The Peter-Weyl Theorem for Compact Groups

The following notes are from a series of lectures I gave at Dartmouth College in the summer of 1989. The general outline is provided by an introductory section in [1] but with considerable detail added by myself. The mistakes of course are mine.

Dana P. Williams Hanover, June 1991

§1 Preliminaries.

We begin with some warm-up exercises on locally compact groups; a.k.a., a long series of definitions! At this point, G is meant to be an arbitrary locally compact group.

Definition 1: A (unitary) representation of G is a continuous homomorphism π from G to the unitary group $\mathcal{U}(\mathcal{H}_{\pi})$ on a (complex) Hilbert space \mathcal{H}_{π} equipted with the strong operator topology.

Remark 2: The condition that π be continuous merely means that $g \mapsto \pi(g)\xi$ is continuous from G to \mathcal{H}_{π} for each $\xi \in \mathcal{H}_{\pi}$. There are many equivalent conditions: the weakest I'm aware of is to insist that $g \mapsto \langle \pi(g)\xi, \eta \rangle$ be Borel for each $\xi, \eta \in \mathcal{H}_{\pi}$.

Example 3: Let $\mathcal{H} = L^2(G)$. The left regular representation $\lambda : G \to \mathcal{B}(\mathcal{H})$ is given by $\lambda(g)f(t) = f(g^{-1}t)$.

Definition 4: Two representations π_1 and π_2 are said to be (unitarily) equivalent if there is a unitary operator $U : \mathcal{H}_{\pi_1} \to \mathcal{H}_{\pi_2}$ such that $\pi_1(g) = U\pi_2(g)U^*$ for all $g \in G$. In this event, we write $\pi_1 \cong \pi_2$ and let $[\pi]$ denote the (unitary) equivalence class of π .

If $\pi : G \to \mathcal{U}(\mathcal{H}_{\pi})$ is a representation of G, then we'll write d_{π} for the dimension (in $\{0, 1, 2, \ldots, \infty\}$) of \mathcal{H}_{π} . Fortunately, whenever $\pi_1 \cong \pi_2$, then it is clear that $d_{\pi_1} = d_{\pi_2}$. Thus we will often write $d_{[\pi]}$ to denote the dimension of each representation in the same equivalence class as π .

Definition 5: A non-zero representation π is called irreducible if \mathcal{H}_{π} has no no-trivial closed invariant subspaces

Remark 6: If $d_{\pi} < \infty$, then the word "closed" in redundent in the above definition.

Definition 7: The symbol \hat{G} is used to denote the collection of equivalence classes of irreducible representations of G.

Example 8: If G is abelian, then every irreducible representation is one-dimensional. In particular, \hat{G} coincides with the character group of G.

Definition 9: If π and η are representations of G, then $\pi \oplus \eta$ denotes the representation on $\mathcal{H}_{\pi} \oplus \mathcal{H}_{\eta}$ defined by

 $\pi \oplus \eta(g)(\xi,\zeta) = (\pi(g)\xi,\eta(g)\zeta).$

If $n \in \mathbb{Z}^+ \cup \{\infty\}$, then $n \cdot \pi = \bigoplus_{i=1}^n \pi$.

Definition 10: If π is a representation of G, then

$$\pi(G)' = \{ A \in \mathcal{B}(\mathcal{H}_{\pi}) : A\pi(g) = \pi(g)A, \text{ for all } g \in G \}.$$

Remark 11: Since π is unitary, $\pi(G)'$ is a self-adjoint. In fact it is not hard to check that $\pi(G)'$ is a *-subalgebra of $\mathcal{B}(\mathcal{H}_{\pi})$ which is closed in the weak operator topology.

Theorem 12: Suppose that π is a representation of G. Then the following are equivalent.

(1) π is irreducible.

(2)
$$\pi(G)' = \mathbb{C}I.$$

(3) Every non-zero $\xi \in \mathcal{H}_{\pi}$ is cyclic for π (i.e., $\overline{\pi(G)\xi} = \overline{\operatorname{span}}\{\pi(g)\xi : g \in G\} = \mathcal{H}_{\pi}$).

Proof: Suppose that π is irreducible. Let $A \in \pi(G)'$ and suppose for the moment that A is normal: $A^*A = AA^*$. Then the norm closed unital *-subalgebra generated by A—that is the C*-algebra C*(I, A)—is contained in $\pi(G)'$. Since A is normal, C*(I, A) is commutative and is isomorphic to $C(\sigma(A))$ by the spectral theorem. If $\sigma(A) \neq \{\text{pt}\}$, then we can find nonzero *self-adjoint* operators B_1 and B_2 in C*(I, A) so that $B_1B_2 = B_2B_1 = 0$. Thus $\langle B_1\xi, B_2\eta \rangle = 0$ for all $\xi, \eta \in \mathcal{H}_{\pi}$. In particular, the *closures* V_1 and V_2 of the ranges of B_1 and B_2 , respectively, are closed, non-zero, orthogonal, invariant subspaces for π . This contradics the irreducibility of π ; therefore $\sigma(A)$ must be a single point and therefore $A = \alpha I$ for some $\alpha \in \mathbb{C}$. For a general $A \in \pi(G)'$, we apply the above reasoning to AA^* and A^*A . Thus, we have $AA^* = \alpha I$ and $A^*A = \beta I$ with $\alpha, \beta > 0$ (since $A \neq 0$). Since $\alpha A = A(A^*A) = \beta A$, we have $\alpha = \beta$ and A is normal. This shows that (1) implies (2).

Since $V = \overline{\pi(G)\xi}$ is a closed, non-zero, invariant subspace, in order to show that (2) implies (3) it will suffice to show that the orthogonal projection P onto any closed, non-zero, invariant subspace V is in $\pi(G)'$. But since π is unitary, V^{\perp} is also invariant. Thus if $\xi, \eta \in \mathcal{H}_{\pi}$, then

$$\begin{aligned} \langle P\pi(g)\xi,\eta\rangle &= \langle \pi(g)\xi,P\eta\rangle \\ &= \langle \pi(g)P\xi + \pi(g)(I-P)\xi,P\eta\rangle, \end{aligned}$$

which, since $\pi(g)(I-P)\xi \in V^{\perp}$ and $P\eta \in V$,

$$\begin{split} &= \langle \pi(g) P \xi, P \eta \rangle \\ &= \langle P \pi(g) P \xi, \eta \rangle \\ &= \langle \pi(g) P \xi, \eta \rangle, \end{split}$$

because $\pi(g)P\xi \in V$.

That (3) implies (1) is clear.

 \Box

§2 The Peter-Weyl Theorem.

Now we'll specialize to compact groups G. Compact groups are characterized by the fact that any Haar measure μ on G satisfies $\mu(G) < \infty$. It is customary to normalize Haar measure on a compact group by choosing the unique measure such that $\mu(G) = 1$. Since there is now no possibility of confusion, I'll simply write

$$\int_G f(g) \, dg$$

for the integral of $f \in L^1(G)$.

Now suppose that π is a finite dimensional representation of G. If $b = \{e_1, \ldots, e_{d_\pi}\}$ is an orthonormal basis for \mathcal{H}_{π} , then for each $g \in G$ the matrix of $\pi(g)$ with respect to b has ij^{th} coordinate $\langle \pi(g)e_j, e_i \rangle$. The function $\phi_{ij}(g) = \langle e_i, \pi(g)e_j \rangle$ is called a coordinate function for π . (It will be convenient to use this convention—even though ϕ_{ij} is the complex conjugate of what you might expect. This usage and terminoly will be justified, somewhat, by Remark 14 below.) Notice that $\phi_{ij} \in C(G)$. We'll write \mathcal{E}_G , or just \mathcal{E} when no confusion is likely to arise, for the linear span of the all the functions $\phi(g) = \langle \xi, \pi(g)\eta \rangle$, where π ranges over all *irreducible* representations of G and ξ and η range over \mathcal{H}_{π} . Since *every* finite dimensional representation is the direct sum of irreducibles, notice that $\psi(g) = \langle \xi, \pi(g)\eta \rangle$ defines an element of \mathcal{E} for every finite dimensional representation π —irreducible or not.

Remark 13: When G is abelian, and sometimes in general, the functions in \mathcal{E} are called the trigonometric polynomials. The motivation for this probably comes from the case where $G = \mathbb{T} = \mathbb{R}/_{2\pi\mathbb{Z}}$. Then each $f \in \mathcal{E}_{\mathbb{T}}$ has the form

$$f(\theta) = \sum_{n=-k}^{n=k} c_n \exp(in\theta) = \sum_{n=0}^k d_n \cos(n\theta) + b_n \sin(n\theta).$$

Remark 14: It is clear that \mathcal{E} is self-adjoint; that is, if $f \in \mathcal{E}$, then so is $f^* \in \mathcal{E}$, where $f^*(g) = \overline{f(g^{-1})}$. This is because matrix coefficients are themselves self-adjoint: $\phi_{ij}^{\pi} = (\phi_{ij}^{\pi})^*$. It is also true that if $f \in \mathcal{E}$, then so is \check{f} , where $\check{f}(g) = f(g^{-1})$. To see this we need to introduce the conjugate Hilbert space $\widetilde{\mathcal{H}}$ to a given Hilbert space \mathcal{H} . The space $\widetilde{\mathcal{H}}$ coincides with \mathcal{H} as an additive group. If $j : \mathcal{H} \to \widetilde{\mathcal{H}}$ denotes the identity map, then the Hilbert space structure on $\widetilde{\mathcal{H}}$ is given by the formulas $\alpha j(\xi) = j(\overline{\alpha}\xi)$, and $\langle j(\xi), j(\eta) \rangle_{\widetilde{\mathcal{H}}} = \langle \eta, \xi \rangle_{\mathcal{H}}$. If π is a given representation of G on \mathcal{H} , then we can define a representation $\widetilde{\pi}$ on $\widetilde{\mathcal{H}}$ in the obvious way: $\widetilde{\pi}(g)j(\xi) = j(\pi(g)\xi)$. The assertion follows from the fact that $\phi_{ij}^{\widetilde{\pi}}(g) = \phi_{ij}^{\pi}(g^{-1})$. Since $\phi_{ij}^{\pi}(g^{-1}) = \overline{\phi_{ji}^{\pi}(g)}$, it is reasonable to call $g \mapsto \langle \xi, \pi(g)\eta \rangle$ a coordinate function.

Definition 15: Let M_n be the $n \times n$ complex matrices. If $A = (a_{ij}) \in M_n$, then the Hilbert-Schmidt norm of A is

$$||(a_{ij})||_{\mathrm{H.S.}} = \sum_{ij} |a_{ij}|^2.$$

Remark 16: If $A \in M_n$, then $||A||_{H.S.} = tr(A^*A)$. In particular, if $B = U^*AU$ for some unitary matrix U, then $||A||_{H.S.} = ||B||_{H.S.}$. It follows that if π is finite dimensional, then $||\pi(g)||_{H.S.}$ is well defined and depends only on $[\pi]$.

Our object here is to prove the following theorem known as the *Peter-Weyl Theo*rem.

Theorem 17: Let G be a compact group.

- (1) Every irreducible representation of G is finite dimensional.
- (2) If λ is the left-regular representation of G, then

$$\lambda \cong \bigoplus_{[\pi]\in\widehat{G}} d_{\pi} \cdot \pi$$

- (3) Given $g \in G$, there is a $[\pi] \in \widehat{G}$ such that $\pi(g) \neq I$.
- (4) \mathcal{E} is dense in C(G) (and hence in $L^p(G)$ for $1 \le p < \infty$).
- (5) If $f \in L^2(G)$, then

$$\|f\|_{2}^{2} = \sum_{[\pi]\in\widehat{G}} d_{\pi} \cdot \operatorname{tr}(\pi(f)\pi(f)^{*}) = \sum_{[\pi]\in\widehat{G}} d_{\pi} \cdot \|\pi(f)\|_{\mathrm{H.S.}}$$

We'll need the following preliminary results, some of which may be of interest by themselves.

Lemma 18: Let π_1 and π_2 be representations of a locally compact group G. If A: $\mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator satisfying $A\pi_1(g) = \pi_2(g)A$ for all $g \in G$, then $A^*A\pi_1(g) = \pi_1(g)A^*A$ for all $g \in G$.

Proof: One computes as follows:

$$\langle A^* A \pi_1(g)\xi,\eta\rangle = \langle A \pi_1(g)\xi,A\eta\rangle$$

= $\langle \pi_2(g)A\xi,A\eta\rangle$
= $\langle A\xi,\pi_2(g^{-1})A\eta\rangle$
= $\langle A\xi,A\pi_1(g^{-1})\eta\rangle$
= $\langle \pi_1(g)A^*A\xi,\eta\rangle$

		r	

Lemma 19: Suppose that π_1 and π_2 are representations of a locally compact group G, that π_1 is irreducible, and that $A : \mathcal{H}_1 \to \mathcal{H}_2$ is any non-zero bounded linear operator such that $A\pi_1(g) = \pi_2(g)A$ for all $g \in G$. Then $A\mathcal{H}_1$ is a closed invariant subspace for π_2 , and $\pi_1 \cong \pi_2|_{A\mathcal{H}_1}$, where $\pi_2|_{A\mathcal{H}_1}$ is the subrepresentation of π_2 corresponding to $A\mathcal{H}_1$.

Proof: By Lemma 18, $A^*A \in \pi_1(G)'$. By Theorem 12, $A^*A = \lambda I$. Thus $B = \lambda^{-\frac{1}{2}}A$ is an isometery, and hence a unitary from \mathcal{H}_1 onto $A\mathcal{H}_1$. (Note that $A\mathcal{H}_1$ is actually closed in \mathcal{H}_2 since A is a multiple of an isometery.) Again Lemma 18 shows that $BB^* \in \pi_2(G)'$. Since BB^* is the orthogonal projection onto $B\mathcal{H}_1 = A\mathcal{H}_1$, it follows that $A\mathcal{H}_1$ is invariant for π_2 and the assertion follows.

The next result is crucial, and depends heavily on the fact that G is compact.

Proposition 20: Suppose that π_1 and π_2 are irreducible representations of a compact group G. Fix orthonormal bases $\{e_k^i\}_{k=1}^{d_{\pi_i}}$ for \mathcal{H}_i , and put $\phi_{kl}^i(g) = \langle e_k^i, \pi_i(g) e_l^i \rangle$.

(1) If $\pi_1 \not\cong \pi_2$, then

$$\int_{G} \phi_{ij}^{1}(g) \overline{\phi_{jl}^{2}(g)} \, dg = 0,$$

for all $1 \le i, j \le d_{\pi_1}$, and $1 \le k, l \le d_{\pi_2}$.

(2) If π_1 is finite dimensional, then

$$\int_{G} \phi_{ij}^{1}(g) \overline{\phi_{kl}^{1}(g)} \, dg = \delta_{ik} \delta_{jl} \frac{1}{d_{\pi_{1}}},$$

for all $1 \le i, j, k, l \le d_{\pi_1}$.

Proof: Let B be any bounded linear operator from \mathcal{H}_1 to \mathcal{H}_2 . Then we can define

$$A = \int_G \pi_2(g) B \pi_1(g^{-1}) \, ds.$$

Then

$$A\pi_1(r) = \int_G \pi_2(g) B\pi_1(g^{-1}r) dg$$

= $\int_G \pi_2(rg) B\pi_1(g^{-1}) dg = \pi_2(r) A.$

If $\pi_1 \not\cong \pi_2$, then A = 0 by Lemma 19. Now suppose that $B = B_{ij}$ is the rank-one operator defined by $B_{ij}(\xi) = \langle \xi, e_j^1 \rangle e_l^2$. Then,

$$\begin{split} 0 &= \langle Ae_i^1, e_k^2 \rangle = \int_G \langle B_{ij} \pi_1(g^{-1}) e_i^1, \pi_2(g^{-1}) e_k^2 \rangle \, dg \\ &= \int_G \langle \pi_1(g^{-1}) e_i^1, e_j^1 \rangle \langle e_l^2, \pi_2(g^{-1}) e_k^2 \rangle \, dg \\ &= \int_G \phi_{ij}^1(g) \overline{\phi_{kl}^2(g)} \, ds. \end{split}$$

This proves (1).

Now assume that $d_{\pi_1} < \infty$. By the above and Lemma 19,

$$A = \int_G \pi_1(g) B \pi_1(g^{-1}) dg = \lambda I,$$

for any B. Taking traces,

$$\begin{split} \operatorname{tr}(A) &= \sum_{k=1}^{d_{\pi_1}} \langle A e_k^1, e_k^1 \rangle \\ &= \int_G \sum_{k=1}^{d_{\pi_1}} \langle B \pi_1(g^{-1}) e_k^1, \pi_1(g^{-1}) e_k^1 \rangle \, dg \\ &= \int_G \operatorname{tr}(B) \, dg = \operatorname{tr}(B). \end{split}$$

Since $\operatorname{tr}(A) = \operatorname{tr}(\lambda I) = \lambda d_{\pi_1}$ and $\operatorname{tr}(B_{jl}) = \delta_{jl}$, we have $\lambda = \delta_{jl} \frac{1}{d_{\pi_1}}$ when $B = B_{jl}$. On the other hand,

$$\int_{G} \phi_{ij}^{1}(g) \overline{\phi_{kl}^{1}(g)} \, dg = \langle Ae_{i}^{1}, e_{k}^{1} \rangle = \lambda \langle e_{i}^{1}, e_{k}^{1} \rangle = \delta_{ik} \delta_{jl} \frac{1}{d_{\pi_{1}}}.$$

Proof of Theorem 17: Let \mathcal{E}_f be the subset of \mathcal{E} consisting of the collection of matrix coefficients of the form $\phi(g) = \langle \xi, \pi(g)\eta \rangle$ for π irreducible and $d_{\pi} < \infty$. The first part of the proof will consist of showing that it suffices to show that \mathcal{E}_f is dense in C(G). Since C(G) is dense in $L^2(G)$, it follows that $L^2(G) = \mathcal{H}_{\lambda}$ has an orthonormal basis consisting of normalized matrix coefficients $d_{\pi}^{\frac{1}{2}}\phi_{ij}^{\pi}(g) = d_{\pi}^{\frac{1}{2}}\langle e_i^{\pi}, \pi(g)e_j^{\pi} \rangle$ (where, of course, $\{e_1^{\pi}, \ldots, e_{d_{\pi}}^{\pi}\}$ denotes an orthonormal basis for \mathcal{H}_{π}).

In fact, if π is any irreducible representation of G and if $\{e_{\alpha}\}_{\alpha \in A}$ is an orthonormal basis for \mathcal{H}_{π} , then it follows from Proposition 20 that $\phi_{\alpha\beta}^{\pi} \perp \phi_{ij}^{\rho}$, where $\phi_{\alpha\beta}^{\pi}(g) = \langle e_{\alpha}^{\pi}, \pi(g) e_{\beta}^{\pi} \rangle$ and $d_{\rho} < \infty$. Thus we must have $\phi_{\alpha\beta}^{\pi} = 0$, and (1) follows.

If $d_{\pi} < \infty$, then Proposition 20 shows that the d_{π}^2 functions $\{\sqrt{d_{\pi}}\phi_{ij}^{\pi}\}$ are an orthonormal basis for a subspace $\mathcal{H}_{[\pi]}$ of $L^2(G)$. Now observe that

$$\begin{split} \phi_{ij}^{\pi}(g^{-1}t) &= \langle \pi(g)e_i^{\pi}, \pi(t)e_j^{\pi} \rangle \\ &= \sum_{k=1}^{d_{\pi}} \langle \pi(g)e_i^{\pi}, e_k^{\pi} \rangle \langle e_k^{\pi}, \pi(t)e_j^{\pi} \rangle \\ &= \sum_{k=1}^{d_{\pi}} \phi_{ik}^{\pi}(g^{-1})\phi_{kj}^{\pi}(t). \end{split}$$

Therefore if, for each $1 \leq j \leq d_{\pi}$, we define $A_j : \mathcal{H}_{\pi} \to \mathcal{H}_{[\pi]}$ by $A_j e_i^{\pi} = \phi_{ij}^{\pi}$, then

$$\begin{split} \lambda(g)(Ae_i^{\pi})(t) &= \phi_{ij}^{\pi}(g^{-1}t) \\ &= \sum_{k=1}^{d_{\pi}} \phi_{ik}^{\pi}(g^{-1})\phi_{kj}^{\pi}(t) \\ &= \sum_{k=1}^{d_{\pi}} \langle e_i^{\pi}, \pi(g^{-1})e_k^{\pi} \rangle A_j e_k^{\pi}(t) \\ &= A\bigg(\sum_{k=1}^{d_{\pi}} \langle \pi(g)e_i^{\pi}, e_k^{\pi} \rangle e_k^{\pi}\bigg)(t) \\ &= A\big(\pi(g)e_i^{\pi}\big)(t). \end{split}$$

That is, A intertwines the irreducible representation π and the subrepresentation $\lambda|_{\mathcal{H}_{[\pi],j}}$, where $\mathcal{H}_{[\pi],j} = \operatorname{span}\{\phi_{1j}^{\pi}, \phi_{2j}^{\pi}, \ldots, \phi_{d_{\pi}j}^{\pi}\}$. Therefore Lemma 19 implies that $\pi \cong \lambda|_{\mathcal{H}_{[\pi],j}}$, and thus, $\lambda|_{\mathcal{H}_{[\pi]}} \cong d_{\pi} \cdot \pi$. Since we're assuming that \mathcal{E}_f is dense, we have

$$\mathcal{H} \cong \bigoplus_{[\pi] \in \widehat{G}} \mathcal{H}_{[\pi]},$$

and we have proved (2).

We have now shown that $\{d_{[\pi]}^{\frac{1}{2}}\phi_{ij}^{\pi}\}_{[\pi]\in\widehat{G}}$ forms an orthonormal basis for $L^{2}(G)$. (Under the assumption that \mathcal{E}_{f} is dense in C(G).) Thus, if $f \in L^{2}(G)$, we can write

$$f = \sum c([\pi], i, j) d_{[\pi]}^{\frac{1}{2}} \phi_{ij}^{\pi}.$$

Furthermore,

$$||f||_{2}^{2} = \sum_{[\pi]\in\widehat{G}} \sum_{i,j=1}^{d_{[\pi]}} |c([\pi], i, j)|^{2}.$$

Now (5) follows from the fact that

$$\begin{split} c\left(\left[\pi\right], i, j\right) &= \int_{G} f(g) \overline{d_{\left[\pi\right]}^{\frac{1}{2}} \phi_{ij}^{\pi}(g)} \, dg \\ &= d_{\left[\pi\right]}^{\frac{1}{2}} \int_{G} f(g) \langle \pi(g) e_{j}^{\pi}, e_{i}^{\pi} \rangle \, dg \\ &= d_{\left[\pi\right]}^{\frac{1}{2}} \langle \pi(f) e_{j}^{\pi}, e_{i}^{\pi} \rangle \, dg \\ &= d_{\left[\pi\right]}^{\frac{1}{2}} \left[\left[\pi(f) \right]_{ij}. \end{split}$$

Of course, (3) follows from (4) (otherwise, \mathcal{E} wouldn't separate e and g), so it only remains to prove that \mathcal{E}_f is dense in C(G). Towards this end, we need to recall some basic facts about so-called Hilbert-Schmidt operators. If (X, \mathcal{M}, μ) is a measure space and if $K \in L^2(X \times X, \mu \times \mu)$, then we can define a bounded linear operator $T: L^2(X) \to L^2(X)$ by

$$Tf(x) = \int_X K(x,y)f(y) \, dy.$$

It is not hard to see that T is self-adjoint if $K(x,y) = \overline{K(y,x)}$. An operator of this form is called a Hilbert-Schmidt operator and all such operators are self-adjoint compact operators⁽¹⁾. In particular, each eigenspace

$$\mathcal{H}_{\alpha} = \{ f \in L^2(X) : Tf = \alpha f \}$$

$$K(x,y) = \sum_{i \in I} \alpha_i \psi_i(x) \overline{\psi_i(y)} \tag{(*)}$$

⁽¹⁾ In our case, we'll only be interested in the case where X = G, μ is normalized Haar measure, and K is continuous. Then the Stone-Weierstrass Theorem implies that there are functions $\psi_i \in C(G)$ such that

is finite dimensional and there is an orthonormal sequence $\{\phi_i\}$ of eigenvectors with eigenvalues α_i so that every $f \in L^2(X)$ can be written uniquely as

$$f = \sum c_i \phi_i + \phi_0,$$

where $T\phi_0 = 0$ and $c_i = \langle f, \phi_i \rangle$.

Our interest in such operators is as follows. Let k be any element of C(G) which satisfies $k(g) = \overline{k(g^{-1})}$. Therefore

$$f * k(g) = \int_G f(r)k(r^{-1}g) \, dr = \int_G K(g,r)f(r) \, dr$$

where $K(g,r) = k(r^{-1}g)$, is a self-adjoint Hilbert-Schmidt operator. Let $C = ||K||_{\infty} = \max_{x,y\in G} |k(y^{-1}x)|$. Notice that $||Tf||_{\infty} \leq C||f||_1 \leq C||f||_2$. A moments reflections allows one to see that this implies that $Tf \in C(G)$. (Of course, Tf is only defined almost everywhere, but I mean it agrees almost everywhere with a continuous function on G. Since this function is uniquely determined, it makes sense to treat Tf as a continuous function. This is standard practice.) It follows that each eigenfunction of T is continuous.

Lemma 21: Let k be as above and let T be the Hilbert-Schmidt operator on $L^2(G)$ defined by Tf = f * k. Then for each $\mu \in \mathbb{C} \setminus \{0\}$

$$\mathcal{H}_{\mu} = \{ f \in L^2(G) : Tf = \mu f \} \subseteq \mathcal{E}_f.$$

Proof: By the above remarks, \mathcal{H}_{μ} is finite dimensional and consists of continuous functions. Suppose that $f \in \mathcal{H}_{\mu}$. Then $T(\lambda(g)f) = (\lambda(g)f) * k = \lambda(g)(f * k) = \lambda(g)(Tf) = \mu(\lambda(g)f)$. That is, \mathcal{H}_{μ} is invariant for λ . Let $\{f_1, \ldots, f_r\}$ be an orthonormal basis for \mathcal{H}_{μ} . Define continuous functions ψ_{ki} by

$$\psi_{ki}(g) = \langle \lambda(g) f_i, f_k \rangle. \tag{1}$$

Since $\lambda(g)f_i \in \mathcal{H}_{\mu}$,

$$f_i(g^{-1}t) = \sum_{k=1}^r \psi_{ki}(g) f_k(t).$$
 (2)

uniformly. Notice that for each finite subset $F \subset I$ the operator T_F corresponding to

$$K_F(x,y) = \sum_{i \in F} \alpha_i \psi_i(x) \overline{\psi_i(y)}$$

is a finite rank operator. Since the convergence in (*) is uniform, it follows that $T_F \to T$ in the operator norm; hence T is compact. (The remaining assertions in the paragraph follow from the Spectral Theorem.)

(A priori, Equation (2) is an equality in $L^2(G)$, and so would yield pointwise equality only almost everywhere. But since both sides are continuous, the equality must hold everywhere.) Now define $\pi(g)$ to be the operator on \mathcal{H}_{μ} whose $r \times r$ matrix with respect to the basis $\{f_1, \ldots, f_r\}$ is (ψ_{ij}) . Since we have $\psi_{ij}(g) = \overline{\psi_{ji}(g^{-1})}$, it follows from Equation (1) that $\pi(g)^* = \pi(g^{-1})$. Similarly,

$$\psi_{ij}(gt) = \langle \lambda(t)f_j, \lambda(g^{-1})f_i \rangle$$
$$= \sum_{k=1}^r \langle f_k, \lambda(g^{-1})f_i \rangle \langle \lambda(t)f_j, f_k \rangle$$
$$= \sum_{k=1}^r \psi_{ik}(g)\psi_{kj}(t).$$

Therefore $\pi(gt) = \pi(g)\pi(t)$. It follows that π is a finite dimensional (unitary) representation of G. Using Equation (2), we see that

$$f_i(g) = \sum_{k=1}^r \psi_{ki}(g^{-1}) f_k(e) = \sum_{k=1}^r f_k(e) \phi(g),$$

where $\phi_{ki}(g) = \psi_{ki}(g^{-1}) = \langle f_i, \lambda(g) f_k \rangle$. We have shown that each f_i , and hence \mathcal{H}_{μ} , is in the span of the matrix coefficients of finite dimensional representations of G. Since every finite dimensional representation is the direct sum of irreducible (finite dimensional) representations, we have $\mathcal{H}_{\mu} \subseteq \mathcal{E}_f$ as desired.

Lemma 22: Let k and T be as above. If $f \in L^2(G)$, then $Tf \in \overline{\mathcal{E}_f}$.

Proof: Let $\{\phi_i\}$ be a complete orthonormal set of eigenvectors for the eigenspaces with non-zero eigenvalues of T. By the spectral theorem, we can write

$$f = \sum_{k} c_k \phi_k + \phi_0,$$

where $T\phi_0 = 0$ and $||f||_2^2 \leq \sum_k |c_k|^2$. Let $T\phi_k = \alpha_k \phi_k$. Given $\epsilon > 0$, there is an N so that $||\sum_{k>N} c_k \phi_k||_2 < \epsilon$. In particular, $||T\left(\sum_{k>N} c_k \phi_k\right)||_2 \leq C\epsilon$. But

$$T\left(\sum_{k=1}^{N} c_k \phi_k\right) = \sum_{k=1}^{N} \alpha_k c_k \phi_k \in \mathcal{E}_f$$

by Lemma 21. This suffices as

$$\|Tf - \sum_{k=1}^{N} \alpha_k c_k \phi_k\|_{\infty} = \|T\left(\sum_{k>N} c_k \phi_k\right)\|_{\infty} \le C\epsilon.$$

The Peter-Weyl theorem now follows as C(G) always contains a self-adjoint approximate identity. Specifically, we have the following.

Proposition 23: If G is a compact group, then there is a net $\{k_{\alpha}\}$ in C(G) which satisfies $k_{\alpha}^* = k_{\alpha}$, and such that both $\{k_{\alpha} * f\}$ and $\{f * k_{\alpha}\}$ converge uniformly to f for each $f \in C(G)$.

Proof: For each neighborhood U of $e \in G$, let k_U be a continuous non-negative function which satisfies $k_U(e) = 1$, $\int_G k_U(g) dg = 1$, $k_U^* = k_U$, and $\operatorname{supp} k \subseteq U$. Then $\{k_U\}_U$ is a net in C(G) directed by reverse inclusion: i.e., $U \ge V$ if and only if $U \subseteq V$.

Fix $f \in C(G)$. Since G is compact, given $\epsilon > 0$, there is a neighborhood W of $e \in G$ such that $|f(t^{-1}g) - f(g)| < \epsilon$ for all $g \in G$ and $t \in W$. Therefore if $U \ge W$, then

$$\begin{aligned} |k_U * f(g) - f(g)| &= \left| \int_G k_U(t) f(t^{-1}g) dt - f(g) \right| \\ &\leq \int_G k_U(t) \left| f(t^{-1}g) - f(g) \right| dt \\ &\leq \epsilon \int_G k_U(t) dt = \epsilon. \end{aligned}$$

It follows that $k_U * f \to f$ uniformly, as claimed. On the other hand, $(k_U * f)^* = f^* * k_U$ implies that $f * k_U \to f$ uniformly as well. This proves the lemma.

Let T_U be the Hilbert-Schmidt operator corresponding to k_U . Thus, $T_U f$ converges to f uniformly for each $f \in C(G)$. Thus, $f \in \mathcal{E}_f$ by Lemma 22, and Theorem 17 is proved.

References

 [1] Elias Stein, Topics in harmonic analysis, related to the Littlewood-Paley theory, Annals of mathematics studies, no. 63, Princeton University Press, New Jersey, 1970