: If A € M, then ||A||xs = tr(A*A). In particular, if B = U*AU for some
unitary matrix U, then ||A|las = ||Bl|las . It follows that if 7 is finite dimensional, then

|7(g)||es is well defined and depends only on [r]. ]
Our object here is to prove the following theorem known as the Peter-Weyl Theo-

rem.

Theorem 17: Let G be a compact group.

(1) Every irreducible representation of G is finite dimensional.

(2) If X is the left-regular representation of G, then

A dr 7
[r]ed

(3) Given g € G, there is a [7] € G such that w(g) # I.
(4) € is dense in C(G) (and hence in LP(G) for 1 < p < o0).
(5) Iffe L*G), then

I
=N
3
Bl
~~
S~k
=
=
@

I3 =) de-tr(x(f)m(£)")

[”]EG [TF]EG\

We'll need the following preliminary results, some of which may be of interest by

themselves.



Lemma 18: Let m; and wy be representations of a locally compact group G. If A :
Hy1 — Hs is a bounded linear operator satistying Ami(g) = m2(g)A for all ¢ € G, then
A*Armi(g) = m(g)A*A for all g € G.

Proof: One computes as follows:

(A"Ami(g)¢,m) = (Ami(g)¢, An)

AL, Amy (97" )n)

{
{
= (A&, ma(g™")An)
{
(m1(g)ATAE n)

]

Lemma 19: Suppose that 71 and my are representations of a locally compact group G,
that 7 is irreducible, and that A : H; — Hs is any non-zero bounded linear operator such
that Amy(g) = m2(g)A for all ¢ € G. Then AH, is a closed invariant subspace for w2, and

71 = mo|as,, where mo| a9, 1s the subrepresentation of 7y corresponding to AH; .

Proof: By Lemma 18, A*A € m1(G)". By Theorem 12, A*A = AI. Thus B = AT A is
an isometery, and hence a unitary from H; onto AH;. (Note that AH; is actually closed
in H; since A is a multiple of an isometery.) Again Lemma 18 shows that BB* € m(G)'.
Since BB* is the orthogonal projection onto BH; = AH;, it follows that AH; is invariant

for m and the assertion follows. ]

The next result is crucial, and depends heavily on the fact that G is compact.

Proposition 20: Suppose that m; and w are irreducible representations of a compact

group G. Fix orthonormal bases { e, }Zzl for H;, and put ¢i,(g) = (ek,mi(g)et).

/G OL(9)9% () dg = 0,

forall1<i,j <dgp,and1 <k, <d,.

(2) If m is finite dimensional, then

(1) Ifm %7, then

/ 45 ¢kl dg = 5zk5]ld

T
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forall 1 <u,5,k, 1 <dg,.

Proof: Let B be any bounded linear operator from H; to Hy. Then we can define

A:/Gﬁg(g)Bm(g_l)ds.

Then
Ay (r) = /G mo(g)Bri(g™' 1) dg

= /G7r2(rg)B7r1(g_1)dg = ma(r)A.

If 7y 2 w2, then A = 0 by Lemma 19. Now suppose that B = B;; is the rank-one operator
defined by B;;(¢) = (€, e}>e?. Then,

0= (Ael,ei) = /G<Bij7rl(g_1)ezlvF2(9_1)6i>dg
= [ mte™ el e mals ek do
- [ oboPis

This proves (1).

Now assume that d., < co. By the above and Lemma 19,

A= / m(g)Bri(g™" ) dg = Al
G

for any B. Taking traces,

dry
tr(A4) = ) (Aeg,ep)
k=1
dry
= [ > (Bri(g ™ e, il ed) dg
k=1

Since tr(A) = tr(Al) = Adx, and tr(Bj;) = 6;;, we have A\ = (5]‘1% when B = Bj;. On the

other hand,

1

/Gqﬁzlj(g)qﬁkl(g) dg = (Aej,er) = Mej, ex) = bindjt——



Proof of Theorem 17: Let £ be the subset of £ consisting of the collection of matrix
coefficients of the form ¢(g) = (¢, 7(g)n) for = irreducible and dr < oo. The first part of
the proof will consist of showing that it suffices to show that € is dense in C'(G). Since
C(G) is dense in L?(G), it follows that L*(G) = H has an orthonormal basis consisting of
normalized matrix coefficients d,%,qb:](g) = dé(ef, m(g)e]) (where, of course, {ef,...,e] }
denotes an orthonormal basis for H).

In fact, if 7 is any irreducible representation of G and if { ¢4 }ae4 is an orthonormal ba-
sis for Hr, then it follows from Proposition 20 that ¢7 ; L qbipj, where ¢7 5(g) = (ef, m(g)ef)
and d, < co. Thus we must have ¢7 5 = 0, and (1) follows.

If dr < oo, then Proposition 20 shows that the d2 functions {\/aqb:]} are an or-
thonormal basis for a subspace H[ of L*(G). Now observe that

HlgTt) = (z(g)e], m(t)e)

dr
=) _(m(g)ef, eg){ex, m(t)e])
k=1

dr
=D onlg T )or;()

k=1

Therefore if, for each 1 < j < dr, we define A; : Hy — Hq by Ajel = ¢f, then

Ag)(Ael)(t) = ¢ (g™ ')

That is, A intertwines the irreducible representation m and the subrepresentation /\|g{[7r]7j,
where Hj ; = span{ ¢7;,¢3;,...,¢7 ; }. Therefore Lemma 19 implies that ™ = Mg, ;,

and thus, /\|g{[ﬂ = d. - 7. Since we're assuming that €y is dense, we have

H = }C[,,],
[r]ed
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and we have proved (2).

We have now shown that { d[%r] 5 }[ﬂ]eé forms an orthonormal basis for L?(G&). (Under

the assumption that &; is dense in C'(G).) Thus, if f € L*(G), we can write

F= 3 ellm).iid) digor;

Furthermore,

i
£ =" > le(lx].i.5) 1%

(xed i=1
Now (5) follows from the fact that
C( [77-]7 Z?]) - o f(g)d[gﬂ] Z(g) dg
=&, [ fo)r()er, ey dg
G
— & r(F)eT, T dg

Of course, (3) follows from (4) (otherwise, & wouldn’t separate e and ¢), so it only
remains to prove that € is dense in C(G). Towards this end, we need to recall some basic
facts about so-called Hilbert-Schmidt operators. If (X, M, ) is a measure space and if
K € L*(X x X, x p), then we can define a bounded linear operator T : L?(X) — L*(X)
by

wwzéxwmmmy

It is not hard to see that T is self-adjoint if K(x,y) = K(y,x). An operator of this
form is called a Hilbert-Schmidt operator and all such operators are self-adjoint compact

operators(’). In particular, each eigenspace

Ho={fcL*X): Tf=af}

(1) In our case, we’ll only be interested in the case where X = G, yu is normalized Haar measure, and K
is continuous. Then the Stone-Weierstrass Theorem implies that there are functions v; € C(G) such
that

K(z,y) =Y aivhi()vi(y) (*)

iel
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is finite dimensional and there is an orthonormal sequence { ¢; } of eigenvectors with eigen-

values a; so that every f € L*(X) can be written uniquely as
F=Y cidit oo,

where T'¢g = 0 and ¢; = (f, ¢;).

Our interest in such operators is as follows. Let k be any element of C(G) which

satisfies k(g) = k(¢g~'). Therefore

fmwzéﬂmwww:éxmwmm

where K(g,r) = k(r~'g), is a self-adjoint Hilbert-Schmidt operator. Let C' = ||K |0 =
max, yeq |k(y~'x)|. Notice that ||Tf]| < C|[fll1 < C||f]l2. A moments reflections allows
one to see that this implies that Tf € C(G). (Of course, Tf is only defined almost
everywhere, but I mean it agrees almost everywhere with a continuous function on G.
Since this function is uniquely determined, it makes sense to treat Tf as a continuous

function. This is standard practice.) It follows that each eigenfunction of T is continuous.

Lemma 21: Let k be as above and let T be the Hilbert-Schmidt operator on L*(G) defined
by Tf = f * k. Then for each y € C~ {0}

Hy={feLl*G):Tf=nf} &

Proof: By the above remarks, {, is finite dimensional and consists of continuous func-

tions. Suppose that f € H,. Then T(x\(g)f) = </\(g)f> *x k= /\(g)<f * k) =ANg)Tf)=
M(/\(Q)f) . That is, H, is invariant for A. Let { fi,..., fr } be an orthonormal basis for

H,. Define continuous functions v; by
Yri(g) = (AMg)fi, fi)- (1)
Since A(g)fi € Hy,

g™ = 3 duilg) fult). (2)

uniformly. Notice that for each finite subset F' C I the operator T corresponding to

Kp(z,y) = Z az@bz(m)m

i€l

is a finite rank operator. Since the convergence in (*) is uniform, it follows that T — 7T in the
operator norm; hence T is compact. (The remaining assertions in the paragraph follow from the
Spectral Theorem.)
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(A priori, Equation (2) is an equality in L*(G), and so would yeild pointwise equality
only almost everywhere. But since both sides are continuous, the equality must hold

everywhere.) Now define 7(g) to be the operator on ¥, whose r x r matrix with respect

to the basis { fi,...,fr} is <¢l]> Since we have t;;(g) = ¢]Z( 1), it follows from
Equation (1) that 7(¢g)* = n(¢~'). Similarly,

vij(gt) = (M) fi Mg ™) fi)

= Y e AR S i)

k=1

- Z¢zk 77ka

Therefore w(gt) = w(g)n(t). It follows that 7 is a finite dimensional (unitary) represention

of G. Using Equation (2), we see that

9) =Y trilg™Vfrle) =D frle)dlg),

where ¢xi(g) = Yri(¢7") = (fi, M(g)fi). We have shown that each f;, and hence 3, is
in the span of the matrix coefficients of finite dimensional representations of G. Since
every finite dimensional representation is the direct sum of irreducible (finite dimensional)
representaions, we have H, C &, as desired. ]

Lemma 22: Let k and T be as above. If f € L*(G), then Tf € &;.

Proof: Let {¢; } be a complete orthonormal set of eigenvectors for the eigenspaces with

non-zero eigenvalues of T'. By the spectral theorem, we can write

f= Zcmk + ¢o,
%

where T'¢g = 0 and || f]|3 < >, |ex|?. Let T¢r = apgr. Given € > 0, there is an N so that

I Ek>N crPrllz < e. In particular, HT(Ek>N ckqbk) |2 < Ce. But

N

N
T(Z Ck</5k> = Z%Ck% €&y
k=1

k=1
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by Lemma 21. This suffices as

N
177 =3 avensulle = I17( 3 con )l < e
k=1

k>N
L]

The Peter-Weyl theorem now follows as C(G) always contains a self-adjoint approxi-

mate identity. Specifically, we have the following.

Proposition 23: If G is a compact group, then there is a net { ko } in C(G) which satisfies
k* = kg, and such that both {k, * f} and { f * kq } converge uniformly to f for each

fec(aG).

Proof: For each neighborhood U of e € G, let ky be a continuous non-negative function
which satisfies ky(e) = 1, [, ku(g)dg =1, kf; = ky, and suppk C U. Then {ky }u is a
net in C(G) directed by reverse inclusion: i.e., U > V if and only if U C V.

Fix f € C(G). Since G is compact, given € > 0, there is a neighborhood W of ¢ € G
such that |f(t71g) — f(g)| < € for all ¢ € G and t € W. Therefore if U > W, then

kv fg) = fl9)] =

/GkU(t)f(t_lg)dt—f(g)
< /GkU(t)‘f(t_lg) — flg)| dt
< e/ kU(t) dt = e.

It follows that ky * f — f uniformly, as claimed. On the other hand, (ky * f)* = f* * ku

implies that f * ky — f uniformly as well. This proves the lemma. ]

Let Ty be the Hilbert-Schmidt operator corresponding to ky. Thus, Ty f converges
to f uniformly for each f € C(G). Thus, f € &5 by Lemma 22, and Theorem 17 is proved.

]
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