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1. Basics

The material in these notes is stolen primarily from [WO93]; however, some bits
(and some corrections) were taken from [Mur90] and [Bla86].

One of the significant impediments for the beginner to the subject of noncom-
mutative K-theory is that the theory is considerably more straightforward for the
category of unital C∗-algebras with unital homomorphisms. However, it is in-
evitable that we will want to consider nonunital algebras — at the very least, one
often wants to stabilize by tensoring with K(H), the compact operators on a sepa-
rable infinite-dimensional Hilbert space. Therefore we will constantly be “adjoining
an identity” to C∗-algebras which don’t already have one (see [Arv76, Ex 1.1.H]).
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2 DANA P. WILLIAMS

We’ll follow the treatment and notation of [RW98, §2.3]. Thus Ã will denote the

subalgebra of M(A) generated by A and the identity. Thus Ã = A if 1 ∈ A,
and ∗-isomorphic to the vector space direct sum A1 := A + C otherwise. Even if
1 ∈ A, the notation A1 will denote A+C with the obvious ∗-algebraic structure. If

1 /∈ A, then A1 has a C∗-norm coming from the isomorphism with Ã. If 1 ∈ A, then
a+λ 7→ (a+λ1, λ) is a ∗-isomorphism of A1 onto the C∗-algebra direct sum1 A⊕C.
Again, A1 inherits a C∗-norm. Therefore we always have a split exact sequence of
C∗-algebras

(1.1) 0 // A
j // A1 π // C //

ι

cc 0,

where j(a) := a+ 0, π(a+ λ) := λ, and ι(λ) := 0 + λ. We will use this notation in
conjunction with A1 throughout these notes.

The basic building block for K-theory is the projection. Since the sum of projec-
tions is only a projection when the projections are orthogonal, we will constantly
be putting our projections into matrix algebras where “there is enough room to
make them orthogonal.” We will also need some notation for matrix algebras over
a C∗-algebra A. If n ≥ 1, then Mn(A) will denote the C∗-algebra of n×n-matrices
with entries from A. If a ∈Mn(A) and b ∈Mm(A), then a⊕b will denote the block
diagonal matrix diag(a, b) =

(
a 0
0 b

)
in Mn+m(A). We shall let ϕn be the inclusion

of Mn(A) into Mn+1(A) sending a to a ⊕ 0, and we shall write M∞(A) for the
algebraic direct limit of {Mn(A), ϕn) } (Remark A.5). This is mere formalism, and
merely allows us to identify a and a⊕ 0n for all n.2

Definition 1.1. We let P [A] = { p ∈ M∞(A) : p = p∗ = p2 }. We say that p ∼ q
if there is a u ∈M∞(A) such that p = u∗u and q = uu∗. (We say that p and q are
Murray-von Neumann equivalent.)

Remark 1.2. If p ∼ q, we can assume that p, q, and u are in Mn(A) for some
n. Thus u is a partial isometry (see [Mur90, Theorem 2.3.3]). In particular u =
uu∗u = qu = up. It is easily checked that ∼ is an equivalence relation on P [A]. The
set of equivalence classes in denoted by V (A), and we write [p] for the equivalence
class of p.

Theorem 1.3. Suppose that p, q, r, s ∈ P [A].

(a) If p ∼ r and q ∼ s, then p⊕ q ∼ r ⊕ s.
(b) p⊕ q ∼ q ⊕ p.
(c) If p, q ∈Mn(A) and pq = 0, then p+ q ∼ p⊕ q in M∞(A).

Proof. Suppose p = u∗u and r = uu∗ while q = v∗v and s = vv∗. Then w :=
(
u 0
0 v

)

suffices to prove (a).

To prove (b), use u :=
( 0 q
p 0

)
. To prove (c), let u :=

( p q
0n 0n

)
, then recalling that

pq = 0, it is easy to check that u implements an equivalence between (p+ q) ⊕ 0n
and p⊕ q. �

1I have written elements of the vector space direct sum as simply a + λ, and reserved the
notation (a, λ) for elements of the algebraic direct sum.

2More precisely, if a ∈ Mk(A), then a⊕0n = ϕk,k+n(a), and it follows that ϕk(a) = ϕk+n(a⊕

0n. Since the ϕk are injections in this case, there is no danger in dropping them.
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Corollary 1.4. The binary operation

[p] + [q] := [p⊕ q]

makes V (A) into an abelian semigroup with identity equal to the class of the zero
projection.

Example 1.5. Since two projections in Mn are equivalent if and only if they have
the same rank, we see that V (C) ∼= (N,+). Since Mn(Mm) ∼= Mnm, we also
have V (Mm) ∼= (N,+). In fact, if H is an infinite-dimensional Hilbert space, then
V
(
K(H)

)
is also isomorphic to (N,+). On the other hand, since any two infinite

rank projections in B(H) are equivalent, V
(
B(H)

) ∼= (N∪{∞},+). However, since

all nonzero projections have norm one, and since a projection in C0(Rk,Mn) ∼=
Mn

(
C0(Rk)

)
must be a projection-valued function on Rk vanishing at infinity, it

follows that V
(
C0(Rk)

)
= { 0 }.

Remark 1.6. Notice that V
(
K(H)

)
is a cancellative semigroup: x+r = y+r implies

that x = y. On the other hand, V
(
B(H)

)
is not: x+ ∞ = y + ∞ for all x and y. D

Definition 1.7. We let K00(A) denote the Grothendieck group G
(
V (A)

)
. As is

standard, we abuse notations slightly, and denote the class of
(
[p], [q]

)
in K00(A)

by [p]− [q]. The natural map of V (A) into K00(A) sending [p] to [p]− 0 is denoted
by ιA.

Example 1.8. We have K00

(
K(H))

) ∼= Z. If H is infinite dimensional, then

K00

(
B(H)

)
= { 0 }. In particular, the natural map ιA : V (A) → K00(A) need not

be injective.

Remark 1.9. Our notation for elements in K00(A) can be misleading. Because D
V (A) need not be cancellative, [p] − [q] = 0 need not imply that [p] = [q] in V (A)
(consider B(H)). But if A = C, for example, then it is true that [p]− [q] = 0 if and
only if p ∼ q.

If α : A→ B is a ∗-homomorphism, then (aij) 7→
(
α(aij)

)
is a ∗-homomorphism

from Mn(A) to Mn(B). Although this map is more properly denoted αn or α⊗ id,3

notational convenience dictates that we usually denote this homomorphism with the
same symbol α. In any event, α induces a well-defined semigroup homomorphism
V (α) : V (A) → V (B) defined by V (α)

(
[p]
)

= [α(p)]. The induced homomorphism

G
(
V (α)

)
from K00(A) to K00(B) is denoted by K00(α).

Proposition 1.10. Both V and K00 are covariant functors from the category of C∗-
algebras (and ∗-homomorphisms) to the category of abelian groups. If α : A → B
is a ∗-homomorphism, then

V (A)
V (α) //

ιA

��

V (B)

ιB

��
K00(A)

K00(α)
// K00(B)

commutes.

3The latter notation comes from identifying Mn(A) with A ⊗ Mn.
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Remark 1.11. The notations V (α) andK00(α) quickly become burdensome to many,
and it is standard to use α∗ for both maps, and to hope the meaning is clear from
context.

The notation K00 indicates that K00(A) is nearly what we want. As we shall

see, it is exactly the right thing when 1 ∈ A. Unfortunately, simply using K00(Ã)
will not have good functorial properties. The solution is given in the following
definition. At least to me, it is a good deal more subtle than first impressions
might indicate.

Definition 1.12. Suppose that A is a C∗-algebra. Let π : A1 → C be the natural
map (see (1.1)), and K00(π) : K00(A

1) → Z the induced map. Then we define
K0(A) = kerK00(π).

Remark 1.13. In view of Remark 1.9, the elements of K0(A) are exactly those
classes [p] − [q] ∈ K00(A

1) for which π(p) ∼ π(q).

Proposition 1.14. K0 is a covariant functor from the category of C∗-algebras to
abelian groups. If α : A→ B is a ∗-homomorphism, then K0(α) := K00(α

1)|K0(A),

where α1 : A1 → B1 is defined by α1(a+ λ) := α(a) + λ. Of course, K0(α) is also
often written α∗.

Proof. The only slightly nonstandard thing to check is that K0(α)
(
K0(A)

)
⊂

K0(B) = kerK00(π
B). But this follows from the functorality of K00 applied to

πB ◦ α1 = πA. �

Let j : A → A1 be the obvious map (as in (1.1)), and note that K00(j) maps
K00(A) into K0(A). Viewing this as a map into K0(A), we get what is called the
natural homomorphism jA : K00(A) → K0(A). It is natural in that

K00(A)
K00(α)//

jA

��

K00(B)

jB

��
K0(A)

K0(α) // K0(B)

commutes for all ∗-homomorphisms α : A→ B. Although the proof of the following
proposition should be easier, it does at least justify the assertion that our definition
of K0 does not “mess things up” when 1 ∈ A.

Proposition 1.15. If 1 ∈ A, then the natural homomorphism jA : K00(A) →
K0(A) is an isomorphism.

Proof. We let ψ denote the compression of A1 onto the corner determined by 1 ∈ A;
thus, ψ(a+λ) = a+λ1+0. Since ψ ◦ j = idA, we have K00(ψ)◦K00(j) = idK00(A).
Formally, if we let β be the restriction of K00(ψ) to K0(A), then

β ◦ jA = idK00(A) .

On the other hand, let ι : C → A1 be given by ι(λ) = 0 + λ, and let κ : C → A1 be
given by κ(λ) = λ1 + 0. Notice that

idA1 = j ◦ ψ − κ ◦ π + ι ◦ π.
In particular, if [p]− [q] ∈ K0(A), then π(p) ∼ π(q) (Remark 1.13). Thus κ◦π(p) ∼
κ ◦ π(q) and ι ◦ π(p) ∼ ι ◦ π(q). Therefore

[p] − [q] = [j ◦ ψ(p)] − [j ◦ ψ(q)].
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This implies

jA ◦ β = idK0(A) .

Thus β is a two-sided inverse for jA and the result follows. �

For future reference, we introduce the first of two additional equivalence relations
in V (A). Although we use the multiplier algebra M(A) in the definition, it will
suffice here to remark only that A is an essential ideal in the unital C∗-algebra

M(A) and that Ã ⊂M(A), while Mn(Ã) ⊂M
(
Mn(A)

)
.

Definition 1.16. If p and q are projections in A, then we say the p is unitarily
equivalent to q, written p ≈ q, if there is a unitary w ∈M(A) such that q = wpw∗.
We can extend ≈ to an equivalence relation on P [A] in the obvious way.

Lemma 1.17. Suppose that p and q are projections in A. If p ≈ q, then p ∼ q.
On the other hand, if p ∼ q, then p⊕ 0 ≈ q ⊕ 0 in M2(A)̃ . In particular, V (A) is
also the set of ≈ equivalence classes in P [A].

Proof. Suppose that w is a unitary such that q = wpw∗. Then v = wp is a partial
isometry satisfying p = v∗v and q = vv∗.

Let v be a partial isometry with initial projection p and final projection q as

above. If we are happy to find a unitary in M2(Ã), then u =
( v 1−q

1−p v∗

)
is a unitary

in M2(Ã) such that
(
q 0
0 0

)
= u

(
p 0
0 0

)
u∗.

To get a unitary in M2(A)̃ , we can follow [Bla86]. Let

u :=

(
1 − q v
v∗ 1 − p

)(
1 − p p
p 1 − p

)
.

Then u ∈M2(A)̃ . Notice that
(

1 − p p
p 1 − p

)2

=
(
12 −

(
p p
p p

))2

= 12,

while (
1 − q ∗ v

v∗ 1 − p

)2

=
(
12 −

(
q v
v∗ p

))2

= 12.

It follows that u∗u = uu∗ = 12, and u is indeed unitary. Now compute that on the
one hand, (

1 − p p
p 1 − p

)(
p 0
0 0

)(
1 − p p
p 1 − p

)
=

(
0 0
0 p

)
,

and using vp = v and qv = v,
(

1 − q v
v∗ 1 − p

)(
0 0
0 p

)(
1 − q v
v∗ 1 − p

)
=

(
q 0
0 0

)
.

Thus u(p⊕ 0)u∗ = q ⊕ 0. �

Remark 1.18. We let pn represent the class of 1n in M∞(A1). This is convenient
in that we can view pn as a projection in Mn+k(A) without having to put up with
1n ⊕ 0k. This notation is unfortunate, but seems to be used frequently in, for
example, [Bla86] and [WO93]. Even this notation is abused, and pn can also be
used to denote the corresponding projection in M∞(A) when 1 ∈ A; thus, we also
use pn to describe the corresponding projection in Mn+k.

This brings to what Wegge-Olsen calls the “Portrait of K0”.
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Proposition 1.19. Let A be a C∗-algebra.

(a) Every element in K0(A) has a representative of the form [p]− [q], where for
some r ∈ Z+, p and q are projections in Mr(A

1) such that p− q ∈Mr(A).
If 1 ∈ A, then p and q can be chosen in Mr(A).

(b) One can take q = pn in part (a) for some n ≤ r.
(c) If [p] − [q] = 0 in K0(A) and p, q ∈ Mr(A

1), then there is a m ∈ Z+ and a
k ≥ m+ r such that p⊕ pm ≈ q ⊕ pm in Mk(A

1).

If 1 ∈ A, then (b) and (c) hold with pn in M∞(A) (see Remark 1.18).

We need the following. We use the notation from (1.1) and Remark 1.18.

Lemma 1.20. If p is a projection in Mr(A
1) and n = rankπ(p), then there is a

projection q ∈Mr(A
1) such that q ≈ p and q − pn ∈Mr(A).

Proof. Choose a unitary u ∈Mr such that uπ(p)u∗ = pn. Let q := ι(u)pι(u)∗. �

Proof of Proposition 1.19. By definition each x ∈ K0(A) is of the form [p′] − [q′]
with p′ and q′ projections in Mk(A

1) such that π(p′) ∼ π(q′). Lemma 1.20 implies
there is a n ≤ k and projections p ∼ p′ and q ∼ q′ such that both p − pn and
q − pn belong to Mk(A). Thus x = [p] − [q], and p − q ∈ Mk(A). This proves the
first part of (a). If 1 ∈ A, the assertion follows from the surjectivity of the natural
isomorphism jA (Proposition 1.15).

(b) Now let x = [r] − [s] for r, s ∈ P [A1]. For large enough n, s ≤ pn. Thus
pn−s ∈ P [A1]. Moving far enough down the diagonal, there is r1 ∈ P [A1] such that
r1 ≈ r and r1pn = 0. Since r1, pn−s, and s are pairwise orthogonal, Theorem 1.3(c)
implies

[r1 ⊕ (pn − s)] − [pn] = [r1] + [pn − s] + [s] − [s] − [pn]

= [r1] + [pn] − [s] − [pn]

= [r1] − [s] = [r] − [s]

= x.

Since x ∈ K0(A), the projection π(r1⊕pn−s) is equivalent to π(pn), and therefore
has rank n. Using Lemma 1.20 again, there is a p ∈ P [A1] such that p ≈ r1⊕pn−s
and p− pn ∈ P [A]. Since x = [p] − [pn], this proves (b).

(c) Now suppose that [p] − [q] = 0 in K0(A). The definition of equivalence in
G
(
V (A1)

)
implies that there is an r ∈ P [A1] such that

[p] + [r] = [q] + [r].

For some m, r ≤ pm, and by Theorem 1.3

p⊕ pm = p⊕ (r + pm − r)

∼ p⊕ r ⊕ (pm − r)

∼ q ⊕ r ⊕ (pm − r)

∼ q ⊕ pm.

Now (c) follows from Lemma 1.17.4

If 1 ∈ A, the arguments in parts (b) and (c) can be repeated with pn replaced
with the obvious projection in P [A]. �

4We can also put ≡ in (c), and I should say so somewhere.
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Remark 1.21. In Murphy’s treatment [Mur90], he defines p and q in V (Ã) to
be stably equivalent if for some m, p ⊕ pm ∼ q ⊕ pm. Writing p ≃ q for stable

equivalence, Murphy proves that ≃ is an equivalence relation and that MV (Ã) :=

P [Ã]/ ≃ is a cancellative semigroup with identity. He then defines KM
0 (Ã) to

be the Grothendieck group of MV (Ã). Part (c) of the previous result implies

KM
0 (Ã) ∼= K00(Ã), which is isomorphic to K0(Ã) by Proposition 1.15. Murphy’s

approach has the advantage of starting from a cancellative semigroup. But this
approach is not common elsewhere in the literature.

We will need some rather detailed information about projections in C∗-algebras
in order to uncover some basic facts about K0. For example, we’ll want to see that
K0(A) is always countable if A is separable (Remark 2.2).

2. Projections in C∗-algebras

Lemma 2.1. Suppose that p and q are projections in A such that ‖p − q‖ < 1.

Then there is a unitary u ∈ Ã such that q = upu∗. We can also arrange that
‖1 − u‖ ≤

√
2‖p− q‖.

Proof. Let v = 1 − p− q + 2qp, and compute that

v∗v = 1 − (p− q)2 = vv∗.

In particular, v is normal. Recall that |v| := (v∗v)
1
2 .

Since ‖p− q‖ < 1, we have ‖(p− q)2‖ < 1, and v∗v is invertible in Ã. Since v is
normal, this forces v to be invertible too. Thus u := v|v|−1 is invertible, and

u∗u = |v|−1v∗v|v|−1 = 1;

and u is a unitary. Furthermore

vp = (1 − p− q + 2qp)p = qp while qv = q(1 − p− q + 2qp) = qp.

It follows that

vp = qv and pv∗ = v∗q which implies that pv∗v = v∗qv = v∗vp.

Thus p commutes with |v|−1. Therefore

up = v|v|−1p = vp|v|−1 = qv|v|1 = qu,

and q = upu∗ as desired.
To get the norm estimate, notice that Re(v) := (v+v∗)/2 = 1−(p−q)2 = v∗v =

|v|2. Since v, v∗, and |v|−1 all commute, it follows that Re(u) = Re(v)|v|−1 = |v|.
Now compute

‖1 − u‖2 = ‖(1 − u∗)(1 − u)‖ = ‖2 · 1 − u− u∗‖(2.1)

= 2‖1 − Re(u)‖
= 2‖1 − |v|‖(2.2)

But v∗v = 1 − (p − q)2 is a positive operator of norm at most one, so the same is
true of |v|. Since (1− t) ≤ 1− t2 on [0, 1], the functional calculus implies that (2.2)
is less than or equal to

2‖1 − |v|2‖ = 2‖(p− q)2‖ = 2‖p− q‖2.

It follows that (2.1) is bounded by 2‖p− q‖2 as required. �
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Corollary 2.2. If A is separable, then V (A), K00(A), and K0(A) are countable.

We can also use the functional calculus to prove that a self-adjoint element which
is nearly idempotent, is close to a projection.

Lemma 2.3. Suppose a = a∗ in A and that ‖a2−a‖ < 1
4 . Then there is a projection

p ∈ A such that ‖a− p‖ < 1
2 .

Proof. We may replace A with the subalgebra C∗({ a }) generated by a. Recall that
the spectral theorem implies that

C∗({ a }) ∼= C0

(
σ(a)

)
:= { f ∈ C

(
σ(a)

)
: f(0) = 0 }.

The norm condition on a implies that if λ ∈ σ(a), then λ 6= 1
2 , and |λ| < 3

2 . Thus

S := {λ ∈ σ(a) : |λ| > 1

2
} = {λ ∈ σ(a) : |λ| ≥ 1

2
}

is clopen in σ(a). Therefore characteristic function IS is a projection in C0

(
σ(a)

)
,

and

|λ− IS(λ)| < 1

2
for all λ ∈ σ(a).

Thus ‖ id−IS‖∞ < 1
2 and there is a projection p ∈ A such that ‖a− p‖ < 1

2 . �

The next lemma says that two projections that are approximately equivalent are
actually equivalent provided the element implementing the equivalent looks enough
like an partial isometry. Despite this awkward hypothesis, the lemma will play a
crucial rôle in Theorem 2.5.

Lemma 2.4. Suppose that p and q are projections in A. Let u ∈ A be such that

‖p− u∗u‖ < 1, ‖q − uu∗‖ < 1, and u = qup.

Then p ∼ q.

Proof. Using u = qup, we see that u∗u belongs to the unital C∗-algebra pAp. The
first equation implies that u∗u is invertible in pAp. Similarly, uu∗ in invertible in
qAq. Let z = |u|−1 in pAp, and set w := uz. Then w∗w = zu∗uz = p.

On the other hand, ww∗ ∈ qAq, and

uu∗ww∗ = uu∗uz2u∗ = u|u|2z2u∗

= upu∗ = qup3u∗q

= uu∗.

Since uu∗ is invertible in qAq, we have ww∗ = q. �

Now we want to look see how projections in direct limits of C∗-algebras behave.
For the basics and notations for direct limits, see Appendix A.4.

Theorem 2.5. Suppose that (A,ϕn) = lim
−→

(An, ϕn).

(a) If p is a projection in A, then there is a n ∈ Z+ and a projection q ∈ An
such that p ≈ ϕn(q).

(b) If p and q are projections in An, and if ϕn(p) ∼ ϕn(q) in A, then there is
a m ≥ n such that ϕnm(p) ∼ ϕnm(q) in Am.
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Proof. Fix a projection p ∈ A. We can find ak ∈ Ank
such that ϕnk(ak) → p. Since

p = p∗, we can replace ak by (ak + a∗k)/2 and assume that ak = a∗k. Since p = p2,
we also have ϕnk(a2

k) → p. Thus, ϕnk(a2
k − ak) → 0. Thus we can choose m and

a ∈ Am such that a = a∗ and

‖ϕm(a) − p‖ < 1

2
and ‖ϕm(a) − ϕm(a2)‖ < 1

4
.

By Theorem A.3, there is a n ≥ m such that

‖ϕmn(a) − ϕmn(a
2)‖ < 1

4
.

Using the functional calculus (Lemma 2.3), there is a projection q ∈ An such that
‖ϕmn(a) − q‖ < 1

2 . Therefore

‖p− ϕn(q)‖ ≤ ‖p− ϕm(a)‖ + ‖ϕm(a) − ϕn(q)‖
= ‖p− ϕm(a)‖ + ‖ϕn(ϕmn(a) − q)‖

<
1

2
+

1

2
= 1.

More functional calculus (Lemma 2.1) implies that p ≈ ϕn(q); this proves (a).
Now suppose that ϕn(p) ∼ ϕn(q) in A. Let u be a partial isometry such that

ϕn(p) = u∗u and ϕn(q) = uu∗. Notice that

u = uu∗u = uϕn(p) = ϕn(q)u.

Let vk ∈ Ank
be such that ϕnk(vk) → u. We can replace vk with ϕnnk

(q)vkϕnnk
(p),

so that we can assume ϕnk(vk) → u and ϕnnk
(q)vkϕnnk

(p) = vk. Since we have

ϕn(p) = lim
k
ϕnk(v∗kvk) and ϕn(q) = lim

k
ϕnk(vkv

∗
k),

we can find k ≥ n and v ∈ Ak such that

v = ϕnk(q)vϕnk(p),

‖ϕn(p) − ϕk(v∗v)‖ = ‖ϕk(ϕnk(p) − v∗v)‖ < 1, and

‖ϕn(q) − ϕk(vv∗)‖ = ‖ϕk(ϕnk(q) − vv∗)‖ < 1.

Since

‖ϕk(ϕnk(p) − v∗v)‖ = lim
r

‖ϕkr(ϕnk(p) − v∗v)‖ = lim
r

‖ϕnr(p) − ϕkr(v)
∗ϕkr(v)‖,

we can find a m ≥ k and w = ϕkm(v) such that

‖ϕnm(p) − w∗w‖ < 1 and ‖ϕnm(q) − ww∗‖ < 1,

and

w = ϕkm(v) = ϕkm
(
ϕnk(q)vϕnk(p)

)
= ϕnm(q)wϕnm(p).

Now the clever computations in Lemma 2.4 imply that ϕnm(p) ∼ ϕnm(q) in Am.
This completes the proof. �
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3. The continuity of K0

One of the most important functorial properties of K0 is that it respects direct
limits of C∗-algebras — this is what is meant by the phrase “K0 is continuous”. To
make this precise we will need to define both direct limits of sequences of semigroups
and groups. A direct limit in any category is defined as follows. Let {Gn }∞n=1 be
a sequence of objects, and τn : Gn → Gn+1 morphisms. A family of morphisms
hn : Gn → H is called compatible if

(3.1) Gn
τn //

hn   B
BB

BB
BB

B
Gn+1

hn+1||yy
yy

yy
yy

H

commutes for all n. Notice that if, for m ≥ n, we define τnm = τm−1 ◦ · · · ◦ τn+1 ◦ τn
and τnn = idGn

, then (3.1) is equivalent to hm ◦ τnm = hn for all m ≥ n. An object
G together with compatible homomorphisms τn : Gn → G is called a direct limit
of {Gn, τn } if whenever hn : Gn → H are a compatible family of morphisms, then
there is a unique morphism h : G→ H such that

G

h

��

Gn

τn

>>||||||||

hn   B
BB

BB
BB

B

H

commutes. A direct limit, if it exists, is unique up to isomorphism.
In the category of sets, where the morphisms are just functions, we can form a

direct limit as follows. Let
∞∐

n=1

Gn = { (n, x) : x ∈ Gn }

be the disjoint union. Then there is a smallest equivalence relation on
∐
Gn such

that (n, x) ∼ (n+ 1, τn(x)). It is not hard to see that

(n, x) ∼ (m, y) ⇐⇒ there is a k ≥ max{m,n } such that τnk(x) = τmk(y).

Let G be the quotient space
∐
Gn/∼, and let [n, x] be the class of (n, x) in G, then

we can define τn : Gn → G by τn(x) = [n, x]. To see that (G, τn) is an inductive
limit, let hn : Gn → Y be a compatible family of functions. Notice that if n ≤ m,
then τn(x) = τm(x′) if and only if x′ = τnm(x). Thus we can define h : G→ Y by
h
(
τn(x)

)
= hn(x). Thus inductive limits exist in the category of sets and maps.5

Lemma 3.1. Every direct system {Gn, τn } of abelian groups (semigroups) has a
direct limit (G, τn) := lim

−→
(Gn, τn), which is unique up to isomorphism.

5Inductive limits also exist in the category of topological spaces and continuous maps. We
simply equip G with the topology where V is open in G if and only if (τn)−1(V ) is open in Gn

for all n. Then the maps constructed above are all continuous.
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Sketch of Proof. Let (G, τn) the direct limit of {Gn, τn } as sets. If each Gn is a
semigroup, then we can define an associative operation on G as follows:

[n, x] + [m, y] := [k, τnk(x) + τmk(y)],

where k ≥ max{n,m }. The maps τn are clearly additive. If each Gn is a group,
then G is a group with identity equal to [n, 0] and −[n, x] = [n,−x]. That G has
the appropriate universal property is checked as above. �

In the category of groups, there is another proof.

Sketch of Alternate Proof. Let

G1 = { (xi) ∈
∏

Gi : τn(xn) = xn+1 for all sufficiently large n }.
Let F = { (xi) ∈ G1 : xn = 0 for all sufficiently large n }. Then we can set
G = G1/F with τn : Gn → G defined by

τn(x)(m) =

{
τnm(x) if m ≥ n, and

0 otherwise.

The rest is routine. �

Remark 3.2. Note that we have G =
⋃
n τ

n(Gn) and that τn(a) = τm(b) if and
only if there is a k ≥ max{n,m } such that τnk(a) = τmk(b).

Example 3.3. Let Gn = Z for all n, and let τn(m) := s(n)m, where s : Z+ → Z+ is
a given function. Let s!(n) := s(1)s(2) · · · s(n), and define

Z(s) := {m/s!(n) : m ∈ Z and n ∈ Z+ }
= {m/pn1

1 pn2
2 · · · pnk

k : m ∈ Z and pj a prime

such that p
nj

j | s!(n) for some n }.
If τn(m) := m/s!(n), then (Z(s), τn) equal to lim

−→
(Gn, τn).

Proof. We just have to see that Z(s) has the right universal property! So, let
hn : Z → H be a family of compatible homomorphisms. Thus if k ≥ n we have

hn(m) = hk
(
τnk(m)

)
= hk

( s!(k)
s!(n)

m
)
.

In other words, if m/s!(n) = m′/s!(k), then hn(m) = hk(m
′), Thus we can define

h : G→ H by

h
( m

s!(n)

)
= hn(m). �

The universal property approach can be quite helpful.

Example 3.4. Suppose that (G, τn) = lim
−→

(Gn, τn). Suppose that hn : Gn → H is

a family of compatible homomorphisms, and that h : G → H is the corresponding
homomorphism. Notice that τn(kerhn) ⊂ kerhn+1, and τn(kerhn) ⊂ kerh. Then

(kerh, τn) = lim
−→

(kerhn, τn).

Proof. Suppose that ρn : kerhn → K are compatible homomorphisms. Note that
kerh =

⋃
τn(kerhn). If m ≤ n and τn(a) = τm(b), then Remark 3.2 implies there

is a k ≥ n such that τnk(a) = τmk(b). Thus, ρn(a) = ρm(b), and we can define
ρ : kerh→ K by ρ

(
τn(a)

)
= ρn(a). �
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Example 3.5. Suppose that {Vn, τn } is direct sequence of semigroups with identi-
ties. Let (V, τn) = lim

−→
(Vn, τn). Then

(
G(V ),G(τn)

)
= lim

−→

(
G(Vn),G(τn)

)
.

Proof. Suppose that we have compatible group homomorphisms hn : G(Vn) → H.
Define h′n : hn ◦ ιVn

. Then the h′n are compatible with the τn:

Vn h′

n

��

ιVn

$$J
J

J
J

J

τn

��

G(Vn)

G(τn)

���
�
�
�
�
�
�

hn

##H
H

H
H

H

H

G(Vn+1)

hn+1

;;v
v

v
v

v

Vn+1

hn+1

::u
u

u
u

u
h′

n+1

LL

Therefore, there is a semigroup homomorphism h : V → H such that h◦τn = h′n for
all n. I claim that G(h) : G(V ) → H has the right property: namely, G(h)◦G(τn) =
hn. However, this follows from chasing around the following diagram:6

G(G)
G(h) // H

V

ιV

bbF
F

F
F

h

>>~
~

~
~

Vn

τn

OO�
�
�

ιVn

||y
y

y
y

h′

n

GG�
�

�
�

�
�

�
�

G(Vn)

G(τn)

OO

hn

PP

�

These observations about direct limits, now allow us to prove the following result
which is what is meant by the continuity of K0.

Theorem 3.6. Suppose that (A,ϕn) is the direct limit of {An, ϕn }. Then
(
K0(A),K0(ϕ

n)
)

= lim
−→

(
K0(An),K0(ϕn)

)
.(3.2)

6Of course, it is also a direct consequence of the fact that G is a functor from semigroups to
groups and that G(h′

n) = hn.
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The same is true for V and K00:

(
V (A), V (ϕn)

)
= lim

−→

(
V (An), V (ϕn)

)
(3.3)

(
K00(A),K00(ϕ

n)
)

= lim
−→

(
K00(An),K00(ϕn)

)
.(3.4)

We need a preliminary result before we give the proof of the “of course it’s true”
variety. Recall that if ϕ : A → B is a ∗-homomorphism, then ϕ1 : A1 → B1 is
defined by ϕ1(a+ λ) := ϕ(a) + λ.

Lemma 3.7. Suppose that (A,ϕn) is the C∗-direct limit of {An, ϕn }. Then
(A1, (ϕn)1) is the direct limit of {A1

n, ϕ
1
n }.

Proof. We just have to show that (A1, (ϕn)1) has the right universal property. So,
suppose that αn : A1

n → B are ∗-homomorphisms which are compatible with the
ϕ1
n’s: that is, αn = αn+1 ◦ ϕ1

n for all n. It follows that the αn are compatible with
the ϕn’s; thus the universal property of A implies that there is a ∗-homomorphism
ϕ : A→ B such that αn = ϕ◦ϕn. Since αn(0+1) = αm(0+1) for all n andm, we can
denote the common value by b; note that b is a projection. Furthermore, b acts as
the identity on

⋃
n αn(An) = ϕ

(⋃
n ϕ

n(An)
)
. It follows that b acts as the identity on

ϕ(A). Thus, we can define a ∗-homomorphism ϕ̃ : A1 → B by ϕ̃(a+λ) := ϕ(a)+λb.
Thus ϕ̃◦(ϕn)1(a+λ

)
= ϕ

(
(ϕn(a)

)
+λb = αn(a)+λb = αn(a+λ), as required. Note

that ϕ̃ is uniquely determined since
⋃
ϕn(An) dense in A, which forces

⋃
(ϕn)1(A1

n)
to be dense in A1. �

Proof of Theorem 3.6. I claim it will suffice to prove (3.3). If (3.3) holds, then
Example 3.5 implies that K00 is continuous (i.e., (3.4) holds). In particular, we can
combine this with Lemma 3.7 to conclude that

(
K00(A

1),K00((ϕ
n)1)

)
= lim

−→

(
K00(A

1
n),K00(ϕ

1
n)
)
.

Let πn : A1
n → C be the natural map. The maps K00(πn) are compatible with the

K00(ϕ
1
n), and so there is a unique map τ : K00(A

1) → Z such that τ ◦K00((ϕ
n)1) =

K00(πn). If π : A1 → C is the natural map, then π ◦ (ϕn)1 = πn; thus, we have
τ = K00(π). Since K0(A) = kerK00(π) and K0(An) = kerK00(πn), the sufficiency
of the claim is given by Example 3.4.

To prove (3.3), let (H,ψi) be the direct limit semigroup of {V (Ai), V (ϕi) }. The
functorality of V implies that V (ϕi) : V (Ai) → V (A) are compatible with the
V (ϕi). The universal property of H implies that there is a semigroup homomor-
phism Λ : H → V (A) such that

(3.5) H

Λ

��

V (Ai)

ψi

::uuuuuuuuu

V (ϕi) ##H
HH

HH
HH

HH

V (A)

commutes. It suffices to prove that Λ is a bijection. To do this, we will apply
Theorem 2.5 to Mn(A) = lim

−→k
Mn(Ak).
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Let p be a projection in Mn(A). Theorem 2.5 allows us to find a projection
q ∈Mn(Ak) such that p ∼ ϕk(q). Thus,

[p] = [ϕk(q)] = V (ϕk)
(
[q]
)

= Λ
(
ψk([q])

)
,

and it follows that Λ is surjective.
Now suppose that x, y ∈ H satisfy Λ(x) = Λ(y). We can assume that there are

projections p and q in Mn(Aj) such that

x = ψj
(
[p]
)

and y = ψj
(
[q]
)
.

The commutativity of (3.5) implies that ϕj(p) and ϕj(q) define the same class in
V (A). Increasing n if necessary, we can assume that ϕj(p) ∼ ϕj(q) in Mn(A).
Thus, Theorem 2.5 implies that there exists m ≥ j such that

ϕjm(p) ∼ ϕjm(q) in Mn(Am).

Thus [ϕjm(p)] = [ϕjm(q)] in V (Am). Therefore,

x = ψj
(
[p]
)

= ψm ◦ V (ϕjm)
(
[p]
)

= ψm
(
[ϕjm(p)]

)

= ψm
(
[ϕjm(q)]

)
= ψj

(
[q]
)

= y.

Thus Λ is injective. This completes the proof. �

Now we can give one of the “basic” examples in the subject. I would be interested
to find a proof of this corollary which did not require the overhead of Theorem 3.6.

Corollary 3.8. K0

(
K(H)

) ∼= Z.

First Proof. The only content is when dimH = ∞. Let ϕn : Mn →Mn+1 be given
by ϕn(a) := a ⊕ 0. Then K(H) = lim

−→
(Mn, ϕn). Since V (ϕn)

(
[en11]

)
= [en+1

11 ], it

follows that K00(ϕn) = idZ. Now the result is immediate from Theorem 3.6. �

Since K00(A) is much more tractable than K0(A), the following corollary of
Theorem 3.6 is particularly nice.7 Notice that if A is the inductive limit of unital
C∗-algebras, for example an AF -algebra, then A need not be unital itself. But
A will have an approximate identity { qn }∞n=1 consisting of projections. To see
this, just let qn = ϕn(1n) where 1n is the identity in An. If { qn }∞n=1 is such
an approximate identity, then the definition of approximate identity requires that
qn ≤ qn+1 as positive elements, but in fact it is an exercise to see that qn ≤ qn+1

as projections; that is, qn+1qn = qn.
8

Corollary 3.9. Suppose that A has a countable approximate identity { qn } consist-
ing of projections. Then the natural map jA : K00(A) → K0(A) is an isomorphism.

Proof. We have A =
⋃
qnAqn and qn+1 ≥ qn implies that qnAqn ⊂ qn+1Aqn+1.

Thus (A,ϕn) = lim
−→

(An, ϕn), where the ϕn and ϕn are the appropriate inclusion

maps, and An := qnAqn. Since each qnAqn is unital, the natural maps jAn
:

7Since Davidson [Dav96] uses K00 in place of K0, this is particularly important for his

treatment.
8Suppose p − q ≥ 0 in A. We may as well assume that A is a subalgebra of B(H). Then for

any vector h ∈ H, we have ‖qh‖2 = (qh | qh) = (qh | h) ≤ (ph | h) = ‖ph‖2 ≤ ‖p‖. It follows that
qh = h implies that ph = h; this means pq = q.



LECTURE NOTES ON K-THEORY 15

K00(An) → K0(An) are isomorphisms. Thus, we have the following commutative
(infinite) diagram:

. . . // K00(An)
K00(ϕn)//

jAn

��

K00(An+1)

K00(ϕ
n+1)

**
//

jAn+1

��

. . . K00(A)

jA

��
. . . // K0(An)

K0(ϕn)// K0(An+1)

K0(ϕ
n+1)

44
// . . . K0(A).

Now general nonsense implies that K00(ϕ
n)(x) 7→ K0(ϕ

n)
(
jAn

(x)
)

defines an iso-

morphism of K00(A) onto K0(A) (with inverse K0(ϕ
n)(x) 7→ K00(ϕ

n)
(
j−1
An

(x)
)
).

Since K00(ϕ
n)
(
jAn

(x)
)

= jA
(
K00(ϕ

n)(x)
)
, we conclude this isomorphism is jA :

K00(A) → K0(A), and jA is an isomorphism as claimed. �

Second proof of Corollary 3.8. Since K(H) has an approximate identity of projec-
tions, Corollary 3.9 applies. But K00(K(H)) is clearly isomorphic to Z. �

Example 3.10. Let s : Z+ → Z+ be a given function. For convenience, define
s(0) = 1, and let s!(n) := s(1)s(2) . . . s(n). Define ϕn : Ms!(n−1) →Ms!(n) by

ϕn(m) := m⊕m⊕ · · · ⊕m︸ ︷︷ ︸
s(n)-times

.

We let Ms be the inductive limit of {An, ϕn }, where A1 = C and An = Ms!(n−1):

C
ϕ1 // Ms!(1)

ϕ2 // Ms!(2)
ϕ3 // . . . .

Then K0(ϕn)
(
[en11]

)
= s(n) · [en+1

11 ], and K0(Ms) is the direct limit

Z
×s(1) // Z

×s(2) // Z // . . . ,

which is Z(s) as in Example 3.3.

4. Stability

In the this section, we want to consider the C∗-tensor product of a C∗-algebra
A with the compact operators K on a separable infinite dimensional Hilbert space.
For the full story, consult Appendix B of [RW98]. The basic idea is as follows. We
may as well assume that A is a C∗-subalgebra of B(V) for some Hilbert space V, and
that K is the algebra of compact operators on a Hilbert space H with orthonormal
basis {hi }∞i=1. If T ∈ B(V) and S ∈ B(H), then

T ⊗ S(v ⊗ h) := Tv ⊗ Sh

defines a bounded operator T ⊗ S in on the Hilbert space tensor product V ⊗ H.
It can be shown that ‖T ⊗ S‖ = ‖T‖‖S‖ [RW98, Lemma B.2]. Furthermore, the
map (T, S) 7→ T ⊗ S induces an injective map of the algebraic tensor product
B(V) ⊙ B(H) into B(V ⊗ H) [RW98, Lemma B.3]. If eij := hj ⊗ h̄i is the usual
matrix unit in B(H) (i.e., the rank-one operator from the span of hj to the span of
hi), then (aij) 7→

∑
aij ⊗ eij defines a ∗-isomorphism of Mn(A) onto a subalgebra
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of B(V ⊗ H) which, for the purposes of this discussion, we define to be A ⊗Mn.
Note that A⊗Mn ⊂ A⊗Mn+1. We define

A⊗K =
⋃
A⊗Mn;

thus

(A⊗K, ϕn) = lim
−→

(An ⊗Mn, ϕn),

where the ϕn and the ϕn are just the inclusion maps.9 Let αn : A → A ⊗Mn

be defined by αn(a) := a ⊗ e11. We get a map10 α : A → A ⊗ K defined by
α(a) = a⊗ e11.

Theorem 4.1. The map α : A → A ⊗ K sending a to a ⊗ e11 induces a natural
isomorphism K0(α) : K0(A) → K0(A⊗K)

The proof relies on the following “finite dimensional version”. This comment
merely reflects the facts that Mr is the compact operators on a r-dimensional space,
and that Mr(A) is isomorphic to A⊗Mr, and the natural isomorphism intertwines
αr and αr, where αr is defined below.

Proposition 4.2. Let r ≥ 2. Define αr : A→Mr(A) by αr(a) := a⊕ 0r−1. Then
K0(αr) : K0(A) → K0

(
Mr(A)

)
is an isomorphism.

Proof. Fix n ∈ Z+ and let ζ : Mn

(
Mr(A

1)
)
→ Mnr(A

1) be the “obvious” isomor-

phism ([RW98, Example B.19]). Let α1
r : A1 → Mr(A)1 be the natural extension

and note that if p is a projection in Mn(A
1), then11

(4.1) ζ
(
α1
r(p)

)
≈ p⊕ (r − 1) · ι

(
π(p)

)
,

where the unitary implementing the equivalence is the permutation matrix associ-
ated to(

1 2 . . . r r + 1 r + 2 . . . 2r (n − 1)r + 1 (n − 1)r + 2 . . . nr

1 r + 1 . . . (n − 1)r + 1 2 r + 2 . . . (n − 1)r + 2 r 2r . . . nr

)
.

Now we want to see that K0(αr) is bijective. (Keep in mind that K0(αr) is the
restriction of K00(α

1
r).) Suppose that K0(αr)

(
[p] − [q]

)
= 0 in K0

(
Mr(A)

)
. Then

we may assume (Proposition 1.19) that p, q ∈Mn(A
1) and that there exists m such

that

α1
r(p⊕ 1m) = α1

r(p) ⊕ 1m ∼ α1
r(q) ⊕ 1m = α1

r(q ⊕ 1m).

Since ζ is a isomorphism, (4.1) implies that

(4.2) p⊕ 1m ⊕ (r − 1) · ι
(
π(p) ⊕ 1m

)
∼ q ⊕ 1m ⊕ (r − 1) · ι

(
π(q) ⊕ 1m

)
.

9It is not obvious that our construction of A ⊗ K is independent of how we represent A

as operators on Hilbert space. None the less, it is independent, and this follows from [RW98,
Theorem B.9]. In our case, it is not so difficult to see that A ⊗ K as defined above is the direct
limit of the Mn(A), and so is uniquely defined.

10This map is not “natural”: it depends on the choice of h1.
11To see where (4.1) comes from consider that case n = r = 2. Then α1

2
maps

„
a + α b + β
c + γ d + δ

«
7→

0
BB@

a + α 0 b + β 0
0 α 0 β

c + γ 0 d + δ 0
0 γ 0 δ

1
CCA ≈

0
BB@

a + α b + β 0 0
c + γ d + δ 0 0

0 0 α β
0 0 γ δ

1
CCA
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Since [p]−[q] ∈ K0(A), we have π(p) ∼ π(q), and it follows from (4.2) that [p]−[q] =
0 in K0(A). Thus K0(αr) is injective.

But surjectivity is easy. If p is a projection in Mn

(
Mr(A)

)
, then

ζ
(
α1
r(ζ(p))

)
≈ ζ(p) ⊕ (r − 1) · ι

(
π(ζ(p))

)
.

Then, since ζ−1
(
ι
(
π(ζ(p))

))
= ι
(
π(p)

)
,

α1
r

(
ζ(p)

)
≈ p⊕ (r − 1) · ζ−1

(
ι
(
π(z(p))

))

≈ p⊕ (r − 1) · ι
(
π(p)

)

Consequently, if [p] − [q] ∈ K0

(
Mr(A)

)
, then π(p) ∼ π(q), and it follows that

K0(αr)
(
[ζ(p)] − [ζ(q)]

)
= [α1

r(ζ(p))] − [α1
r(ζ(q))] = [p] − [q] �

Proof of Theorem 4.1. Since the diagram

// A⊗Mn

ϕn // A⊗Mn+1
//

ϕn+1

**
. . . A⊗K

// A

αn

OO

id // A

αn+1

OO

//

id

55. . . A

α

OO

commutes, the continuity of K0 (Theorem 3.6) and the isomorphism of Mr(A) and
A⊗Mr implies that we obtain a commutative diagram

// K0(A⊗Mn)
K0(ϕn)// K0(A⊗Mn+1) //

K0(ϕ
n+1)

,,
. . . K0(A⊗K)

// K0(A)

K0(αn)

OO

id // K0(A)

K0(αn+1)

OO

//

id

33. . . K0(A)

K0(α)

OO

Since each K0(αn) is an isomorphism by Proposition 4.2, it follows that K0(α) is
too.

If ϕ : A→ B is a homomorphism, then the maps ϕ : Mn(A) →Mn(B) induce a
homomorphism ϕ⊗ id : A⊗K → B ⊗K such that the diagram

A
ϕ //

αA

��

B

αB

��
A⊗K ϕ⊗id // B ⊗K

commutes. The naturality of K0(α) then follows by functorality:

K0(A)
K0(ϕ) //

K0(αA)

��

K0(B)

K0(αB)

��
K0(A⊗K)

K0(ϕ⊗id)// K0(B ⊗K) �
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5. Homotopy

Definition 5.1. Two projections p and q in a C∗-algebra A are homotopic if there
is a continuous projection-valued function r : [0, 1] → A such that r0 = r and
r1 = q. In this case we write p ≡ q.

Our first task is to see that homotopic projections are necessarily unitary equiv-
alent. This requires a bit of overhead which will be of use latter on.

Lemma 5.2. Suppose that p is a projection in a C∗-algebra A. Let

N := { q ∈ A : q = q∗ = q2 and ‖q − p‖ < 1 }.
Then there is a continuous map q 7→ uq from N to the unitaries in Ã such that

(5.1) up = 1 and q = uqpu
∗
q .

If A = Mn(B
1) and π(p) = pm for some m ≤ n, then we can assume π(uq) = 1n

whenever π(q) = pm.

Proof. For each q ∈ N , let vq := 2q − 1 and zq := vqvp + 1. Note that vq is a
self-adjoint unitary (aka a symmetry). A straightforward calculation reveals that

(5.2) qzq = zqp.

And

‖zq − 2‖ = ‖vqvp − 1‖ = ‖vq(vp − vq)‖
≤ ‖vp − vq‖
= 2‖q − p‖.

Since ‖q− p‖ < 1 if q ∈ N , this implies that zq is invertible in Ã, and (5.2) implies
that q = zqpz

−1
q . Then uq := zq|zq|−1 is a unitary, and it is not hard to check that

q = uqpu
∗
q [WO93, Lemma 5.2.4].

Notice that ‖zq − zr‖ = ‖vqvp − vrvp‖ ≤ ‖vq − vr‖ = 2‖q − r‖. Thus q 7→ zq is

continuous. Since z 7→ z|z|−1 is continuous12 on on the invertible elements of Ã,
(5.1) follows.

To prove the final assertion, notice that π(vq) = 1m⊕−1n−m. Thus, π(zq) = 2·1n
and π(uq) = 1n as required. �

Corollary 5.3. Suppose that t 7→ rt is a continuous projection-valued function
from [0, 1] to A. Then there is a continuous unitary-valued function u from [0, 1]

to Ã such that u0 = 1 and rt = utr0u
∗
t . If A = Mn(B

1) and π(rt) = pm for some
m ≤ n and all t, then we can assume that π(ut) = 1n for all t.

Proof. If ‖r0−rt‖ < 1 for all t, then the result follows immediately from Lemma 5.2.
Otherwise, we can choose 0 = t0 < t1 < · · · < tn = 1 such that ‖rti−1

− rt‖ < 1

if t ∈ [ti−1, ti] and such that there is a continuous unitary-valued function ui from

[ti−1, ti] to Ã such that uiti−1
= 1 and rt = uitrti−1

(uit)
∗ for t ∈ [ti−1, ti]. The result

follows by gluing together the ui:

ut := uitu
i−1
ti−1

· · ·u1
t1

if t ∈ [ti−1, ti]. �

12If f ∈ C0(R), then the map a 7→ f(a) is easily seen to be continuous from the self-adjoint
elements in A to A.
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Proposition 5.4. Suppose that p and q are projections in A. If p ≡ q, then p ≈ q.
On the other hand, if p ≈ q, then p ⊕ 0 ≡ q ⊕ 0 in M2(A). In particular, V (A) is
also the set of ≡ equivalence classes in P [A].

Since r0 ≡ r1 in Corollary 5.3, the first assertion in Proposition 5.4 follows. The
second assertion requires some results about unitaries which will also be quite useful
when we turn to the definition of K1.

First we need some notation from [WO93]. We let U(A) be the group of unitary

elements in Ã, and GL(A) the group of invertible elements in Ã. Then we also use

GLn(A) := GL
(
Mn(Ã)

)

Un(A) := U
(
Mn(Ã)

)

M1
n(A) := { a ∈Mn(A

1) : π(a) = 1n }
GL1

n(A) := { a ∈ GLn(A
1) : π(a) = 1n }

U1
n(A) := {u ∈ Un(A

1) : π(u) = 1n }.
In particular, U1(A) = U(A). Elements of M1

n(A), GL1
n(A), and U1

n(A) are called
normalized. Notice that if n ≥ 2, then Mn(A

1) ! Mn(A)1. However, we do always
have GL1

n(A) = GL1
1

(
Mn(A)

)
and U1

n(A) = U1
1

(
Mn(A)

)
.

Notice that M1
n(A) is not an algebra — or even a vector space! It is a semigroup

and both GL1
n(A) and U1

n(A) are subgroups.

Lemma 5.5. Suppose that A is a C∗-algebra.

(a) GL1
n(A) is open in M1

n(A), as well as locally convex and locally path con-
nected.

(b) U1
n(A) is a deformation retract of GL1

n(A).
(c) U1

n(A) is locally path connected.

Similar statements hold for GLn(A) and Un(A).

Remark 5.6. It follows that the connected components and path components of
Un(A) (U1

n(A), GLn(A), or GL1
n(A)) coincide. The notation Un(A)0 (U1

n(A)0,
GLn(A)0, or GL1

n(A)0) is used to denote the connected component of the identity.

Proof. Let B be a unital C∗-algebra — I have in mind Mn(A
1). Suppose that

x ∈ GL(B) and ‖a‖ < ‖x−1‖−1. Then

‖1n − (1n − x−1a)‖ < 1;

thus 1n − x−1a ∈ GL(B). Therefore x − a ∈ GL(B). It follows that if ‖x − y‖ <
‖x−1‖−1 and t ∈ [0, 1], then we have x− t(y− x) ∈ GL(B). If x, y ∈ GL1

n(A), then
so is x− t(y − x). This proves (a).

We now want to define F : GL(B) × [0, 1] → GL(B) such that

F (z, 1) = z for all z ∈ GL(B),

F (z, 0) ∈ U(B) for all z ∈ GL(B), and

F (u, t) = u for all u ∈ U(B) and t ∈ [0, 1].

If z ∈ GL(B), then so is z∗z and z 7→ |z|−1 is continuous. Furthermore, u = z|z|−1

is unitary: it is certainly invertible and

u−1 = |z|z−1 = |z|−1|z|2z−1 = |z|−1z∗zz−1 = |z|−1z∗ = u∗.
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Since |z| ≥ 0 and 0 /∈ σ(|z|), we can define

F (z, t) = z|z|−1 exp
(
t log |z|

)

If B = Mn(A
1) and π(z) = 1n, then π

(
F (z, t)

)
= π(z)|π(z)|−1 exp

(
t log |π(z)|

)
=

1n.
This proves (b), and (c) follows from (b). �

Remark 5.7. One can improve on (c) above. If u, v ∈ U(A) satisfy ‖u − v‖ < 2,
then u and v are homotopic in U(A).

Proof. Since uv∗ ∈ U(A), σ(uv∗) ⊂ T. Since ‖u−v‖ = ‖uv∗−1‖ < 2, −1 /∈ σ(uv∗).

Therefore log uv∗ is well-defined in Ã, and we can define

ut := exp
(
t log uv∗

)
v.

Since 1 = exp(t log z) exp(t log z) if z ∈ T, it follows that each ut is unitary. This
suffices as u0 = v and u1 = u. Furthermore, if u and v are normalized, so is ut. �

Remark 5.8. Thus two unitaries can fail to be homotopic only when they are max-

imally far apart: ‖u− v‖ = 2. If Ã is closed under Borel functional calculus, then
the above proof shows that U(A) is path connected. This means, as we shall see,
that K1(A) ∼= { 0 } for all von Neumann algebras.

Remark 5.9. If u and v are unitaries in Ã which are homotopic in GL(A), then
they are homotopic in U(A).

Proof. Apply the retraction to the homotopy. �

Recall that an elementary row operation on a matrix M ∈ Mn(A) consists of
one of the following:

(a) Multiply a row by any element in GL(A)0.
(b) Add a multiple of one row of M to a different row of M .
(c) Interchange two rows of M .

Of course, there is a corresponding notion of elementary column operations. A
matrix E ∈Mn(A) is called an elementary matrix if it is obtained from the identity
1n via one of the elementary row operations above. A crucial observation is that if
E is an elementary matrix, then EM is the matrix obtained from M via the same
elementary row operation as that which defines E.

Theorem 5.10. Suppose that x and y are elements of GLn(A), and that y can
be obtained from x via a finite sequence of elementary row and column operations.
Then x and y are homotopic in GLn(A). In particular, if u and v are invertible

(resp., unitary) in Ã, then the 2 × 2-matrices
(
uv 0
0 1

) (
vu 0
0 1

) (
u 0
0 v

)
and

(
v 0
0 u

)

are mutually homotopic in GL2(A) (resp., U2(A)). If u and v are normalized, then
these matrices are mutually homotopic in GL1

2(A) (resp., U1
2(A)).

Proof. It suffices to see that any elementary matrix is homotopic to the identity.
This is straightforward. For example, to see that

(
0 1
1 0

)
is homotopic to

(
1 0
0 1

)
,

consider

ut :=

(
cos
(
π
2 t
)

sin
(
π
2 t
)

sin
(
π
2 t
)

cos
(
π
2 t
)
)
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To establish the statement about normalized homotopies, we have to write down
explicit ones. To do this, let wt := (u⊕1)·ut·(v⊕1)·u∗t and zt := ut·(u⊕v)·u∗t . Then
w is a homotopy between

(
u 0
0 v

)
and

(
uv 0
0 1

)
. Similarly, z is a homotopy between(

v 0
0 u

)
and

(
u 0
0 v

)
. If u and v are normalized, then π(wt) = π(utu

∗
t ) = 12 = π(zt). �

We will invoke the above result mostly via the following corollary.

Corollary 5.11. If u ∈ U(A), then

(
u 0
0 u∗

)
is homotopic to the identity in U2(A).

If u is normalized, then the homotopy can be taken in U1
2(A).

Proof of Proposition 5.4. We only have to verify the last statement. So, suppose
u ∈ U(A) satisfies q = upu∗. By Corollary 5.11, we can choose a unitary homotopy
wt from

(
u 0
0 u∗

)
to 12. Then pt := wt(p⊕ 0)w∗

t is a continuous path of projections
in M2(A) connecting p⊕ 0 and q ⊕ 0. �

If A and B are C∗-algebras and γ : A → C
(
[0, 1], B

)
is a homomorphism, then

we’ll write ǫt : C
(
[0, 1], B

)
→ B for the evaluation map and γt for the composition

ǫt ◦ γ.
Definition 5.12. We say that two homomorphisms α : A→ B and β : A→ B are
homotopic if there is a homomorphism γ : A → C

(
[0, 1], B

)
such that γ0 = α and

γ1 = β. In this case we write α ∼h γ. We say that α : A → B is an equivalence if
there exists a homomorphism β : B → A such that α ◦ β ∼h idB and β ◦ α ∼h idA.
We say that α is a deformation if there exists β such that β ◦ α ∼h idA and
α ◦β = idB . In this event, we say that B is a deformation retract of A. Finally, we
say that A is contractible if idA ∼h 0.

Example 5.13. Note that C is not contractible as a C∗-algebra; this will follow
from Corollary 5.16. If X is a compact contractible space, then D is a deformation
retract of C(X,D). In particular, C is a deformation retract of C(X).

Proof. Fix x0 ∈ X and let ϕ : [0, 1] × X → X be a continuous function such
that ϕ(0, x) = x and ϕ(1, x) = x0 for all x ∈ X. Define α : C(X,D) → D by
α(f) := f(x0) and β : D → C(X,D) by sending d to the constant function x 7→ d.
Clearly, α ◦ β = idD. If γ : C(X,D) → C

(
[0, 1], C(X,D)

)
is defined by

γt(f)(x) = f
(
ϕ(t, x)

)
,

then γ0 = idC(X,D) while γ1 = β ◦ α. �

Remark 5.14. If X is a locally compact contractible space which is not compact,
then β will not map into C0(X,D). In fact, C0(X,D) will, in general, not retract
onto D. As we shall see in due course, C can not be a deformation retract of
C0(R) = C0(R,C) ∼= C0

(
(0, 1)

)
.13 D

Theorem 5.15. Suppose that α and β are homomorphisms from A to B. If α ∼h β,
then K0(α) = K0(β).

Proof. Suppose that x = [p] − [q] in K0(A), and let γt be a homotopy from α
to β. Then γ1

1 is a homotopy from α1 to β1. In particular, α1(p) ≡ β1(p) and

13Ref needed
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α1(q) ≡ β1(q). Thus

K0(α)(x) = [α1(p)] − [α1(q)] = [β1(p)] − [β1(q)]

= K0(β)(x). �

Corollary 5.16. If α : A → B is a homotopy equivalence, then K0(α) is an iso-
morphism of K0(A) onto K0(B). In particular, K0(A) = { 0 } if A is contractible.

Proof. The zero map clearly induces the zero map on K-theory. �

Before concluding this section, I want to recall the connections between invertible
elements in A and exponentials in A. If a ∈ A, then even if a is not normal (so that
the usual functional calculus does not apply),

exp(a) := 1 + a+
a2

2!
+ · · · =

∞∑

n=o

an

n!

converges in Ã to an element in GL(A). Of course, if a is normal, then this is the
same element defined by the functional calculus, so there is no harm in using the
same notation. Then exp(A) is defined to be the subgroup of GL(A) generated be
{ exp(a) : a ∈ A }.14 It isn’t obvious that this group is closed in GL(A), but in D
fact it is open.15 Proving this requires the holomorphic functional calculus (see, for
example, [Rud73]). Let z0 = exp(a1) · · · exp(an) and suppose that

‖z − z0‖ < ‖z−1
0 ‖−1.

Let z′ = zz−1
0 . Then ‖z′ − 1‖ ≤ ‖z − z0‖‖z−1

0 ‖ < 1, so σ(z′ − 1) ⊂ B1(0) and
σ(z′) ⊂ {λ ∈ C : Re(λ) < 0 }. In particular, there is an a0 := log(z′) such that
exp(a0) = z′ [Rud73, Theorem 10.30]. Thus,

z = z′z0 = exp(a0) exp(a1) · · · exp(an) ∈ exp(A).

Lemma 5.17. For any C∗-algebra, exp(A) = GL(A)0.

Proof. Since exp(A) is both closed and open, it suffices to see that exp(A) ⊂
GL(A)0. But if z = exp(a1) · · · exp(an), then zt := exp(ta1) · · · exp(tan) is a homo-
topy connecting z to 1 in GL(A). �

Corollary 5.18. Suppose that α : A→ B is a surjective, unital, ∗-homomorphism.
If x ∈ GL(B)0 (resp., U(B)0), then there is an x′ ∈ GL(A)0 (resp., U(A)0) such
that α(x′) = x.

Proof. Let x = exp(b1) · · · exp(bn). Choose ai such that α(ai) = bi for all i. If
x′ := exp(a1) · · · exp(an), then x′ ∈ GL(A)0 and maps onto x. If x is unitary, then
we can replace x′ by u′ := x′|x′|−1. Then u′ is connected to x′ as in the proof of
Lemma 5.5, and therefore u′ ∈ GL(A)0. �

Corollary 5.19. Suppose that J is an ideal in A and that u ∈ U(Ã/J). Then there
is a unitary w ∈ U2(A)0 such that πJ(w) =

(
u 0
0 u∗

)
.

Proof. Since
(
u 0
0 u∗

)
∈ U2(Ã/J)0, the previous corollary applies. �

14Notice that in general, exp(a) exp(b) 6= exp(a + b) unless a and b commute. Thus, the set of
exponentials is not closed under multiplication.

15An open subgroup of a topological group is necessarily closed: H = G \
S

g /∈H gH.
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Remark 5.20. The holomorphic functional calculus is not to be sneezed at. Even
when A = Mn, it allows us to conclude that GLn(C)0 = GLn(C) — since the
spectrum of a matrix is always finite, it can’t separate 0 and ∞. (Notice that one
can show Un(C)0 = Un(C) using ordinary spectral theory from Linear Algebra.)

6. Half Exactness

We can now prove that an exact sequence of C∗-algebras induces what is called
a half-exact sequence of the corresponding K-groups. In this section, we will start
to adopt the standard notation α∗ for the induced group homomorphism K0(α)
corresponding to a ∗-homomorphism α.

Theorem 6.1. Suppose that

(6.1) 0 // A
α // B

β // C // 0

is an exact sequence of C∗-algebras. Then

(6.2) K0(A)
α∗ // K0(B)

β∗ // K0(C)

is exact.D It definitely is not the case that α∗ need be injective, or that β∗ need be surjec-
tive. We will give specific examples below, but the idea is that there are more

partial isometries to implement equivalences in B than in A (which corresponds to
an ideal in B), and projections in C may not lift to projections in B.

Proof of Theorem 6.1. Recall that α∗ = K0(α) is the restriction of K00(α
1) to

K0(A). If x ∈ K0(A), then Proposition 1.19 implies that we can assume x =
[p]− [pn] for p ∈Mk(A

1) and p− pn ∈Mk(A) for some k ≥ n. Since β ◦ α = 0, we
must have β1 ◦ α1(p) = pn. Thus

β∗ ◦ α∗(x) = [β1 ◦ α1(p)] − [β1 ◦ α1(pn)] = [pn] − [pn] = 0.

Thus imα∗ ⊂ kerβ∗
Now suppose that y ∈ kerβ∗ ⊂ K0(B). As above, we can assume y = [q] − [pn]

with q ∈Mk(B
1), q − pn ∈Mk(B), and k ≥ n. Since

β∗(y) = [β1(q)] − [β1(pn)] = [β1(q)] − [pn],

Proposition 1.19 implies that there is a v and m ≥ k + v such that

β1(q) ⊕ pv ≈ pn ⊕ pv in Mm(C1).

Let u ∈ Um(C1) be such that u
(
β1(q) ⊕ pv

)
u∗ = pn ⊕ pv. Corollary 5.19 implies

that there is a w ∈ U2m(B1) such that β1(w) = u⊕ u∗. Let r := w(q ⊕ pv ⊕ 0n)w
∗

in M2m(B1). Then r is a projection and

β1(r) = (u⊕ u∗)
(
β1(q) ⊕ pv ⊕ 0n

)
(u∗ ⊕ u) = pn ⊕ pv ⊕ 0n.

The exactness of (6.1) implies there is a s ∈ M2m(A1) such that r = α1(s). Re-
placing s by (s + s∗)/2, we can assume that s = s∗. Since α1 is injective, we can
assume that s = s2, and hence, that s is projection. Since [r] = [q ⊕ pv],

y = [q] − [pn] = [q ⊕ pv] − [pn ⊕ pv]

= [r] − [pn+v]

= α∗([s] − [pn+v]).
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Therefore kerβ∗ ⊂ imα∗. This completes the proof. �

Example 6.2. Consider the exact sequence

0 → K(H) → B(H) → B(H)/K(H) → 0.

Then we get the exact sequence

Z
α∗ // { 0 } β∗

// K0

(
B(H)/K(H)

)
,

and α∗ is certainly not injective.16 To see that β∗ need not be surjective, consider
B = C

(
[0, 1]

)
, A = C0

(
(0, 1)

)
, and C = C ⊕ C. Then, once17 we establish that

K0

(
C0(R)

)
= { 0 }, the exact sequence

0
α∗ // Z

β∗ // Z ⊕ Z

forces β∗ not to be surjective.

Remark 6.3. Note that Theorem 6.1 fails withK00 in place ofK0. For example, take
A = C0(R2), B = C(S2) and C = C. The K00 groups are 0, Z⊕Z and Z. (Here we
have used that nontrivial facts that K00(C(S2)) = K0(C(S2)) ∼= K0(S2) ∼= Z⊕Z.)

7. Definition of K1

It should be clear by now that unitaries play a critical rôle in the theory and
computation of K0. In this chapter we’ll get a closer glimpse of why.

Just as K0(A) is defined in terms of equivalence classes of projections in matrix
algebras over A, we want to define K1(A) in terms of homotopy classes of unitaries
in matrix algebras. We have injections of GL1

n(A) into GL1
n+1(A) and U1

n(A) into

U1
n+1(A) given by x 7→ x⊕ 1. We define

GL1
∞(A) := lim

−→
GL1

n(A) and U1
∞(A) := lim

−→
U1
n(A).

We notice that the connecting maps take the connected components GL1
n(A)0 and

U1
n(A)0 into GL1

n+1(A)0 and U1
n+1(A)0, respectively. In particular, x 7→ x ⊕ 1

induces a homomorphism of the quotient U1
n(A)/U1

n(A)0 into U1
n+1(A)/U1

n+1(A)0
and we can define K1(A) as follows.

Definition 7.1. If A is a C∗-algebra, then

K1(A) := lim
−→

U1
n(A)/U1

n(A)0.

If we define U1
∞(A)0 = lim

−→
U1
n(A)0, then it is not hard to check that

(7.1) K1(A) = U1
∞(A)/U1

∞(A)0.

Remark 7.2. If u ∈ U1
n(A), then [u] will denote the class of u in K1(A). Every

class in K1(A) has such a representative, and [u] = [v] if and only if there are
m,n, k ∈ Z+ such that u⊕ 1m ∼h v ⊕ 1n in U1

k(A).

16In fact, K0

`
B(H)/K(H)

´
= { 0 }, but this is, I think, not so easy to see.

17Well, given that K0(C(T)) ∼= Z, then K00(C0(R)1) = K0(C(T)) ∼= Z, and it is not hard to
see that K00(A1) ∼= K0(A) ⊕ Z.
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Lemma 7.3. Let u and v be in U1
n(A). If y = ι(y′), where y′ is a unitary matrix in

Mn, then yuy∗ ∈ U1
n(A) and is homotopic to u in U1

n(A). In particular, [u] = [yuy∗]
in K1(A). Furthermore, if u and v are homotopic in Un(A

1) then u and v are
homotopic in U1

n(A). In particular, [u] = [v] in K1(A)

Proof. That yuy∗ ∈ U1
n(A) is straightforward. Remark 5.20 implies that y ∼h 1n

in Un(C). The first assertion follows. Now suppose that t 7→ at is a homotopy from
u to v in Un(A

1). Let yt = ι
(
π(a∗t )

)
. Then y0 = y1 = 1n, and t 7→ ytaty

∗
t is a

homotopy from u to v in U1
n(A). �

Remark 7.4. We still need to see that the groups GL1
n(A)/GL1

n(A)0 and
U1
n(A)/U1

n(A)0 are isomorphic for n = 1, 2, . . . ,∞. This allows us to replace U
with GL in the above discussions.

Notice that there is no reason to suspect that U1
n(A)/U1

n(A)0 is abelian. There-
fore the next lemma gives one excuse for passing to the direct limit.

Lemma 7.5. K1(A) is an abelian group with respect to the operation coming from
the direct limit. The identity is the class of 1 and the inverse of [u] is [u∗].

Proof. If m ≤ n, u ∈ U1
m(A), and v ∈ U1

n(A), then [u][v] := [(u ⊕ 1n−m)v] is the
group operation on the inductive limit K1. Since Theorem 5.10 implies that

[(u⊕ 1n−m)v] = [(u⊕ 1n−m) ⊕ v] = [v ⊕ (u⊕ 1n−m)] = [v][u],

the operation is commutative. �

The object of this section is to prove Theorem 7.6 which states that K1(A)
is naturally isomorphic to K0(SA) where SA := A ⊗ C0(R).18 To explain what
natural means in this context, it is helpful to think of passing to the suspension as
a functor. If α : A → B is a homomorphism, then Sα : SA → SB is given by the
restriction of id⊗α to SA. That is, Sα(f)(z) := α

(
f(z)

)
, where we have identified

SA = { f ∈ C(T, A) : f(1) = 0 }.
Then the word “natural” above simply means that given α : A → B, then the
diagram

(7.2) K1(A)
ΘA //

α∗

��

K0(SA)

Sα∗

��
K1(B)

ΘB

// K0(SB)

commutes. Then it follows that K1 enjoys many of the same functorial properties
as K0. For example, given an exact sequence

0 // A
α // B

β // C // 0 ,

of C∗-algebras, then it is easy to see that

0 // SA
Sα // SB

Sβ // SC // 0

18In some abbreviated treatments, K1(A) is actually defined to be K0(SA). The naturality of
the isomorphism of Theorem 7.6 means there is little harm in this.
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is exact. Since K0 is half-exact, we can use (7.2) to prove that K1 is half-exact.
With a bit more work, one can prove that K1 preserves direct limits, etc.

It will be helpful to keep in mind that homotopies with values in SA1 are in
one-to-one correspondence with continuous functions f from [0, 1]×T → A1 which
are scalar valued on [0, 1] × { 1 } and for which z 7→ π

(
f(t, z)

)
is constant for all

t ∈ [0, 1]. Given such an f , we can define γ from C
(
[0, 1], SA1

)
⊂ C

(
[0, 1] × T, A1

)

to SA1 by γt(z) = f(t, z), and conversely. (The point is, that elements of SA1 are
of the form f + λ where f ∈ SA, and SA1 6= { f : T → A1 : f(1) ∈ C1 }.)
Theorem 7.6. There is an isomorphism ΘA : K1(A) → K0(SA) which is natural
as in (7.2) above.

Proof. Let u be a normalized unitary in U1
n(A). We can apply Corollary 5.11 to

produce a homotopy t 7→ wt in U1
2n(A) connecting w0 = 12n to u ⊕ u∗. Using the

notation pn for the class of 1n in V (A), we can define a path of projections by

(7.3) t 7→ qt := wtpnw
∗
t (t ∈ [0, 1]).

Since q0 = pn = q1 and π(qt) = pn for all t, (7.3) defines a projection qu,w in
M2n(SA

1).19 Then we can define a class [qu,w]− [pn] in K0(SA). We want to show D
that this class depends only on the class [u] of u in K1(A). To do this, we have to
show that θ(u) := [qu,w] − [pn] does not depend on w, that θ(u) = θ(u⊕ 1m), and
that u ∼h v implies θ(u) = θ(v).

To do this, suppose that t 7→ at is a homotopy from u to v in U1
n(A), and let

qu,w and qv,z be projections constructed as above. But let x be the map t 7→
wt · (u∗at ⊕ ua∗t ) · z∗t from [0, 1] to U2n(A

1). It is easy to see that x0 = 12n = x1,
and that π(xt) = 12n for all t. Thus x defines an element of U1

2n(SA). Since
pn = 1n ⊕ 0n,

xqv,zx∗ = xzpnz
∗x∗ = w · (u∗a⊕ ua∗) · pn · (a∗u⊕ au∗) · w∗

= wpnw
∗

= qu,w.

Thus the class of θ(u) = qu,w does not depend on w or the class of u in
U1
n(A)/U1

n(A)0.
Now we need to consider θ(u⊕1m). Let t 7→ wt be the path in U1

2n(A) connecting
12n and u ⊕ u∗ as above; thus, θ(u) = [qu,w] − [pn]. Choose a scalar permutation
matrix y such that

y · (u⊕ u∗ ⊕ 1m ⊕ 1m) · y∗ = u⊕ 1m ⊕ u∗ ⊕ 1m.

Define zt := y · (wt ⊕ 12m) · y∗, and check that zt ∈ U2n+2m(A). Furthermore,
z0 = 12n+2m and z1 = u ⊕ 1m ⊕ u∗ ⊕ 1m. Thus, θ(u ⊕ 1m) = [qu⊕1m,z] − [pn+m],
where qu⊕1m,z = zpn+mz

∗. But

zpn+mz
∗ ≈ (w ⊕ 12m) · y∗pn+my · (w∗ ⊕ 12m)

= ((w ⊕ 12m) · (1n ⊕ 0n ⊕ 1m ⊕ 0m) · (w∗ ⊕ 12m)

= wpnw
∗ ⊕ pm

= qu,w ⊕ pm.

(7.4)

19Some care is called for here; qu,w is a matrix of functions on T. The off diagonal entries
are in SA proper as are n of the diagonal entries. Thus qu,w is a matrix of elements in SA1.
The other n diagonal entries are of the form f + 1 with f ∈ SA. It should be noted that, since

w0 6= w1, w does not define a unitary in U2n(SA1) and qu,w is not necessarily trivial in K0(SA).
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Thus θ(u⊕ 1m) = [qu⊕1m,z] − [pn+m] = θ(u), and we obtained a well-defined map
ΘA : K1(A) → K0(SA).

To see that ΘA is a homomorphism, consider u, v ∈ U1
n(A). Let w and z be

as above so that ΘA([u]) = [qu,w] − [pn] and ΘA([v]) = [qv,z] − [pn]. Note that
yp2ny

∗ ≈ pn ⊕ pn via a scalar permutation matrix y. Therefore,

ΘA

(
[uv]

)
= Θ

(
[u⊕ v]

)
= [qu⊕v,w⊕z] − [p2n],

where

qu⊕v,w⊕z = y∗(w ⊕ z)yp2ny
∗(w∗ ⊕ z∗)y

≈ (w ⊕ z)(pn ⊕ pn)(w
∗ ⊕ z∗)

= qu,w ⊕ qv,z.

Thus ΘA

(
[uv]

)
= ΘA([u]) + ΘA([v]).

Naturality is proved similarly. Suppose α : A → B is a homomorphism, and
that u ∈ U1

n(A). Let ΘA

(
[u]
)

= [qu,w]− [pn]. Note that α∗([u]) = [α1(u)], and that

t 7→ α1(wt) is a path of unitaries connecting 12n and α1(u) ⊕ α1(u)∗. Thus

ΘB

(
α∗([u])

)
= [qα

1(u),α1(w)] − [pn],

where qα
1(u),α1(w) is given by t 7→ α1(w)pnα

1(wt)
∗. Thus

[qα
1(u),α1(w)] = Sα∗

(
[wpnw

∗]
)

= Sα∗

(
[qu,w]

)
.

Thus ΘB ◦ α∗ = Sα∗ ◦ ΘA.
To prove that ΘA is injective, we suppose that u, v ∈ U1

n(A) and that

(7.5) ΘA

(
[u]
)

= ΘA

(
[v]
)
.

Using the notation above, we let qu,w
′

be the projection in M2n(SA
1) defined by

w′pnw
′∗, where t 7→ w′

t is a homotopy in U1
2n(A) from 12n to u ⊕ u∗. It follows

from (7.5) that for suitable w′ and z′, we have [qu,w
′

] − [qv,z
′

] = 0 in K0(SA).
Proposition 1.19 implies that there is a m ∈ Z+ and k ≥ 2n+ 2m such that

(7.6) qu,w
′ ⊕ pm ≈ qv,z ⊕ pm (in Mk(SA

1)).

On the other hand, (7.4) implies that for suitable w and z we have

(7.7) qu⊕1m,w ≈ qu,w
′ ⊕ pm and qv⊕1m,z ≈ qv,z

′ ⊕ pm (in M2n+2m(SA1)).

(It should be noted that the pm’s which appear in (7.6) and (7.7) are not, technically,
the same. One denotes 1m ⊕ 0k−2n−m and the other 1m ⊕ 0m. But this isn’t a
serious issue.) Together, (7.6) and (7.7) imply that there is a unitary a ∈ Uk(SA

1)
such that qv⊕1m,z ⊕ 0d = a(qu⊕1m,w + 0d)a

∗, where d = k − 2n − m. That is,
zpn+mz

∗ ⊕ 0d = a(wpn+mw
∗ ⊕ 0d)a

∗. Thus if we replace pn+m with pn+m⊕ 0d, we
have

(7.8) (z ⊕ 1d)pn+m(z∗ ⊕ 1d) = a(w ⊕ 1d)pn+m(w ⊕ 1d)a
∗.

Now we view elements of SA1 as function from [0, 1] into A1 which attain the same
scalar value at 0 and 1. Then we can define xt := (w∗

t ⊕ 1d)a
∗
t (zt ⊕ 1d) ∈ Uk(A

1).
Using (7.8), it is not hard to see that xt commutes with pn+m. It follows from
the rules for matrix multiplication, that xt = bt ⊕ ct for bt ∈ Un+m(A1) and
ct ∈ Uk−n−m(A1). Since x0 = b0 ⊕ c0 = a∗0, there are unitary matrices y ∈ Mn+m

and y′ ∈Mk−n−m such that a∗0 = y ⊕ y′ = a∗1. Since

x1 = (u∗ ⊕ 1m ⊕ u⊕ 1m ⊕ 1d)(y ⊕ y′)(v ⊕ 1m ⊕ v∗ ⊕ 1m ⊕ 1d),
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It follows that t 7→ y∗bt is a homotopy in Un+m(A1) from 1n+m to y∗(u∗⊕1m)y(v⊕
1m). It follows from Lemma 7.3 that

[1] = [y∗(u∗ ⊕ 1m)y(v ⊕ 1m)] = [u∗v] = [u]−1[v],

and [u] = [v] in K1(A) as required.
It remains to show that ΘA is surjective. So let x ∈ K0(SA). By Proposi-

tion 1.19, we can assume x = [f ] − [pn] where f is a projection in Mk(SA
1) such

that f−pn ∈Mk(SA). We can assume that k−2n = 2m for m ∈ N. Since t 7→ ft is
a path of projections inMk(A

1) such that ft−pn ∈Mk(A) and f0 = f1 = pn, Corol-
lary 5.3 implies there is a path t 7→ wt in U1

k(A) such that w0 = 1k and ft = wtpnw
∗
t .

Since w1pnw
∗
1 = pn, we have w1 = u⊕ ṽ for u ∈ U1

n(A) and ṽ ∈ U1
k−n(A). We’d like

to construct a homotopy from ṽ to u∗⊕12m; however, I don’t see any way to do this.
But we can replace k by 2k and wt by wt⊕u∗⊕v∗. (We certainly have 2k−2n even,
so this causes no harm.) Now v = ṽ⊕u∗⊕ ṽ∗, and there is a homotopy in U1

n−k(A)
from v to u∗ ⊕ 1n−2k by Corollary 5.11. Multiplying by v∗ we get a homotopy
t 7→ dt in U1

n−k(A) from 1k−n to v∗(u∗⊕12m). Let t 7→ zt be a homotopy in U1
k(A)

from 1k to u⊕u∗⊕ 12m of the form zt = z′t⊕ 12m. Then if et := ztpnzt = z′tpnz
′
t, it

follows that ΘA([u]) = [e]− [pm]. Now let xt := wt(1n ⊕ dt)z
∗
t ∈ U1

k(A). Certainly,
x0 = 1k, and

x1 = (u⊕ v)(1n ⊕ v∗(u∗ ⊕ 12m))(u∗ ⊕ u⊕ 12m)

= uu∗ ⊕ (vv∗(u∗ ⊕ 12m)(u⊕ 12m))

= 1k.

Thus x ∈ U1
k(SA), and

xex∗ = w(1n ⊕ d)z∗(zpnz
∗)z(1 ⊕ d∗)w∗

= wpnw
∗

= f.

Therefore [e] = [f ], and ΘA([u]) = [f ] − [pm] = x as required. �

8. The Long Exact Sequence in K-Theory

For motivation, we recall some basic material about Fredholm operators on
Hilbert space. Let H be a separable infinite-dimensional Hilbert space. Then
quotient B(H)/K(H) is called the Calkin Algebra. An operator T ∈ B(H) is called
Fredholm if its image q(T ) is invertible in the Calkin Algebra. The theory, as
presented in Douglas’s book [Dou98] for example, tells us that

j(T ) := dim kerT − dim kerT ∗

is a (finite) integer which depends only on the class of q(T ) in

GL
(
B(H)/K(H)

)
/GL

(
B(H)/K(H)

)
0
∼= U

(
B(H)/K(H)

)
/U
(
B(H)/K(H)

)
0
∼= Z

[Dou98, Theorem 5.36]. Because B(H) admits polar decompositions, a unitary in
the Calkin algebra lifts to a partial isometry in B(H).20 But if we identify K0(C)

20Let T be any lift of a unitary u in B(H)/K(H). Then we can write T = V |T | for a partial

isometry V . Since q(|T |) = q(T ∗T )
1
2 = 1, q(V ) = u as required.
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with Z, then we have j(V ) = [1 − V ∗V ] − [1 − V V ∗]. Note that

W :=

(
V 1 − V V ∗

1 − V ∗V V ∗

)

is a unitary in U2

(
B(H)

)
covering u⊕ u∗ in U2

(
B(H)/K(H)

)
. And a little calcu-

lation reveals that

[W (1 ⊕ 0)W ∗] − [1 ⊕ 0] = [V V ∗ ⊕ 1 − V ∗V ] − [1 ⊕ 0]

= [1 − V ∗V ] − [1 − V V ∗]

= j(V ).

(8.1)

If

0 // J
i // A

q // A/J // 0

is an exact sequence of C∗-algebras with J an ideal in A, then we want to mimic the
index map from Fredholm theory. Unfortunately, a unitary in U1

n(A/J) need not
lift to a partial isometry in Mn(A

1). But Corollaries 5.11 and 5.18 we can always
find a unitary w ∈ U1

2n(A) such that q1(w) = u⊕ u∗. Then wpnw
∗ − pn ∈M2n(A)

and belongs to the kernel of q. Therefore

(8.2) ∂̃(u,w) := [wpnw
∗] − [pn]

defines a class in K0(J).

Theorem 8.1. The class of (8.2) depends only on the class [u] in K1(A/J) and
defines a homomorphism ∂ : K1(A/J) → K0(J) such that

K1(J)
i∗ // K1(A)

q∗ // K1(A/J)
∂ // K0(J)

i∗ // K0(A)
q∗ // K0(A/J)

is exact.

Remark 8.2. Since ∂ coincides with the Fredholm index map when A = B(H) and
J = K(H), ∂ is called the index map in K-theory.

Proof. The first order of business is to show that the right-hand side of (8.2) de-
pends only on the class of u in K1(A/J). Suppose that w1 ∈ U1

2n(A) is another
lift of u ⊕ u∗. Then z := w∗

1w ∈ U1
2n(J), and implements an equivalence between

wpnw
∗ and w1pnw

∗
1 in V (J). Therefore the right-hand side of (8.2) is independent

of the choice of lift w. Now suppose that u ∼h v in U1
n(A/J). Then x := u∗v and

ux∗u∗ both belong to U1
n(A/J)0. Corollary 5.18 implies there are a, b ∈ U1

n(A)0
such that q1(a) = x and q1(b) = ux∗u∗. But

v ⊕ v∗ = ux⊕ x∗u∗ = (u⊕ u∗)(x⊕ ux∗u∗),

and this lifts to w(a⊕ b). Since a⊕ b commutes with pn,

w(a⊕ b)pn(a
∗ ⊕ b∗)w∗ = wpnw

∗,

and the right-hand side of (8.2) is independent of the homotopy class of u. To see
that the right-hand side of (8.2) depends only on [u], we have to see what happens
when we replace u by u⊕ 1m for some m ∈ Z+. Let w be a lift for u⊕ u∗ and y a
scalar matrix21 such that

q1(y)(u⊕ u∗ ⊕ 12m)q1(y) = u⊕ 1m ⊕ u∗ ⊕ 1m.

21The term scalar matrix refers to a matrix of the form ι(y′) for some y ∈ Mk for appropriate
k. Note that q1(ι(y′)) is again a scalar matrix for the same y′.
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Thus y(w ⊕ 12m)y∗ is a lift of u⊕ 1m ⊕ u∗ ⊕ 1m. Furthermore,

y(w ⊕ 12m)y∗pn+my(w
∗ ⊕ 12m)y∗ ≈ (w ⊕ 12m)(pn ⊕ pm)(w∗ ⊕ 12m)

= wpnw
∗ ⊕ pm.

(8.3)

But [wpnw
∗⊕pm]− [pn+m] equals the left-hand side of (8.2) in K0(J). Thus ∂

(
[u]
)

is well-defined.
To see that ∂ is a homomorphism, it suffices to consider u, v ∈ U1

n(A/J). Let
w and z be lifts of u⊕ u∗ and v ⊕ v∗, respectively. As above, we can find a scalar
matrix y such that y(w ⊕ z)y∗ is a lift of u ⊕ v ⊕ u∗ ⊕ v∗ and y∗p2ny = pn ⊕ pn.
Therefore

∂
(
[u][v]

)
= ∂

(
[uv]

)

= ∂
(
[u⊕ v]

)

= [y(w ⊕ z)y∗p2ny(w
∗ ⊕ z∗)y∗]

= [(w ⊕ z)(pn ⊕ pn)(w
∗ ⊕ z∗)]

= [wpnw
∗ ⊕ zpnz

∗] − [pn ⊕ pn]

= ∂
(
[u]
)

+ ∂
(
[v]
)
.

Thus ∂ is a homomorphism.

Lemma 8.3. ker ∂ = im q∗.

Proof. The image of q∗ consists of those classes in K1(A/J) of the form [q1(v)]
for some v ∈ U1

n(A). But then w = v ⊕ v∗ is a lift of q1(v) ⊕ q1(v)∗, and then
wpnw

∗ = pn. Therefore ∂
(
[q1(v)]

)
= 0, and im q∗ ⊂ ker ∂.

Now suppose that [u] ∈ ker ∂ for some u ∈ U1
n(A/J). Let w be a lift of u ⊕ u∗.

Since [wpnw
∗]− [pn] = 0 in K0(J), Proposition 1.19 implies that there is a m ∈ Z+

and k ≥ 2n+m such that

(8.4) wpnw
∗ ⊕ pm ≈ pn ⊕ pm

via a unitary in Uk(J
1). There is no harm in insisting that k ≥ 2n+ 2m. Let y be

a scalar matrix as in (8.3), and let z := y(w⊕ 12m)y∗ ⊕ 1d, where d = k− 2n− 2m.
Then

(8.5) wpnw
∗ ⊕ pm ≈ zpn+mz

∗

via a scalar unitary matrix in Uk(J
1). Combining (8.4) and (8.5), there is a unitary

matrix x ∈ Uk(J
1) such that

x(zpn+mz
∗)x∗ = pn+m.

The scalar matrix a := ι
(
π(x)

)
∈ Uk(J

1) commutes with pn+m (since z is normal-

ized). Note that q1(a∗x) = 1k = π(a∗x). Since J1 is an ideal in A1, a∗xz ∈ U1
k(J),

and q1(a∗xz) = q1(z) = u⊕ 1m ⊕ u∗ ⊕ 1m ⊕ 1d. Since a∗xz commutes with pn+m,
it must be of the form b ⊕ c for b ∈ U1

n+m(J) and c ∈ U1
k−n−m(J). In particular,

q1(b) = u ⊕ 1m; thus [u] = [u⊕ 1m] = [q1(b)] ∈ im q∗. This completes the proof of
the lemma. �

Lemma 8.4. im ∂ = ker i∗.
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Proof. Since [wpnw
∗] = [pn] in V (A), it is immediate that im ∂ ⊂ ker i∗. Let

x ∈ ker i∗. Then we can write x = [e] − [pn] for some projection e ∈ Mk(J
1) with

e− pn ∈Mk(J) and k ≥ n. Since [e] − [pn] = 0 in K0(A), we can, by Lemma 1.17
and Proposition 1.19, replace e by e⊕pm and n by n+m and suppose that there is
a unitary w1 ∈ U2n(A

1) such that w1pnw
∗
1 = pn. Since π(e) = pn, π(w1) commutes

with pn, and we can replace w1 with ι
(
π(w1)

∗
)
w1 and assume that w1 is normalized.

Since w := w1 ⊕ w∗
1 ∈ U1

4n(A)0, we can assume that e = wpnw
∗ in M4n(A

1) with
w ∈ U1

4n(A)0. Since q1(e) = pn, q
1(w) commutes with pn, and q1(w) = u1⊕u2 with

u1 ∈ U1
n(A/J) and u2 ∈ U1

3n(A/J). Using u1 ⊕ u2 ∈ U1
4n(A/J)0, it follows that

[u1⊕12n][u2] = 1 in K1(A/J). Thus for some m ∈ Z+, u∗1 ⊕12n+m and u2⊕1m are
homotopic in U1

3n+m(A/J). In particular, (u∗1 ⊕ 12n+m)(u∗2 ⊕ 1m) ∈ U3n+m(A/J)0
has a lift (Corollary 5.18) v ∈ U1

3n+m(A)0. Let

z := (1n ⊕ v)(w ⊕ 1m).

Note that

q1(z) =
(
1n ⊕ (u∗1 ⊕ 12n+m)(u∗2 ⊕ 1m)

)
(u1 ⊕ u2 ⊕ 1m) = u1 ⊕ u2 ⊕ 12n+m.

Furthermore,

zpnz
∗ = (1n ⊕ v)(w ⊕ 1m)pn(w

∗ ⊕ 1m)(1n ⊕ v∗)

= (1n ⊕ v)(e+ 03n+m)(1n ⊕ v∗)

= e.

Therefore x = [e] − [pn] = [zpnz
∗] − [pn]. But if z1 is a lift of u1 ⊕ u∗1, then

z1 ⊕ 12n+m is a lift of u1 ⊕ u∗1 ⊕ 12n+m and (z1 ⊕ 12n+m)z∗ ∈ U1
4n+m(J). In

particular, [zpnz
∗] = [z1pnz

∗
1 ] in V (J). Thus

x = [e] − [pn]

= [zpnz
∗] − [pn]

= [z1pnz
∗
1 ] − [pn]

= ∂
(
[u1]
)
. �

Proof of Theorem 8.1 continued. Lemmas 8.3 and 8.4 give us exactness atK1(A/J)
and K0(J). Since K0 is half-exact by Theorem 6.1 and the half-exactness of K1

follows from that of K0 by Theorem 7.6, the result is proved. �

9. C∗-Algebras with Identity

The goal of this section is to establish a number of realizations of K0(A) which
closely parallel some classic ones for K0(X) ∼= K0

(
C(X)

)
. In particular, we want

to show that if A has an identity, then K0(A) is isomorphic to the Grothendieck
group of the semigroup of isomorphism classes of finitely generated projective A-
modules. We also want to present a result I found in Higson’s [Hig90, Theorem 3.31]
which generalizes the result [Ati89, Theorem A1]22 which states that K0

(
C(X)

)
is

isomorphic to the set of homotopy classes of maps from X into the set of Fred-
holm operators on a separable infinite-dimensional Hilbert space H. Specifically,
we want to show that K0(A) is isomorphic to the set of homotopy classes of general-
ized Fredholm operators on Hilbert A-modules. (Higson [Hig90] looks at operators D

22Higson [Hig90] attributes this to Atiyah and Janich
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on all countably generated A-modules, while Wegge-Olsen [WO93, Chap. 17] con-
siders only operators on Kasparov’s universal Hilbert module HA.) For most of this
section, we will assume that A has an identity.

9.1. Projective modules. Projective modules arise naturally in the theory. As
you know, K0(A) is generated by projections in matrix algebras over A. Since
a idempotent in a C∗-algebra must be similar to a projection, it should not be
surprising that we could also build K0(A) out of idempotents in matrix algebras
over A. So before proceeding with the formal definitions, I’ll briefly outline how
finitely generated projective A-modules are related to such idempotents. First, lets
recall that if A is a ring with identity, then a right A-module23

X is finitely generated
if it has a finite spanning set {x1, . . . , xn }. Such a module is called free if it has
a basis — that is, a spanning set which is also linearly independent in the obvious
sense. This is equivalent to saying that X ∼= An for some n. An A-module P is
called projective if every homomorphism out of P into a quotient module lifts. Thus
given a surjective homomorphism q : E → F and a homomorphism f : P → F, there
is a homomorphism h : P → E such that

E

q

����
P

h

??�
�

�
�

f
// F

commutes. It is pretty easy to see that free modules are projective.
Now suppose that P is projective with generators {x1, . . . , xn }. Then we have

a surjection q : An → P and a map c such that

(9.1) An

q

����
P

c

>>}
}

}
}

id
//
P

commutes. In particular, c is injective, and we can identify P with c(P) so that
An ∼= P⊕ker q. This P is (isomorphic to) a direct summand of a free module. Note
that in this case, we can view q as a module map from An to itself and that q2 = q.
Since A has an identity, module maps from An to itself are in natural one-to-one
correspondence with matrices in Mn(A), and we can view q as an idempotent in
the matrix ring Mn(A). Finally, notice that given an idempotent q, the A-module
P := q(An) is projective. To see this, note that An is also projective, given a
surjection g and a map f as below, we get a map h such that

E

g

����
An

h

22

s
q

n
l j h f

q
// q(An)

h′

<<

f
// F

commutes. But then h′ := h|q(An) satisfies

g
(
h′
(
q(a)

))
= f

(
q2(a)

)
= f

(
q(a)

)
,

23We should say unitary module as we are assuming that x · 1R = x for all x ∈ X. Note that
if 1 ∈ A, then any Hilbert A-module is unitary (because x · 1 − x has length zero).
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and q(An) is projective. Thus finitely generated projective modules correspond
naturally to idempotents in matrix rings over A.

With that algebra safely behind us, we now assume that A is a C∗-algebra with
identity 1A. One point of confusion best dealt with early is the following. A (right)
Hilbert A-module X is countably generated if there is a countable subset D such
that

(9.2) X = D ·A := span{ a · d : d ∈ D and a ∈ A }.
Naturally then, a Hilbert module should be finitely generated when we can take D
finite above. Thus we will have to say that X is algebraically finitely generated to
indicate that X is finitely generated as a module over the ring A. For definiteness,
we’ll say that X is topologically generated when we want to refer to (9.2).

A remarkable theorem of Kasparov [RW98, Theorem 5.49] implies that all the
modules we want to consider are complemented submodules (as Hilbert modules24) D
of a universal Hilbert A-module HA. We recall from [RW98, Proposition 2.15] that

HA := { (ai) ∈
∞∏

i=1

A :
∑

a∗i ai converges in A }.

Alternatively, HA can be realize as the external tensor product A ⊗ ℓ2 [RW98,
Lemma 3.43]. (Of course, ℓ2 could be replaced by any separable infinite-dimensional
Hilbert space H.) Then Kasparov’s theorem implies that any countably generated
Hilbert A-module X is isomorphic to a Hilbert module direct summand of HA;
alternatively, X ⊕ HA

∼= HA.
It should be kept in mind that, although Hilbert modules are natural and

straightforward generalizations of Hilbert spaces, there are a number of proper-
ties which we take for granted in Hilbert space that often do not hold for Hilbert
modules. For example, a Hilbert module will often fail to be self-dual : we say that
X is self-dual if given a bounded A-linear map ϕ : X → AA, then there exists y ∈ X

such that ϕ(x) = 〈y , x〉
A

for all x ∈ X. But if 1 ∈ A, then AA, and therefore An are

easily seen to be self-dual.25 Note also, that if X is self-dual, then the usual Hilbert
space proof shows that the set of bounded A-linear operators BA(X) on X coincides
with L(X). Our interest in self-dual modules is due to the following lemma which
will be crucial in establishing the uniqueness assertion in Theorem 9.8.

Lemma 9.1. Suppose that E is an orthogonal direct summand of An and that F is
a Hilbert A-module which is isomorphic to E as an A-module. Then E and F are
isomorphic as Hilbert A-modules.26

For the proof of the lemma, we’ll need to grapple with yet another defect27 of
Hilbert modules: operators need not have polar decompositions. We pause here to

24I am emphasizing that “direct summand” is taken in the category of Hilbert modules. This
is logically distinct from being simply an A-module direct summand. In Hilbert space, this is

the distinction between being an orthogonal direct summand, and simply a vector space or skew

summand. Consequently, the terms “orthogonal summand” or “orthogonal direct sum” will also
be used to make this distinction.

25A result of Frank [Fra90] shows that HA can be self-dual only when A is finite dimensional.
26Two Hilbert A-modules E and F are isomorphic as A-modules if there is a merely a bijective

module map u : E → F. If they in addition u preserves inner-products, then we say that E and F

are isomorphic as Hilbert A-modules or that E and F are unitarily equivalent. Note that u−1 is
an adjoint for u so that u is necessarily a unitary in L(E, F).

27In computer science, this would be a “feature”.
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give a rather longer discussion than required to prove Lemma 9.1 since we’ll need
polar decompositions in Section 9.3.

Definition 9.2. Let X and Y be Hilbert A-modules. An operator T ∈ L(X,Y) has
a polar decomposition if there is a partial isometry V ∈ L(X,Y) such that T = V |T |
and

kerV = kerT kerV ∗ = kerT ∗

RangeV = T (X) RangeV ∗ = |T |(X).

Recall that if T : H1 → H2 is a bounded operator between Hilbert spaces Hi,
then the business of polar decomposition goes fairly easily. Then map sending
|T |h ∈ H1 to Th ∈ H2 is both well-defined and isometric. This gives a isometry u

of |T |(H1) onto T (H1) in H2. We get an operator v := u⊕ 0 : H1 → H2, by simply
setting v to be zero on |T |(H1)

⊥. Then T = v|T | is our polar decomposition. This

proof breaks down for T ∈ L(X,Y) because |T |(X) may not be complemented.28 It
can also break down because v may not be adjointable as an operator from Y to X.

Example 9.3 (Noncomplemented submodule). Let X = C
(
[0, 1]

)
viewed a right

Hilbert module over itself. Let Y = { f ∈ C
(
[0, 1]

)
: f(0) = 0 }. Then Y is a

closed submodule of X and it is easily checked that Y
⊥ = { 0 }. Thus Y is not

complemented in X.

Lemma 9.4. Suppose that X and Y are Hilbert A-modules and that T ∈ L(X,Y).

Then T has a polar decomposition if and only if T (X) is complementable in Y and

|T |(X) is complementable in X.

Proof. If T = V |T | is a polar decomposition for T , then IX = (IX − V ∗V ) ⊕ V ∗V
and IY = (IY − V V ∗) ⊕ V V ∗ give the required decompositions of X and Y.

Since kerT = ker |T |, elementary considerations show that |T |(X)⊥ = kerT and
T (X)⊥ = kerT ∗. Thus if the ranges of T and |T | are complementable, then

Y = T (X) ⊕ kerT ∗

X = |T |(X) ⊕ kerT.

Thus, as in the Hilbert space case, we can define V = U ⊕ 0 : X → Y such that
T = V |T |. Then W ′ := U−1 ⊕ 0 (relative to T (X) ⊕ kerT ∗) is easily seen to be an
adjoint for V . The rest is straightforward. �

Example 9.5 (Operator without Polar Decomposition). Let X := C
(
[0, 1]

)
and Y

be as in Example 9.3. Define g ∈ X, by g(t) = t for all t ∈ [0, 1]. Define T : X → X

by T (f) = gf . Then it is easily checked that T ∈ L(X) with T ∗ = T . Furthermore,
kerT = { 0 }. Thus if T had a polar decomposition, then T (X) would have to be
dense. But T (X) ⊂ Y is certainly not dense.

Fortunately, the following will be enough for our purposes.

28We say that a closed submodule E of X is complemented if X = E ⊕ E
⊥. Since E

⊥⊥
always

contains E, E fails to be complementable when E
⊥⊥

is strictly larger than E. For example, in a
Hilbert module, one can have E

⊥ = { 0 } without E being dense.
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Theorem 9.6 ([WO93, Theorem 15.3.8]). Suppose that X and Y are Hilbert A-
modules, and that T ∈ L(X,Y) has closed range. Then both T ∗ and |T | also have
closed range. In fact, the ranges of T , |T |, and T ∗ are complementable and we have

X = ker |T | ⊕ |T |(X) = kerT ⊕ T ∗(Y) and Y = kerT ∗ ⊕ T (X).

In particular, T has a polar decomposition = V |T |.

Proof. Suppose that T (X) is closed. Then U : |T |(X) → T (X) is isometric and
surjective. Since T (X) is complete, so is |T |(X); hence |T |(X) is closed. Since we

can approximate |T | 12 by polynomials in |T | without constant term,

|T |(X) = |T | 12 |T | 12 (X) ⊂ |T | 12 (X) ⊂ |T |(X) = |T |(X), and

ker |T | ⊂ ker |T | 12 ⊂ ker |T | 12 |T | 12 = ker |T |.

Thus |T |(X) = |T | 12 (X) and ker |T | 12 = ker |T |. Now if x ∈ X, then |T | 12x = |T |y for

some y ∈ X and x = (x− |T | 12 y) + |T | 12 y. That is, x ∈ ker |T | 12 ⊕ |T | 12 (X). We have
shown that

X = ker |T | 12 ⊕ |T | 12 (X)

= ker |T | ⊕ |T |(X)(9.3)

= kerT ⊕ |T |(X).(9.4)

Therefore |T |(X) is complemented.
To show that T (X) is complemented, we’ll show that T ∗(Y) is closed and comple-

mented. Then we can repeat the proof with T ∗ in place of T and conclude that T (X)
is complemented. First, note that T ∗T (X) = |T |2(X) ⊂ |T |(X). If x ∈ |T |(X), then
x = |T |y for some y ∈ X. By (9.3), we can write y = y1 + y2 with y1 ∈ ker |T | and
y2 = |T |z for some z ∈ X. Then x = |T |y = |T |(y1 + y2) = |T |2z = T ∗Tz ∈ T ∗(Y).
This shows that |T |(X) = T ∗T (X). By (9.4),

(9.5) X = kerT ⊕ T ∗T (X).

Since

T ∗T (X) ⊂ T ∗(Y) ⊂ (kerT )⊥ = T ∗T (X),

we see that T ∗(Y) = T ∗T (X) = (kerT )⊥ is closed and

X = kerT ⊕ T ∗(Y)

as required. �

Proof of Lemma 9.1. Let T : E → F be an A-module isomorphism. Since An is
self-dual, it is not hard to see that E is also self-dual in its inherited structure.
Furthermore, a sequence { ak := (aki ) } in E converges to a := (ai) if and only if
aki → ai in A for each i = 1, 2, . . . , n. But if P is the projection of An onto E and
{ ei }ni=1 is the usual basis for An, then

T
(
(ai)

)
= T

(
P
(
(ai)

))

=

n∑

i=1

T
(
P (ei)

)
· ai.
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In particular, T is continuous and therefore bounded. Since E is self-dual, T is
adjointable. Since T is surjective (and therefore certainly has closed range), The-
orem 9.6 implies that |T | is also surjective.29 Therefore |T |x 7→ Tx is a unitary
transformation U of E onto F as required. �

Example 9.7 (Nonclosed finitely generated submodule). Consider the operator T ∈
L(X) defined in Example 9.5. The range of T is the submodule of X generated by
the identity function g. Since T doesn’t have a polar decomposition, Theorem 9.6
implies T can’t have closed range. Therefore T (X) is a finitely generated submodule
of X which is not closed.

We’ll write { ei } for the usual basis for HA and identify An with the subspace
spanned by { e1, . . . , en }. We’ll also write pn for the projection of HA onto An.

Theorem 9.8 ([WO93, Theorem 15.4.2]). Let A be a C∗-algebra with identity and
suppose that E is a right A-module. Then the following conditions are equivalent.

(a) E is a finitely generated projective A-module.
(b) E is isomorphic to an algebraic direct summand in An for some n ∈ Z+.
(c) E is isomorphic to a Hilbert module direct summand in An for some n ∈ Z+.
(d) E is isomorphic to a closed finitely generated submodule of HA.
(e) There is a q ∈ K(HA) such that E is isomorphic to q(HA).
(f) There is a q ∈ K(HA) with q ≤ pn such that E is isomorphic to q(HA).

In particular, every finitely generated projective A-module admits a Hilbert A-
module structure which is self-dual and unique up to unitary isomorphism. With
respect to this structure, the isomorphisms in (c)–(f) can be taken to be unitary.

Note that the hypothesis in part (d) is not redundant in view of Example 9.7.
For the proof, we’ll want the following lemma which follows almost immediately
from lemmas 2.3 and 2.1.

Lemma 9.9. Let A be a C∗-algebra with identity. If q ∈ K(HA) is a projection,
then for sufficiently large n ∈ Z+, there is a unitary u ∈ L(HA) such that uqu∗ ≤ pn.

Proof. It is straightforward to check that { pn } is an approximate unit for K(HA).
Then for large n, we can assume that ‖q − pnqpn‖ < 1

12 . If qn := pnqpn, then qn is
self-adjoint and ‖qn‖ ≤ 1. Furthermore,

‖q2n − qn‖ ≤ ‖qn(qn − q)‖ + ‖(qn − q)q‖ + ‖q − qn‖ <
1

4
.

Since qn is self-adjoint, a little functional calculus (Lemma 2.3) implies there is a
projection q′ ∈ K(HA) such that ‖q′ − qn‖ < 1

2 . Then ‖q − q′‖ < 1, and q and q′

are unitarily equivalent in L(HA) by Lemma 2.1.
Thus, it will suffice to see that q′ is majorized by pn. A quick look at the proof of

Lemma 2.3 reveals that q′ is constructed via the functional calculus q′ = f(qn) for
a function f vanishing at 0. This means we can approximate f with polynomials
in qn without constant terms. It follows that pnq

′ = q′pn = q′; that is q′ ≤ pn. �

Proof of Theorem 9.8. (a) ⇐⇒ (b): follows almost by definition (cf., (9.1) and
following discussion).

(b) =⇒ (d): Let An = F⊞E. (Here, ⊞ denotes an algebraic or skew direct sum.)
Let P be the skew projection of An onto E. Then P is an A-module map and is

29We don’t really need the full power of Theorem 9.6; we only need (9.4).
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given by a matrix in Mn(A). In particular, P is continuous and E = P (An) is
closed in An. Since we have identified An with its image in HA, this suffices.

(d) =⇒ (e): Let { f1, . . . , fk } ⊂ E ⊂ HA be a set of generators for E. Then θfi,ei

belongs to K(HA) as does

K :=
k∑

i=1

θfi,ei
.

We clearly have K(HA) ⊂ E. But if { a1, . . . , ak } ⊂ A, then a =
∑k
i=1 ei · ai ∈ HA,

and K(a) =
∑
fi ·ai, so K(HA) = E = K(Ak). Thus K has closed range and we can

apply Theorem 9.6 to conclude that K = V |K|, where V is a partial isometry with
support projection V ∗V equal to the orthogonal complement of kerV or RangeK∗.
Since K∗ =

∑
i θei,fi

, this implies that V ∗V ≤ pk. It follows that V ∗V = V ∗V pk
is compact. Since V = V V ∗V , it follows that V is compact, and so is the range
projection Q := V V ∗. Again by Theorem 9.6,

RangeQ = RangeV = RangeK = E.

(e) =⇒ (f): In view of Lemma 9.9, we can assume there is a compact projection
q′ such that q′ ≤ pn and that there is a unitary u ∈ L(HA) such that uq = q′u.
Then u : HA → HA is an inner-product preserving A-module map taking q(HA)
into q′(HA) with inverse u∗ = u−1.

(f) =⇒ (c): Viewing An as the closed submodule pn(HA), we can decompose
An as

q(HA) ⊕ (pn − q)(HA).

And (c) =⇒ (b) is trivial.
Thus if E is a finitely generated projective module, then (c) implies that E inherits

a self-dual Hilbert A-module structure as an orthogonal summand in An. Now the
uniqueness and other assertions follow from Lemma 9.1. �

If we start with a Hilbert module, then we can add two more characterizations
to the list in Theorem 9.8.

Corollary 9.10. Suppose that 1 ∈ A and that E is a algebraically finitely generated
Hilbert A-module. Then E is projective.

Proof. The Kasparov Stablization Theorem allows us to assume that E is a closed
submodule of HA. (The projection Q of HA onto E is an A-linear operator which
is self-adjoint and therefore bounded.) Thus the result follows immediately from
Theorem 9.8. �

Corollary 9.11. Suppose that E is a Hilbert A-module. Then E is finitely generated
and projective if and only if 1E ∈ K(E). Moreover, if 1E ∈ K(E), then there is a
n ∈ Z+ and elements {xi, yi }ni=1 ⊂ E such that

1E =

n∑

i=1

θxi,yi
.

Proof. If E is finitely generated and projective, then Theorem 9.8 implies that we
may as well assume that E = q(HA) for some compact projection q. But then q is
an identity for K

(
q(HA)

)
, and if

∑
i θxi,yi

is close to q, then so is

q
(∑

i

θxi,yi

)
q =

∑

i

θqxi,qyi
∈ K

(
q(HA)

)
.
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Thus, q ∈ K
(
q(HA)

)
.

Now assume that K(E) has an identity. Then [RW98, Proposition 5.50] implies
that E is countably generated. Thus we can assume (by Kasparov’s result) that E

is a orthogonal direct summand of HA. Since 1 ∈ K(E), it is not hard to see that
the projection Q onto E is the norm limit of operators θx,y with x, y ∈ E. Thus,
Q ∈ K(HA), and E is finitely generated and projective by Theorem 9.8.

The ideal of “finite-rank” operators span{ θx,y : x, y ∈ E } is dense in K(E). If
1E ∈ K(E), then the invertibles are open in K(E), and 1E must be finite-rank. �

9.2. Alternate realizations of K0(A). Now recall from Lemma 1.17 that we can
view V (A) as the semigroup of either Murray-von Neumann or unitary equivalence
classes of projections P (A) in M∞(A) where [p] + [q] := [p ⊕ q]. Let V1(A) be
the semigroup of A-module isomorphism classes of algebraically finitely generated
projective A-modules where [E] + [F] := [E ⊕ F]. Here, we have some flexibility
in the underlying set for V1(A) (thanks to Theorem 9.8). In particular, we can
restrict ourselves to algebraically finitely generated Hilbert A-modules (so that
E ⊕ F means orthogonal direct sum), or even to algebraically finitely generated
closed submodules of HA. Also, we define V2(A) to be the collection of Murray-von
Neumann equivalence classes30 of projections in K(HA). With a little work, you
can verify that V2(A) is a semigroup with respect to the operation

[p] + [q] := [p′ + q′] where [p] = [p′], [q] = [q′], and p′ ⊥ q′.

(The existence of such p′ and q′ can be deduced from Lemma 9.9 which allows us
to assume that p, q ≤ pn; now simply “shift” q so that p ⊥ q.)

Theorem 9.12 ([WO93, Exercise 15.K]). Let A be a C∗-algebra with identity. The
map sending a projection p ∈ Mn(A) to the A-module p(An) induces a semigroup
isomorphism ϕ : V (A) → V1(A). Similarly, the map sending a compact projection
q ∈ K(HA) to the A-module q(HA) induces a semigroup isomorphism ψ : V2(A) →
V1(A). Thus the Grothendieck groups G

(
V1(A)

)
and G

(
V2(A)

)
are both naturally

isomorphic to K0(A).

Proof. Given ϕ and ψ, G(ϕ) and G(ϕ)◦G(ψ) provide isomorphisms of both G
(
V1(A)

)

and G
(
V2(A)

)
with G

(
V (A)

)
:= K00(A), which, since 1 ∈ A, is naturally isomorphic

to K0(A) by Proposition 1.15. Thus, we just have to verify the assertions about ϕ
and ψ.

Since p(An) and (p+0k)(A
n+k) are clearly isomorphic, we get a well-defined map

ϕ0 : P (A) → V1(A). But if [p] = [q] in V (A), then we can assume that p, q ∈Mn(A)
and that there exists u ∈ Un(A) such that qu = up. Then u : An → An is a module
isomorphism mapping p(An) into q(An). Furthermore u∗|q(An) is an inverse to
u|p(An). Thus ϕ0(p) = ϕ0(q), and we obtain a map ϕ : V (A) → V1(A) such that

ϕ
(
[p]
)

= [p(An)]. It is not hard to check that ϕ is a semigroup homomorphism:

ϕ
(
[p] + [q]

)
= ϕ

(
[p⊕ q]

)

= [(p⊕ q)An+m]

= [p(An)] + [q(Am)] = ϕ
(
[p]
)

+ ϕ
(
[q]
)
.

30The partial isometry implementing an equivalence between two compact projections, must
itself be compact. Thus we can view this as equivalence in L(HA) or in K(HA).
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Note that ϕ is surjective by Theorem 9.8. To see that ϕ is injective, suppose that
ϕ
(
[p]
)

= ϕ
(
[q]
)
. Then we can assume p, q ∈Mn(A), and that there is an A-module

isomorphism v : p(An) → q(An). Lemma 9.1 allows us to assume that v is unitary.
Let w := v ⊕ 0 (relative to An = p(An) ⊕ (1 − p)(An)). It is not hard to see that
w is adjointable with adjoint w∗ = v∗ ⊕ 0 (relative to An = q(An) ⊕ (1 − q)(An)).
Since w∗w = p and ww∗ = q, it follows that [p] = [q] and ϕ is injective. This shows
that ϕ is an isomorphism as claimed.

To define ψ, let p and q be projections in K(HA) with w ∈ L(HA) such that p =
w∗w and q = ww∗. (Note that any such w must lie in K(HA).) Then w|p(HA) is an

A-module isomorphism of p(HA) onto q(HA). Thus we can define ψ
(
[p]
)

= [p(HA)].
This map is surjective by Theorem 9.8 and a homomorphism because

ψ
(
[p] + [q]

)
= [(p′ + q′)(HA)]

= [p′(HA) ⊕ q′(HA)]

= ψ
(
[p]
)

+ ψ
(
[q]
)
.

The proof that ψ is injective is similar to that for ϕ. �

9.3. Generalized Fredholm Operators. If X is a Hilbert module, then the
finitely generated closed submodules of X are a reasonable analogue of the finite
dimensional subspaces of a Hilbert space. (As Example 9.7 shows, the word closed
is not redundant here as it would be for finitely generated subspaces of Hilbert
spaces.) If π is the quotient map of L(X) onto Q(X) := L(X)/K(X), then the
subsets

F(X) = {T ∈ L(X) : π(T ) ∈ GL
(
Q(X)

)
}

F ′′(X) = {T ∈ L(X) : T (X) is closed and both

kerT and kerT ∗ are algebraically finitely generated }
F ′(X) = {T ∈ L(X) : T +K ∈ F ′′(X) for some K ∈ K(X) }

are all reasonable candidates for the set of Fredholm operators on X, and Atkinson’s
Theorem [Ped89, Proposition 3.3.11] implies these sets coincide when A = C. For
general Hilbert modules, the relationship is unclear. When X = HA, then we shall
see that that

(9.6) F ′′(HA) $ F ′(HA) = F(HA).

This result is part of Mingo’s thesis [Min87], which is where much of the material
from [WO93, Chap. 17] comes from.31 In the interests of time and space, the treat-
ment here will diverge from [WO93] (a.k.a. Mingo), and instead focus on Higson’s
treatment in [Hig90, §3]. In particular, we make the following definition.

Definition 9.13. If X and Y are Hilbert A-modules, then T ∈ L(X,Y) is a (gener-
alized) Fredholm operator if there is a S ∈ L(Y,X) such that 1X − ST ∈ K(X) and
1Y − TS ∈ K(Y). One calls S a parametrix for F . The set of Fredholm operators
from X to Y is denoted F(X,Y).

31Some of Mingo’s results rely quite heavily on earlier work of Kasparov, Mǐsčenko and
Fromenko, and Pimsner, Popa, and Voiculescu. Some of the arguments have simplified over
time, but Mingo’s treatment is still quite nice and readable.
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Of course, when X = Y, we simply write F(X) and obtain the same class of
operators as above. In the classical case — that is, X = Y ∼= ℓ2, every Fredholm
operator T has closed range and one can choose the parametrix S so that 1 − ST
is the projection onto kerT while 1 − TS is the projection onto kerT ∗ [Ped89,
Proposition 3.3.11]. In particular, both 1 − ST and 1 − TS are finte-rank. Un-
fortunately, not every generalized Fredholm operator need have closed range: the
operator T : X → X from Example 9.5 is Fredholm, since K(X) = L(X). However,
as Exel points out in [Exe93], but does not prove, one can still demand that the
parametrix is an inverse up to generalized finite-rank operators; that is, operators
in span{ θx,y : x ∈ X and y ∈ Y }.
Lemma 9.14. Suppose that T ∈ L(X,Y) is Fredholm. Then there is a parametrix
S such that 1X − ST and 1Y − TS are finite-rank operators.

Proof. Let Θ(X) denote the finite-rank operators from X to X. If S is a parametrix
for T , then there is a finite-rank F ∈ Θ(X) such that ‖1 − (ST + F )‖ < 1. In
particular, ST + F is invertible. Let S′ := (ST + F )−1S. Then

S′T = (ST + F )−1ST = (ST + F )−1(ST + F ) + (ST + F )−1F

= 1X + (ST + F )−1F.

Since Θ(X) is a (not necessarily closed) two-sided ideal in L(X), 1X − S′T is finite
rank.

Similarly, we can construct S′′ such that 1Y − TS′′ is finite rank. But then
modulo the ideal of finite-rank operators,

S′ ≡ S′(TS′′) ≡ (S′T )S′′ ≡ S′′.

Therefore, 1Y − TS′ = (1Y − TS′′) + T (S′′ − S′) ∈ Θ(Y). �

If T has closed range, then we can invoke Theorem 9.6 to recover a more complete
analogue of the classical theory.

Lemma 9.15. Let X and Y be Hilbert A-modules. Suppose that T ∈ F(X,Y) has
closed range. Then there is a parametrix S for T such that

(9.7) T = TST and S = STS.

In fact, we can choose S such that 1Y − TS is the (orthogonal) projection onto
kerT ∗ and 1X − ST is the (orthogonal) projection onto kerT . It follows that kerT
and kerT ∗ are algebraically finitely generated closed (hence projective) submodules
of X and Y, respectively.

Proof. Since the range of T is closed, Theorem 9.6 implies that T ∗(Y) is also closed
and that we have

X = T ∗(Y) ⊕ kerT(9.8)

and

Y = T (X) ⊕ kerT ∗.(9.9)

Then T |T∗(Y) is an injective bounded operator from T ∗(Y) onto T (X) and must have
a bounded inverse S′. Let S := S′ ⊕ 0 relative to (9.8). Similarly, we can define
R′ to be the inverse of T ∗|T (X) and get a bounded operator R = R′ ⊕ 0 relative to
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(9.9). Routine computations32 show that R is an adjoint for S and thus S ∈ L(Y,X)
as required. Similar calculations show that S satisfies (9.7). It is immediate that
1X − ST is an idempotent with range kerT . The definition of S implies that ST is
the identity on T ∗(Y). Since X = kerT ⊕ T ∗(Y) by Theorem 9.6, 1X − ST is the
orthogonal projection as claimed. Similarly, 1Y − TS is the projection onto kerT ∗

(because TS is the projection onto the range of T ). Using Lemma 9.14, we can find
a parametrix S′′ such that 1X −S′′T and 1Y −TS′′ are finite-rank operators. Since

1X − ST = (1X − S′′T )(1X − ST ),

it follows that 1X − ST is finite-rank: say, 1X − ST =
∑n
i=1 θxi,yi

. Since 1X − ST
is the identity on kerT , it follows that kerT is finitely generated with generators
{xi }. In particular, kerT is finitely generated projective by Corollary 9.10. A
similar argument applies to 1Y − TS and kerT ∗.33 �

Remark 9.16. An operator S ∈ L(Y,X) satisfying (9.7) is called a pseudo-inverse
for T . Since (9.7) implies that TS is an idempotent with Range equal to RangeT ,
it follows that any operator with a pseudo-inverse has closed range.

Lemma 9.17. Suppose that T ∈ L(HA) has closed range and that both kerT and
kerT ∗ are finitely generated (hence projective). Then T ∈ F(HA).

Proof. Theorem 9.6 implies that T has a polar decomposition V |T |. Notice that
1−V ∗V = P where P is the projection onto kerT . Then P ∈ K(HA) by Theorem 9.8
as is 1 − V V ∗. This means V ∈ F(HA), and it will suffice to see that |T | + P is
invertible in L(HA). But Theorem 9.6 implies that HA = ker |T | ⊕ Range |T |;
therefore, it is not hard to see that |T | + P is bijective. Thus, |T | + P is invertible
by the Open Mapping Theorem. �

Definition 9.18. Let X and Y be countably generated Hilbert modules over a unital
C∗-algebra A. Suppose that T ∈ L(X,Y) is Fredholm with closed range. Then the
index of T is the element indT in K0(A) which is the image of [kerT ] − [kerT ∗]
under the natural isomorphism of G

(
V1(A)

)
onto K0(A) given by Theorem 9.12.

Remark 9.19. In the sequel, if E and F are finitely generated projective modules,
we’ll view [E] − [F ] as an element of K0(A) and suppress any mention of the
isomorphism from Theorem 9.12.

Next we want to extend ind to arbitrary Fredholm operators. There are two
paths. The first is to work with compact perturbations of operators on HA. This is
Mingo’s approach and is treated in detail in [WO93, Chap. 17]. The second follows
Higson [Hig90] and Exel [Exe93]. We will sketch the first and look at the second in
more detail.

32Let x ∈ X and y ∈ Y. Then (9.8) allows us to write

x = T ∗(y0) + x′

with x′ ∈ ker T = T ∗(Y)⊥ and y0 ∈ (ker T ∗)⊥ = T (X). Similarly,

y = T (x0) + y′

with y′ ∈ ker T ∗ = T (X)⊥ and x0 ∈ (ker T )⊥ = T ∗(Y). Then

〈Sy , x〉
A

= 〈x0 , T ∗y0〉
A

= 〈Tx0 , y0〉
A

= 〈Tx0 , Rx〉
A

= 〈y , Rx〉
A

.

33I have not appealed directly to Theorem 9.8 just to avoid having to assume X and Y are
countably generated. I’m not sure why I bothered.



42 DANA P. WILLIAMS

Lemma 9.20. Suppose that u is a unitary in Q(HA) := L(HA)/K(HA). Then there
is a partial isometry V ∈ L(HA) such that π(V ) = u.

Remark 9.21. If A = C, then HC = ℓ2 and Q(HC) is the Calkin algebra. In this
case, the above result is a straightforward consequence of polar decomposition: if
π(Z) = u and Z = V |Z|, then

u = π(Z) = π(V )π(|Z|)

= π(V )
(
π(Z∗)π(Z)

) 1
2

= π(V ).

Remark 9.22. Lemma 9.20 is valid when HA is replaced by any X for which K(X)
has a approximate identity consisting of projections — note that { pn } is an ap-
proximate unit of projections for K(HA). This will be the only property of HA used
in the proof. (I believe the word “projection” was omitted from Remark 17.1.3 of
[WO93].)

Proof of Lemma 9.20. Choose Z in L(HA) with π(Z) = u. Since 1 − Z∗Z is in
K(HA), we can find a projection P ∈ K(HA) such that

‖(1 − P )(1 − Z∗Z)(1 − P )‖ = ‖(1 − P ) − (1 − P )Z∗Z(1 − P )‖ < 1.

This implies that (1 − P )Z∗Z(1 − P ) is invertible in (1 − P )L(HA)(1 − P ) with
inverse

(1 − P ) +

∞∑

k=1

(
(1 − P )Z∗Z(1 − P )

)k
.

Since P is invertible in PL(HA)P with inverse P , we see that

T := P + (1 − P )Z∗Z(1 − P )

is invertible in L(HA) with

T−1 = I +
∞∑

k=1

(
(1 − P )Z∗Z(1 − P )

)k ≥ 0.

Since T−1 is positive, T− 1
2 is defined and is the norm limit of polynomials in T−1

without constant term. Thus, PT− 1
2 = P = T− 1

2P .
Now let V := Z(1 − P )T− 1

2 . Since P is compact and π(T ) = π(Z∗Z) = 1,

π(V ) = π(ZT− 1
2 ) − π(ZPT− 1

2 )

= π(Z) − 0

= u.

All that remains to be shown is that V is a partial isometry. But

V ∗V = T− 1
2 (1 − P )Z∗Z(1 − P )T− 1

2

= T− 1
2 (T − P )T− 1

2

= I − P. �

Lemma 9.23. If F ∈ F(HA), then there is a G ∈ F(HA) with closed range such
that F −G ∈ K(HA).
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Proof. Since F ∈ F(HA), π(F )π(|F |)−1 us a unitary in Q(HA), Lemma 9.20 implies
that there is a partial isometry W in L(HA) such that π(W ) = π(F )π(|F |)−1.
Since |F | is positive, log π(|F |) is defined and we can choose H ∈ L(HA) such that
π(H) = log π(|F |). Now we let G := W exp(H). Since exp(H) is invertible,

RangeG = RangeW ;

in particular, the range of G is closed. Since

π(G) = π(W )π
(
exp(H)

)

= π(F )π(|F |)−1 exp
(
π(H)

)

= π(F )π(|F |)−1 exp
(
log π(|F |)

)

= π(F ),

F −G is compact and G ∈ F(HA). �

Remark 9.24. Lemmas 9.15 and 9.17 implies that we always have

(9.6′) F ′′(X) ⊂ F ′(X) ⊂ F(X).,

at least when X = HA, and it is not hard to see how to modify the proof of
Lemma 9.17 for general X. The equality in (9.6) follows from Lemma 9.23; unfor-
tunately, I do not see how to extend the argument to general X.

Remark 9.25 (Mingo’s Approach). From here on we’ll switch to Higson’s approach.
Mingo’s treatment [Min87] is treated in detail in [WO93, Chap. 17], but I’ll give
a brief sketch here. Using Lemma 9.23, it is natural to attempt to extend the
definition of ind to all Fredholm operators T ∈ F(HA) by setting indT equal to
indG, where G is any compact perturbation of T which has closed range. To do
this, we would need to see that indS = indG whenever S and G are Fredholm
with closed range satisfying S−G compact. Fortunately this is true, but the proof
due to Kasparov [Kas80] is rather complex. A reasonable exposition of Kasparov’s
argument is given in [WO93] (see [WO93, Corollary 17.2.5]).34 With Kasparov’s D
result in hand, we get a well-defined map ind : F(HA) → K0(A). More hard
work is required to show that indT = indS if and only if T and S are connected
by a continuous path in F(HA). The “only if” direction requires we know that
the unitaries in L(HA) are connected. Since L(HA) ∼= M

(
K(HA)

) ∼= M
(
K(A ⊗

ℓ2)
) ∼= M(A ⊗ K), this follows from Mingo’s ([Min87, Theorem 2.5] or [WO93,

Theorem 16.8]) (provided 1 ∈ A).35 Then one shows that that the set of path
components [F(HA)] in F(HA) is an abelian group with [S][T ] := [ST ], [T ]−1 the
class of any parametrix for T , and identity the class of any invertible element. Thus
ind : [F(HA)] → K0(A) is an isomorphism ([Min87, Proposition 1.13] or [WO93,
Theorem 17.3.11]). More generally, the set of homotopy classes [X,F(HA)] from a
compact Hausdorff space X into F(HA) is a group isomorphic to K0

(
C(X) ⊗ A

)

[Min87, Theorem 1.13].

Its now time to give Higson’s definition of homotopy between Fredholm operators
on (possibly) different Hilbert modules. For this, we need the notion of the internal
tensor product of a Hilbert B-module X and a Hilbert A-module Y for which there

34On the other hand, we give an alternate proof in Corollary 9.45.
35I was surprised to discover that a corollary of the unitaries in M(A ⊗K) being connected if

A is unital or σ-unital, is that the unitary group of M(A⊗K) is contractible in the norm topology.
This is a generalization of Kupier result that the unitary group of B(H) is contractible [Kui65].



44 DANA P. WILLIAMS

is a homomorphism ϕ : B → L(Y). Unfortunately, this is slightly more general than
that treated in [RW98, §3.2]. Instead, a good reference is [Lan94, Proposition 4.5],
and I’ve given a short treatment in Appendix C. There it is shown that

(9.10) 〈〈x1 ⊗ y1 , x2 ⊗ y2〉〉
A

:=
〈
y1 , ϕ

(
〈x1 , x2〉

B

)
y2
〉

A

is a well defined pre-inner product on the algebraic tensor product X ⊙ Y as in
[RW98, Lemma 2.16]. Thus [RW98, Lemma 2.16] implies that the completion
X ⊗ϕ Y is a Hilbert A-module. For details, see Proposition C.1 or Appendix C.
One of the more important features of this tensor product is that it is B-balanced
in that x · b⊗ y and x⊗ ϕ(b)y have the same image in X ⊗ϕ Y. If T ∈ L(X,Z) for
some Hilbert A-module Z, then there is an operator T ⊗ϕ 1 ∈ L(X ⊗ϕ Y,Z ⊗ϕ Y)
characterized by T ⊗ϕ 1(x⊗ϕ y) = Tx⊗ϕ y (Proposition C.2). We primarily need
this construct when Y = AA, B = C

(
[0, 1], A

)
and ϕ is evaluation at t. In these

cases, we’ll write X ⊗ǫt A for the resulting Hilbert A-module.

Remark 9.26. As is customary in the subject we will invoke the isomorphism of the
C∗-algebras C0(X)⊗A and C0(X,A) without comment [RW98, Proposition B.16].
There is a similar construction with Hilbert modules. Suppose that Y is a Hilbert
A-module and X a locally compact Hausdorff space. Then Z := C0(X,Y) carries
an obvious C0(X,A)-valued inner product and the induced norm on Z is

‖f‖Z = sup
x∈X

‖f(x)‖Y.

In particular, Z is a Hilbert C0(X,A)-module. Alternatively, we can form the
external tensor product C0(X)⊗Y [RW98, Proposition 3.36], which is also a Hilbert
C0(X,A) module (after identifying C0(X,A) with C0(X)⊗A as above). The usual
map of C0(X) ⊙ Y into C0(X,Y) extends to a Hilbert module isomorphism of
C0(X) ⊗ Y with C0(X,Y). Notice that

K
(
C0(X) ⊗ Y

) ∼= C0(X) ⊗K(Y) ∼= C0(X,K(Y))

by [RW98, Corollary 3.38].

Example 9.27. Let Y be a Hilbert A-module and C0(X,Y) the corresponding Hilbert
C0(X,A)-module. Then f ⊗ a 7→ f(t) · a extends to a unitary isomorphism

U (t) : C0(X,Y) ⊗ǫt A→ Y.

Proof. Just compute

〈〈f ⊗ a , g ⊗ a〉〉
A

= a∗〈f , g〉
C(0(X,A)

(t)b

= a∗
〈
f(t) , g(t)

〉
A
b =

〈
f(t) · a , g(t) · b

〉
A
. �

Definition 9.28 ([Hig90, Definition 3.25]). Two Fredholm operators F0 : E
(0)
0 →

E
(0)
1 and F1 : E

(1)
0 → E

(1)
1 are unitarily equivalent if there are unitaries Ui ∈

L(E
(0)
i ,E

(1)
i ) such that F0 = U∗

1F1U0. That is, the diagram

E
(0)
0

F0 //

U0

��

E
(0)
1

U1

��

E
(1)
0

F1 //
E

(1)
1

commutes.
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Definition 9.29. We say that F0 and F1 are homotopic if there are Hilbert C(I,A)-

modules Ẽ0 and Ẽ1 and a Fredholm operator F̃ : Ẽ0 → Ẽ1 such that F̃ ⊗ǫi 1 :

Ẽ0 ⊗ǫi A → Ẽ1 ⊗ǫi A and Fi : E
(i)
0 → E

(i)
1 are unitarily equivalent for i = 0, 1. In

this case we write F0  h F1.

Thus if F0  h F1 via F̃ as above, then there are Hilbert A-module isomorphisms
(a.k.a. unitaries)

U
(i)
k : Ẽk ⊗ǫi A→ E

(i)
k

such that

Ẽ0 ⊗ǫi A
U

(i)
0 //

eF⊗ǫi
1

��

E
(i)
0

Fi

��
Ẽ1 ⊗ǫi A

U
(i)
1 //

E
(i)
1

commutes for i = 0, 1.
Definition 9.29 is a bit hard to swallow all at once — at least it was for me. It

is not even obvious that it is reflexive or symmetric, and it (apparently) fails to be
reflexive, and so it is not an equivalence relation. (Not that this is clear from the
literature – quite the opposite is true.) However, we shall see that it generates a
rather useful equivalence relation. The following example is the usual way in which
one might employ homotopy — a so called operator homotopy — and it serves as

excellent motivation. In the example, the modules Ẽi are simply C
(
[0, 1],Ei

)
as one

would expect. The added flexibility of Higson’s definition which employs arbitrary
C
(
[0, 1], A

)
-modules will be apparent in due course and is crucial to his treatment.

To ease the notational burden in the sequel, it will be convenient to use I in
place of [0, 1] when dealing with homotopies.

Example 9.30 (Operator homotopies). Suppose that for each t ∈ [0, 1], Ft is a
Fredholm operator from E0 to E1, and that t 7→ Ft is norm continuous. Then, as

you would hope, F0 and F1 are homotopic. To see this, let Ẽi := C
(
I,Ei

)
with the

obvious Hilbert C(I,A)-module structure. Then define F̃ by

(F̃ x)(t) := Ft
(
x(t)

)
.

Fix t0 ∈ [0, 1], and let S be a parametrix for Ft0 . Let πi : L(Ei) → Q(Ei) be
the natural map, and notice that π0(SFt0) = 1. Thus, π0(SFt) is invertible near
t0. A compactness argument allows us to choose operators Sk ∈ L(E1, E0) and a
partition of unity fk ∈ C

(
[0, 1]

)
such that S′

t :=
∑n
k=1 fk(t)S

k satisfies π0(S
′
tFt)

invertible for all t ∈ [0, 1]. Since C
(
I,Q(E0)

) ∼= C
(
I,L(E0)

)
/C
(
I,K(E0)

)
, we can

find a lift t 7→ Wt of t 7→ π0

(
S′
tFt
)−1

and let St := WtS
′
t. Then StFt − 1E0

is
compact for all t. By a similar argument, we can find operators Rt ∈ L(E1,E0)
such that t 7→ Rt is continuous and FtRt − 1E1

is compact for all t. Then modulo
compacts

Rt ≡ (StFt)Rt ≡ St(FtRt) ≡ St.

In particular, FtSt − 1E1
is compact for all t, and t 7→ St is a parametrix for F̃ and

F̃ is Fredholm.
Furthermore, as in Example 9.27, f ⊗ a 7→ f(i) · a defines a unitary operator

(9.11) U
(i)
k : C(I,Ek) ⊗ǫi A→ Ek
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Then it is a simple matter to check that

F0 = U
(0)
1 (F̃ ⊗ǫ0 1)U

(0)
0

∗

and(9.12)

F1 = U
(1)
1 (F̃ ⊗ǫ1 1)U

(1)
0

∗

.(9.13)

For example, to check (9.12), first note that U
(0)
0

∗

maps x ∈ E0 to the class of x̃⊗1

in C(I,E0) ⊗ǫ0 A, where x̃ is the constant function x̃(t) = x. Thus, U
(0)
1 (F̃ ⊗ǫ0

1)U
(0)
0

∗

(x) = (F̃ x̃)(0) = F0(x).

Remark 9.31. Notice that if F̃ is a Fredholm operator from C(I,E0) to C(I,E1),

then we can define unitaries U
(t)
k : C(I,Ek) ⊗ǫt A→ Ek as in (9.11). Then one can

show that Ft := U
(t)
1 (F̃ ⊗ǫt 1)U

(t)
0

∗

is Fredholm from E0 to E1 and that t 7→ Ft is
an operator homotopy.

In general, if F̃ is a Fredholm from Ẽ0 to Ẽ1, then t 7→ F̃ ⊗ǫt 1 is meant to
be a generalized operator homotopy. The dramatic flexibility of Definition 9.29 is
illustrated by the next result.

Proposition 9.32 ([Hig90, Proposition 3.27]). Let A be a C∗-algebra with identity
and let F : E0 → E1 be a Fredholm operator between Hilbert A-modules. If F has
closed range, then F is homotopic to the zero operator 0 : kerF → kerF ∗.

For the proof we need a lemma.

Lemma 9.33. Suppose that E is a finitely generated Hilbert A-module. Then for
any compact space X, C(X,E) is a finitely generated Hilbert C(X,A)-module.

Proof. The only real issue is to show that C(X,E) is finitely generated. We can
assume that E is a complemented submodule of An with basis { ei } and that p is
the projection of An onto E. If f ∈ C(X,E) ⊂ C(X,An), then f =

∑
i ei · fi where

fi ∈ C(X,A). But then for each t ∈ X, f(t) = p
(
f(t)

)
=
∑
i p(ei) ·fi(t). Therefore

C(X,E) is generated by the constant functions Fi where Fi(t) = p(ei). �

Proof of Proposition 9.32. Lemma 9.15 implies that kerF and kerF ∗ are finitely
generated projective. Then Corollary 9.11 implies that every operator in L(kerF )
and L(kerF ∗) is compact. Therefore, 0 : kerF → kerF ∗ is Fredholm. Furthermore,
F has a polar decomposition F = V |F | by Theorem 9.6. Since t|F | + (1 − t)I is
invertible if t 6= 1, if follows that Ft := V

(
t|F | + (1 − t)I

)
is Fredholm36 for all

t ∈ [0, 1]. Thus F is operator homotopic to V , and will suffice to prove the result
with V in place of F .

Note that 1 − V ∗V and 1 − V V ∗ are the projections onto kerV and kerV ∗,
respectively. Since

Ẽ0 := { f ∈ C(I,E0) : f(1) ∈ kerV }

and

Ẽ1 := { f ∈ C(I,E1) : f(1) ∈ kerV ∗ }

36This is not completely trivial. It is easy to see that |F | must be Fredholm. To see that V
is Fredholm, note that if S is a parametrix for F and W a parametrix for |F |, then U := |F |S is
one for V . For example, UV ≡ |F |SV |F |W ≡ 1.
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are closed submodules, they are Hilbert C(I,A)-modules, and we can define Ṽ :

Ẽ0 → Ẽ1 by

(Ṽ f)(t) := V
(
f(t)

)
.

The adjoint of Ṽ is give by the corresponding formula for V ∗. Then it is easy to

see that 1 − Ṽ ∗Ṽ is the projection onto the submodule

Ỹ0 := { f ∈ Ẽ0 : f(t) ∈ kerV for all t ∈ [0, 1] } ∼= C(I, kerV ),

and 1 − Ṽ Ṽ ∗ is the projection onto

Ỹ1 := { f ∈ Ẽ0 : f(t) ∈ kerV ∗ for all t ∈ [0, 1] } ∼= C(I, kerV ∗),

Since kerV is finitely generated, so is Y0. Thus Y0 is projective and 1 ∈ K(Y0) by

Corollary 9.11. From this it is not hard to see that 1 − Ṽ ∗Ṽ is compact. Since a

similar argument shows that 1 − Ṽ Ṽ ∗ is compact, Ṽ is Fredholm. Then we can
define unitary operators

U
(0)
k : Ẽk ⊗ǫ0 A→ Ek (k = 0, 1)

by sending the class of f ⊗ a to f(0) · a, as well as

U
(1)
0 : Ẽ0 ⊗ǫ1 A→ kerV,

and

U
(1)
1 : Ẽ1 ⊗ǫ1 A→ kerV ∗

by sending f ⊗ a to f(1) · a. Then

V = U
(0)
1 (Ṽ ⊗ǫ0 1)U

(0)
0

∗

and 0 = U
(1)
1 (Ṽ ⊗ǫ1 1)U

(1)
0

∗

.

Thus Ṽ is the required homotopy between V and the zero operator. �

An even more extreme example is the following.

Proposition 9.34 ([Hig90, Proposition 3.28]). Let E0 and E1 be Hilbert mod-
ules over a not necessarily unital C∗-algebra A. If F is an invertible operator in
L(E0,E1), then F is homotopic to the zero operator 0 : 0 → 0 on the trivial Hilbert
A-module.

Proof. Define Ẽi as in the proof of Proposition 9.32 and F̃ analogously to Ṽ . Then

one sees easily that F̃ is invertible and hence Fredholm. Then F̃ gives the desired
homotopy just as above. �

The following lemma is helpful for understanding homotopy, and it will be useful
down the road.

Lemma 9.35. Suppose that F : E0 → E1 is Fredholm. If K ∈ K(E0,E1) is compact,
then F +K is homotopic to F . If X is any Hilbert A-module, then F ⊕1 : E0⊕X →
E1⊕X is Fredholm and homotopic to F . In particular, F is homotopic to a Fredholm
operator F ′ : HA → HA.
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Proof. The first statement is easy: Ft := F + tK is Fredholm and t 7→ Ft is an
operator homotopy from F to F + K. For the second, let S : E1 → E0 be a
parametrix for F . Define

Ẽk := { (f1, f2) ∈ C(I,Ek ⊕ X) : f2(0) = 0 },
as well as F̃ : Ẽ0 → Ẽ1 and S̃ : Ẽ1 → Ẽ0 by

F̃
(
(f1, f2)

)
(t) :=

(
F
(
f1(t)

)
, f2(t)

)
and S̃

(
(g1, g2)

)
(t) :=

(
S
(
g1(t)

)
, g2(t)

)
.

Then S̃ is a parametrix for F̃ (see Remark 9.26) and F̃ is Fredholm. The usual
maps induce unitaries

U
(0)
k : Ẽk ⊗ǫ0 A→ Ek, and U

(1)
k : Ẽk ⊗ǫ1 A→ Ek ⊕ X

such that

F = U
(0)
1 (F̃ ⊗ǫ0 1)

(
U

(0)
0

)∗
, and F ⊕ 1 = U

(1)
1 (F̃ ⊗ǫ1 1)U

(1)
0

∗

.

The second assertion follows from this.
To prove the last assertion, let X = HA in the second assertion. Thus the

Kasparov stabilization theorem implies F ⊕ 1 is unitarily equivalent to an operator
on HA. �

Lemma 9.36. Suppose that F0 : E
(0)
0 → E

(0)
1 and F1 : E

(1)
0 → E

(1)
1 are Fredholm

operators. Then F0  h F0. If F0  h F1, then we also have F1  h F0.

Proof. Since t 7→ F is an operator homotopy from F to itself, the first assertion is

easy. Suppose that F̃ : Ẽ0 → Ẽ1 is a homotopy from F0 to F1 such that

Fk = U
(k)
1 (F̃ ⊗ǫk 1)U

(k)
0

∗

.

Let θ be the automorphism of C(I,A) defined by θ(f)(t) = f(1 − t). Let

S̃ := F̃ ⊗θ 1 : Ẽ0 ⊗θ C(I,A) → Ẽ1 ⊗θ C(I,A),

and Ũ
(k)
i := U

(k)
i ⊗ 1. Then S̃ gives a homotopy37 from F1 → F0. To see this, not D

that (
Ẽk ⊗θ C(I,A)

)
⊗ǫt A ∼= Ẽk ⊗ǫ1−t

A

by the map sending (x⊗θ f) ⊗ǫt a 7→ x⊗ǫ1−t
f(t) · a. Just compute:

〈〈(x⊗ f) ⊗ a , (y ⊗ g) ⊗ b〉〉
A

= a∗〈x⊗θ f , y ⊗θ g〉
C(I,A)

(t)b

= 〈〈x⊗ f(t) · a , y ⊗ g(t) · b〉〉
A
. �

Definition 9.37 ([Hig90, Definition 3.29]). Let A be a C∗-algebra with identity.
Let ∼h be the equivalence relation generated by  h. Then let K ′(A) be the
set F/∼h-homotopy classes of (generalized) Fredholm operators F on countably
generated Hilbert A-modules.38

Remark 9.38. In view of Lemma 9.36, F0 ∼h F1 if and only if there are operators
Fi ∈ F such that

(9.14) F0  h F2  h F3  h · · · h Fn  h F1.

37Needs checking.
38Since any F ∈ F is homotopic to an operator F ′ ∈ F(HA), K′(A) is certainly a set.
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Even Higson admits that in view of Proposition 9.32, it is reasonable to suspect
that K ′(A) is small — even { 0 }. However, our goal is to prove that K ′(A) is
naturally isomorphic to K0(A). The first step in this direction is to show that
K ′(A) is an abelian group. It is tedious but straightforward to check that F0  h F1

and S0  h S1 implies that F0 ⊕ S0  h F1 ⊕ S1. Now if F0 ∼h F1 and S0 ∼h S1,
then we conclude that there are operators Fi and Sj such that (9.14) holds as well
as a similar one for the Sj . Since  h is reflexive, we can assume the two chains
have the same length. Thus it follows that F0 ⊕ S0 ∼h F1 ⊕ S1, and we can equip
K ′(A) with a binary operation

(9.15) [F0] + [F1] := [F0 + F1]

which makes K ′(A) a semigroup with identity equal to the class of the zero operator
0 : 0 → 0 on the trivial Hilbert A-module. (This class includes all invertible
operators.)

Proposition 9.39. With the binary operation (9.15), K ′(A) is an abelian group.
The inverse of [F ] is given by the class of any parametrix S for F .

Proof. Since F0 ⊕ F1 is unitarily equivalent to F1 ⊕ F0, K
′(A) is abelian. If F :

E0 → E1 is Fredholm with parametrix S : E1 → E0. It suffices to see that F ⊕ S is
homotopic to an invertible operator. For this, it suffices to see that F ⊕ S differs
from an invertible operator by a compact operator. But, viewed as an operator on
E0 ⊕ E1,

F ⊕ S =

(
0 S
F 0

)
;

however, modulo compacts
(

1 S
0 1

)(
1 0

−F 1

)(
−1 S
0 1

)
=

(
1 − SF (1 − SF )F + S
F 1 − SF

)

≡
(

0 S
F 0

)
,

and this suffices as the left-hand side is invertible:
((

1 S
0 1

)(
1 0

−F 1

)(
−1 S
0 1

))−1

=

(
−1 S
0 1

)(
1 0
F 1

)(
1 −S
0 1

)
. �

The following is helpful for understanding K ′(A), although we will not make use
of it here.

Proposition 9.40. If F ∈ F(E0,E1) and S ∈ F(E1,E2), then

[F ] + [S] = [S ◦ F ].

Proof. We can choose F ′ and S′ in F(HA) so that [F ] = [F ′] and [S] = [S′].
Furthermore, we have F ′ = U1(F ⊕ 1)U∗

0 where Ui is an isomorphism of Ei ⊕ HA

onto HA. Then S′ ◦ F ′ = U2(S ◦ F ⊕ 1)U∗
0 and [S ◦ F ] = [S′ ◦ F ′]. Thus, it suffices

to prove the result when E0 = E1 = E2.
But now let

Ut :=

(
cos π2 t − sin π

2 t
sin π

2 t cos π2 t

)
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and,

Wt :=

(
S′ 0
0 1

)
Ut

(
F ′ 0
0 1

)
U∗
t .

Then check that

W1 =

(
S′ 0
0 F ′

)
and W0 =

(
S′ ◦ F ′ 0

0 1

)
. �

The next order of business is to see that K ′ is a functor. To do this, we have
produce a homomorphism K ′(f) : K ′(A) → K ′(B) for any homomorphism f : A→
B. But if F ∈ F(E0,E1), then we can construct F ⊗f 1 : E0 ⊗f B → E1 ⊗f B as
in Proposition C.2. Since K(BB) = B, it also follows from Proposition C.2 that
K ⊗f 1 ∈ K(Ei ⊗f B) if K ∈ K(Ei) (i = 0 or 1). Thus F ⊗f 1 is Fredholm and if S
is a parametrix for F , then S ⊗f 1 is a parametrix for F ⊗f 1.

Now suppose that F̃ : Ẽ0 → Ẽ1 is a homotopy from F0 : E
(0)
0 → E

(0)
1 to F1 :

E
(1)
0 → E

(1)
1 . Thus there are unitaries

U
(k)
i : E

(k)
i ⊗ǫk A→ E

(k)
i

such that

F0 = U
(0)
1 (F̃ ⊗ǫk 1)U

(0)
0

∗

, and F1 = U
(1)
1 (F̃ ⊗ǫk 1)U

(1)
0

∗

.

Then one can show that F̃ ⊗f 1 : Ẽ0 ⊗f B → Ẽ1 ⊗f B is a homotopy from F0 ⊗f 1
to F1 ⊗f 1. This allows us to define K ′(f)[F ] := [F ⊗f 1]. Since F ⊗f 1 ⊕ S ⊗f 1
is unitarily equivalent to (F ⊕ S) ⊗f 1, K ′(f) is a homomorphism. We still need
to see that K ′ preserves compositions. That is, if f : A → B and G : D → A are
homomorphisms, then we need to show that

K ′(f ◦ g) = K ′(f)K ′(g).

This means that

[F ⊗f◦g 1] = [(F ⊗g 1) ⊗f 1],

and it will suffice to see that F ⊗f◦g 1 and (F ⊗g 1) ⊗f 1 are unitarily equivalent.
But x⊗ a⊗ b 7→ z ⊗ f(a)b extends to a unitary map39

Uk : Ek ⊗g A⊗f B → Ek ⊗f◦g B,

and

(F ⊗f◦g 1)U0 = U1(F ⊗g 1 ⊗f 1).

Thus K ′ is a covariant functor.
Since we are assuming A is unital, each element in K0(A) is represented by a

formal difference [E]− [F] of finitely generated projective Hilbert A-modules. Thus
0 : E → F is a Fredholm operator, and we get a map

J : K0(A) → K ′(A)

39It is not so obvious that UK is onto. But each element x ∈ Ek is of the form z · d for some
d ∈ D. Thus each x ⊗f◦g b equals z ⊗f◦g f(g(d))b, which is in the range of Uk.



LECTURE NOTES ON K-THEORY 51

defined by J
(
[E] − [F]

)
= [0 : E → F]. Furthermore, this map is natural: given a

unital homomorphism f : A→ B, the diagram

K0(A)
K0(f) //

JA

��

K0(B)

JB

��
K ′(A)

K′(f)

// K ′(B)

commutes. To see this, note that K0(f)
(
[pAn]

)
= [f(p)Bn]. So we have to see that

pAn ⊗f B is isomorphic to f(p)Bn. But I claim

(9.16) (ai) ⊗f b 7→
(
f(ai)b

)

defines an isometric map U : pAn⊗f B → f(p)Bn. To see that U is surjective, note
that U is the restriction of the corresponding map from An ⊗f B to Bn which is
surjective because f is unital:

∑
i ei ⊗f bi 7→ (bi).

Remark 9.41. We will make use of the following easily proved assertions regarding
operators T ∈ L(X1⊕X2,Y1⊕Y2). Such operators are in one-to-one correspondence
with matrices (

TX1Y1
TX2Y1

TX1Y2
TX2Y2

)

where TXiYj
∈ L(Xi,Yj). Furthermore, T is compact if and only if each TXiYj

is.
Since K(X,Y) = L(X,Y) if either X or Y is finitely generated (hence projective), it
follows that if E is finitely generated, then T ∈ L(X ⊕ E,Y ⊕ E) is compact if and
only if TXY is compact. In particular, if T and S belong to L(X ⊕ E,Y ⊕ E) and
TXY−SXY ∈ K(X,Y), then T −S is compact. Thus T ∈ L(X⊕E,Y⊕E) is Fredholm
if and only if TXY is.

As in Definition 9.18, if M is a finitely generated Hilbert A-module, then I’ll
write [M] for the associated class in K0(A) via the isomorphism of Theorem 9.12.
If M and N are both finitely generated, we need conditions which force [M] and [N]
to be equal; equivalently, we want to know when [M] − [N] = 0 in K0(A). We can
assume that M = pAn and N = qAr. There is no harm is taking n = r. Thus
Proposition 1.19 implies [M] − [N] = 0 if and only if p⊕ 1m ≈ q ⊕ 1m in Mn+m(A)
(again, increasing n if necessary). In particular, [M] = [N] implies that for some m,
there is a isomorphism for M ⊕Am onto N ⊕ Am. In [Exe93], Exel proves a useful
and powerful converse to this assertion. He first makes the following definition.

Definition 9.42 (cf., [Exe93, Defintion 2.5 and Lemma 2.6]). Hilbert A-modules
X and Y are quasi-stably-isomorphic if there is a countably generated Hilbert A-
module Z and an invertible operator T ∈ L(X ⊕ Z,Y ⊕ Z) such that 1Z − TZZ is
compact.

Theorem 9.43. If M and N are finitely generated Hilbert A-modules which are
quasi-stably-isomorphic, then [M] − [N] = 0 in K0(A).

Proof. Let X be a countably generated Hilbert A-module and T ∈ L(M⊕X,N⊕X) an
invertible operator with TXX−IX ∈ K(X). Replacing T by T⊕1HA

and X⊕HA by HA

(via the Kasparov Stabilization Theorem), we can assume X ∼= HA. Furthermore,
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we fix an isomorphism ϕ : X ⊕ M → HA. By Theorem 9.6 we can write T = V |T |
with V unitary. Define F ∈ L(HA) by

HA
ϕ //M ⊕ X

V //N ⊕ X
P //X

ι //M ⊕ X
ϕ∗

//HA,

where P and ι are the obvious projection and inclusion. Thus F = ϕF ′ϕ∗, where
F ′ ∈ L(M ⊕ X) has matrix (

0 0
VMX VXX

)
.

Then F ∗ = ϕG′ϕ∗, where G′ ∈ L(M ⊕ X) has matrix
(

0 V ∗
MX

0 V ∗
XX

)

But

F ′G′F ′ ∼
(

0 0
VMX VXX

)(
0 V ∗

MX

0 V ∗
XX

)(
0 0
VMX VXX

)

=

(
0 0
VMX VXX

){(
V ∗

MN
V ∗

MX

V ∗
XN

V ∗
XX

)(
0 0
VMX VXX

)}

=

{(
0 0
VMX VXX

)(
V ∗

MN
V ∗

MX

V ∗
XN

V ∗
XX

)}(
0 0
VMX VXX

)

which, since V V ∗ = 1,

=

(
0 0
0 1XX

)(
0 0
VMX VXX

)

∼ F ′

Therefore F = FF ∗F , and F is a partial isometry. Moreover, 1HA
− F ∗F is the

projection onto kerF , which is isomorphic to N. Since N is projective, 1 − F ∗F is
compact, and the class [1 − F ∗F ], viewed as an element of K0(A), coincides with
that of [N]. Similarly, 1 − FF ∗ is compact and [1 − FF ∗] = [M].

Now let π(F ) be the image of F in Q(HA) = L(HA)/K(HA). By the above, π(F )
is unitary. Let

∂ : K1

(
L(HA)/K(HA)

)
→ K0

(
K(HA)

)

be the index map in K-theory as defined in Theorem 8.1. Now HA
∼= A⊗ℓ2 [RW98,

Lemma 3.43], and so K(HA) ∼= A⊗K(ℓ2) [RW98, Corollary 3.38]. Thus K0

(
K(HA)

)

can be identified with K0(A) via the natural map K0(α) : K0(A) → K0

(
K(HA)

)
of

Theorem 4.1. Thus, we will view ∂ as a map into K0(A).40 I intend to show that D
∂
(
[π(F )]

)
= [N]− [M] on the one hand, and that ∂

(
[π(F )]

)
= 0 on the other hand.

This will suffice.
But, since π(F ) has a lift to a partial isometry — namely F — we can compute

∂
(
[π(F )]

)
just as we did in the case A = C and HA = H in the remarks preceding

Theorem 8.1. Let

W :=

(
F 1 − FF ∗

1 − F ∗F F ∗

)
.

40Since every projection in K(HA) is equivalent to one in Mn(A) (viewed as subalgebra of
K(HA) ∼= A ⊗ K(ℓ2)), it is not hard to see that our identification of the equivalence class of a

projection in K(HA) with a class in K0(A) in Theorem 9.12 is the inverse of K0(α). Therefore if p
is a projection in K(HA), we can identify the class of p in K0

`
K(HA)

´
and the class it represents

in K0(A).
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Then W is unitary lift of π(F ) ⊕ π(F )∗, and proceeding as in (8.1), we have

∂
(
[π(F )]

)
= [1 − F ∗F ] − [1 − FF ∗] = [N] − [M].

Since T = V |T | is invertible, it is homotopic to V . Thus F ′ is homotopic to T ′

given by

M ⊕ X
T //N ⊕ X

P //X
ι //M ⊕ X

which is represented by the matrix
(

0 0
TXM TXX

)
.

Since TXX − 1X is compact and M is projective, Remark 9.41 implies that T ′ is a
compact perturbation of the identity. Thus π(F ) is homotopic to 1, and ∂

(
[π(F )]

)
=

∂(0) must be zero as required. �

Corollary 9.44 ([Exe93, Theorem 3.6]). If T ∈ L(X) is a compact perturbation of
1X and T has closed range, then T is Fredholm with indT = 0.

Proof. Any compact perturbation of the identity is trivially Fredholm. Let S be a
pseudo-inverse for T such that 1X −ST is the projection onto kerT and 1X −TS is
the projection onto kerT ∗ (Lemma 9.15). In particular, kerS = kerT ∗, and ST is
an idempotent with range Y := RangeS. Now define

U : kerT ⊕ Y → kerS ⊕ Y

using the matrix (
1X − TS 1X − TS

S S

)
.

Then I claim the inverse of U is given by the operator V : kerS ⊕ Y → kerT ⊕ Y

with matrix (
1X − ST (1X − ST )T
ST ST 2

)
;

for example, UV has matrix
(

1X − TS (1X − TS)T
S ST

)
,

which is the identity on kerS ⊕ Y = kerS ⊕ RangeS. Furthermore,

UYY = S|Y,
and

1Y − S|Y = (ST − S)|Y = S(T − 1)|Y,
which is compact (because 1X − T is). Therefore kerT and kerS = kerT ∗ are
quasi-stably-isomorphic. Therefore indT = 0 by Theorem 9.43. �

Now we (finally) come to the crux of the matter.

Corollary 9.45 ([Exe93, Corollary 3.7]). Suppose that T1 and T2 are Fredholm
operators from X to Y each of which has closed range. If T1 − T2 is compact, then

indT1 = indT2.
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Proof. Let Si be a pseudo-inverse for Ti. Let U and R be the operators in L(X⊕Y)
with matrices

U ∼
(

1X − S1T1 S1

T1 1Y − T1S1

)
and R ∼

(
0 S1

T2 0

)
.

Notice that R has closed range, and that indR = indT2 − indT1. Since U2 = 1, U
is invertible and it follows that

indUR = indR = indT2 − indT1.

But modulo compacts,

UR ∼
(

S1T2 0
T2 − T1S1T2 T1S1

)

which, since T1 − T2 is compact,

≡
(

S1T1 0
(1X − T1S1)T2 T1S1

)

and, since 1X − S1T1 is also compact,

≡
(

1X 0
0 1Y

)
.

Therefore, indUR = 0 by Corollary 9.44. �

Lemma 9.46 ([Exe93, Lemma 3.8]). Suppose 1 ∈ A, X and Y are Hilbert A-
modules, and that T ∈ F(X,Y). Then for some n ∈ Z+, there is a F ∈ F(X ⊕
An,Y ⊕An) with closed range and such that FXY = T .

Proof. Choose a parametrix S ∈ L(Y,X) for T such that 1X −ST and 1Y − TS are
finite rank (Lemma 9.14). Therefore there are x := (xi) ∈ X

n and y := (yi) ∈ Y
n

such that

1X − ST =

n∑

i=1

θxi,yi
.

Let Ωx ∈ L(An,X) be defined by Ωx

(
(ai)

)
:=
∑n
i=1 xi ·ai, and notice that Ω∗

x(x) =(
〈xi , x〉

A

)
. Then ΩxΩ∗

y =
∑n
i=1 θxi,yi

. Now define F and G via the matrices

F ∼
(
T 0
Ω∗

y 0

)
and G ∼

(
S Ωx

0 0

)
.

Now compute

FGF ∼
(
TST + TΩxΩ∗

y 0
Ω∗

yST + Ω∗
yΩxΩ∗

y 0

)

=

(
T + T (1X − ST ) 0

Ω∗
y(ST + (1X − ST )) 0

)

∼ F.

Similarly, GFG = G, and F is Fredholm with closed range such that FXY = T . �
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Remark 9.47. We call any Fredholm operator F ∈ F(X ⊕ An,Y ⊕ An) having
closed range and FXY = T a n-regularization of T . By Remark 9.41, any two
n-regularizations of T differ by a compact and therefore have the same index by
Corollary 9.45. Furthermore, if F is a n-regularization of T , then F ⊕ 1Ak is a
(n+ k)-regularization of T . Since kerF ∼= ker(F ⊕ 1) (and kerF ∗ ∼= ker(F ⊕ 1)∗),
we have indF = ind(F ⊕ 1Ak). Thus if F is a n-regularization of T and G is a
m-regularization of T , then indF = indG.

In view of Remark 9.47, we can make the following definition for any Fredholm
operator.

Definition 9.48. Suppose that 1 ∈ A and that X and Y are Hilbert A-modules. If
T ∈ F(X,Y) the we define indT to equal indF for any n-regularization of T .

Remark 9.49. Notice that if T ∈ F(X,Y) has closed range, then F = T ⊕ 1n is a
regularization, so Definition 9.48 and Definition 9.18 associate the same element of
K0(A) to such operators.

Now having defined an index for all Fredholm operators, we still want to see that
we can pass to K ′(A). This will involve a bit of overhead even using the “easy”
hints in [Hig90].

Theorem 9.50. Suppose that for i = 0, 1, Fi is a Fredholm operator from E
(i)
0

to E
(i)
1 . If F0 ∼h F1, then indF0 = indF1. In particular, we get a well-defined

homomorphism ind : K ′(A) → K0(A) defined by ind[F ] := indF .

Proof. In view of Remark 9.38, we can assume F0  h F1 via a Fredholm operator

F̃ : Ẽ0 → Ẽ1. Thus we have unitaries

U
(i)
k : Ẽk ⊗ǫi A→ E

(i)
k

such that

(9.17) F0 = U
(0)
1 (F̃ ⊗ǫ0 1)U

(0)
0

∗

and F1 = U
(1)
1 (F̃ ⊗ǫ1 1)U

(1)
0

∗

.

By Lemma 9.46 we have a n-regularization for F̃ :

F̂ : Ẽ0 ⊕ C(I,A)n → Ẽ1 ⊕ C(I,A)n.

Let

Ŝ : Ẽ1 ⊕ C(I,A)n → Ẽ0 ⊕ C(I,A)n

be a pseudo-inverse for F̂ . Let V (t) : C(I,A)n ⊗ǫt A→ An be the obvious isomor-
phism. Since

(
Ẽk ⊕ C(I,A)n

)
⊗ǫi A and

(
Ẽk ⊗ǫi A

)
⊕
(
C(I,A)n ⊗ǫi A

)
,

are isomorphic, U
(i)
k ⊕ V (i) give us unitaries

W
(i)
k :

(
Ẽk ⊕ C(I,A)n

)
⊗ǫi A→ E

(i)
k ⊕An.

Therefore can can define Fredholm operators

F̌i := W
(i)
1 (F̂ ⊗ǫi 1)W

(i)
0

∗

and Ši := W
(i)
0 (Ŝ ⊗ǫi 1)W

(i)
1

∗
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in F(E
(i)
0 ⊕An,E(i)

1 ⊕An) and F(E
(i)
1 ⊕An,E(i)

0 ⊕An), respectively. Since F̂ ŜF̂ = F̂ ,
we have F̌iŠiF̌i = F̌i. Similarly, ŠiF̌iŠi = Ši. Thus F̌i has closed range and to show
it is a n-regularization of Fi, I just have to show that (F̌i)

E
(i)
0 E

(i)
1

= Fi. Let

(
F̃ B̂

Ĉ D̂

)

be the matrix for F̂ . Then

W
(i)
1 (F̂ ⊗ǫi 1)

(
(e, f) ⊗ǫi a

)
=
(
U

(i)
1

(
(F̃ e+ B̂f) ⊗ǫi a

)
,

V (i)
(
(Ĉe+ D̂f) ⊗ǫi a

))

=

(
U

(i)
1 (F̃ ⊗ǫi 1)U

(i)
0

∗

U
(i)
1 (B̂ ⊗ǫi 1)U

(i)
0

∗

V (i)(Ĉ ⊗ǫi 1)V (i)∗ V (i)(D̂ ⊗ǫi 1)V (i)∗

)
W

(i)
0

(
(e, f) ⊗ǫi a

)
.

In view of (9.17), (F̌i)
E
(i)
0 E

(i)
1

= Fi as claimed.

Now by definition

indF0 = ind F̌0 and indF1 = ind F̌1.

Now consider K0(ǫt) : K0

(
C(I,A)

)
→ K0(A). We want to show that

(9.18) ind F̌i = K0(ǫi)(ind F̂ ).

As in (9.16), we have

K0(ǫt)
(
[E]
)

= [E ⊗ǫt A].

Since ker F̌i is clearly isomorphic to ker(F̂ ⊗ǫi 1), (9.18) will follow if we show

ker(F̂ ⊗ǫi 1) = ker F̂ ⊗ǫi A.

Since F̂ has closed range, this follows from Corollary C.4. But ǫ0 ∼h ǫ1 as homo-
morphisms from C(I,A) to A (see Definition 5.12 with γ = id), so

K0(ǫ0) = K0(ǫ1)

by Theorem 5.15. Therefore ind F̌0 = ind F̌1, and we’re done by (9.18). �

And now, finally, . . .

Theorem 9.51. The natural map J : K0(A) → K ′(A) is an isomorphism.

Proof. The composition

K0(A)
J //K ′(A)

ind //K0(A)

is clearly the identity, and

K ′(A)
ind //K0(A)

J //K ′(A)

is the identity by virtue of Proposition 9.32. �
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Appendix A. Direct Limits of C∗-Algebras

If A is a ∗-algebra, then a seminorm ρ on A is called a C∗-seminorm if

(a) ρ(ab) ≤ ρ(a)ρ(b),

(b) ρ(a∗) = ρ(a), and

(c) ρ(a∗a) = ρ(a)2.

Thus (A, ρ) is C∗-algebra only if ρ is a norm and (A, ρ) is complete. Examples of
such things are provided by ∗-homomorphisms ϕ : A→ B where B is a C∗-algebra:
ρ(a) := ‖ϕ(a)‖. A nontrivial example is provided by the left-regular representation
λ : L1(G) → B

(
L2(G)

)
.

In general, N = ρ−1
(
{ 0 }

)
is a self-adjoint two sided ideal in A, and ‖a+N‖ :=

ρ(a) is a C∗-norm on A/N . The completion B is a C∗-algebra called the enveloping
C∗-algebra of (A, ρ).

As the title of this section suggests, the direct limit C∗-algebra is an example of
such an enveloping algebra. However, it will be useful to define direct limits via a
universal property.

Definition A.1. A direct sequence of C∗-algebras is a collection { (An, ϕn) } of
C∗-algebras An and homomorphisms ϕn : An → An+1. A family {ψn : An → B }
of homomorphisms into a C∗-algebra B is said to be compatible if

(A.1) An
ϕn //

ψn   A
AA

AA
AA

A
An+1

ψn+1||zz
zz

zz
zz

B

commutes for all n. A direct limit of { (An, ϕn) } is a C∗-algebra A together with
compatible homomorphisms ϕn : An → A such that given compatible homomor-
phisms ψn as in (A.1), then there is a unique homomorphism ψ : A → B such
that

(A.2) A

ψ

��

An

ϕn
>>}}}}}}}}

ψn   A
AA

AA
AA

A

B

commutes.

Remark A.2. General nonsense implies that the direct limit, if it exists, is unique
up to isomorphism. Therefore we will refer to the direct limit and use the notation
(A,ϕn) = lim

−→
(An, ϕn). If n ≥ m, then we will use the notation ϕmn : Am → An for

the repeated composition ϕmn := ϕn−1 ◦ · · · ◦ ϕm+1 ◦ ϕm, with the understanding
that ϕnn := idAn

.

Theorem A.3. Suppose that {An, ϕn } is a direct sequence of C∗-algebras. Then
the direct limit (A,ϕn) = lim

−→
(An, ϕn) always exists. Furthermore, ϕn(An) ⊂
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ϕn+1(An+1),
⋃
n ϕ

n(An) is dense in A, ‖ϕn(a)‖ = limk ‖ϕn,n+k(a)‖, and ϕn(a) =
ϕm(b) if and only if for all ǫ > 0 there is a k ≥ max{m,n } such that

(A.3) ‖ϕnk(a) − ϕmk(b)‖ < ǫ.

Proof. Let B =
∏
nAn be the C∗-direct product, and let

A0 = {a = (an) ∈ B : ak+1 = ϕk(ak) for all k sufficiently large }.

Then A0 is a ∗-subalgebra of B, and if a ∈ A0, then we eventually have ‖ak+1‖ ≤
‖ak‖. Thus we can define

ρ(a) = lim
n

‖an‖ for all a ∈ A0.

It is not hard to check that ρ is a C∗-seminorm on A0. We let A be the enveloping
C∗-algebra. Furthermore, we can define homomorphisms ϕ̂n : An → A0 by

(
ϕ̂n(a)

)
k

=

{
ϕnk(a) if k ≥ n

0 otherwise.

We then get compatible homomorphisms ϕn by composing with the natural map
of A0 into A (which need not be injective).

Since the remaining assertions are clear, it will suffice to show that (A,ϕn)
have the right universal property. So, suppose that ψn : An → B are compatible
homomorphisms. Since (A.2) forces us to have ψ

(
ϕn(a)

)
= ψn(a), the map ψ can

exist only if ϕn(a) = ϕm(b) implies that ψn(a) = ψm(b). Let ǫ > 0 and assume
that ϕn(a) = ϕm(b). There is a k such that ‖ϕnk(a) − ϕmk(b)‖ < ǫ. And then

‖ψn(a) − ψm(b)‖ ≤ ‖ψk
(
ϕnk(a) − ϕmk(b)

)
‖ ≤ ‖ϕnk(a) − ϕmk(b)‖ < ǫ.

Since ǫ > 0 was arbitrary, we get a well-defined map on C :=
⋃
n ϕ

n(An), which is
clearly dense in A. Since

‖ψ
(
ϕn(a)

)
= ‖ψn(a)‖
= ‖ψn+k

(
ϕn,n+k(a)

)
‖ for any k ≥ 1,

≤ inf
k
‖ϕn,n+k(a)‖ = lim

k
‖ϕn,n+k(a)‖

= ‖ϕn(a)‖.

Therefore ψ is norm decreasing and extends to all of A. We have ψ ◦ ϕn = ψn
by construction, and ψ is uniquely determined on the dense subalgebra C, so ψ is
unique. �

Example A.4. Suppose that An is a C∗-subalgebra of A for n ∈ Z+, that An ⊂
An+1, and that

⋃
nAn is dense in A. Let ϕn be the inclusion of An in An+1 and

ϕn the inclusion of An in A. Then (A,ϕn) is the direct limit of (An, ϕn).

Remark A.5. We can also form the algebraic direct limit of {An, ϕn }. It has
similar properties to the C∗-direct limit, and can be exhibited as the ∗-algebra
quotient A0/N where N is the ideal of elements of zero length in A0 in the proof of
Theorem A.3. Of course, in Example A.4, the algebraic direct limit is just

⋃
nAn.
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Appendix B. Grothendieck Group

A more general discussion can be found in the appendices to [WO93]. Here we
consider only an abelian semigroup V . The Grothendieck group G(V ) of V is the
collection of equivalence classes [v, w] in V × V where

(B.1) (v, w) ∼ (r, s) if and only if there is an x ∈ V such that

v + s+ x = r + w + x.

Then G(V ) is an abelian group under the operation

[v, w] + [r, s] := [v + r, w + s].

The neutral element is the class of [v, v] (for any v ∈ V ), and [v, w]−1 = [w, v].

Remark B.1. The extra term “x” in (B.1) is required to make ∼ an equivalence
relation in the event V is not cancellative. Of course, if V is cancellative, it plays
no rôle and can be omitted.

There is a natural map ϕV : V → G(V ) defined by ϕ(v) := [v+v, v]. If V has an
identity 0, then ϕV (v) = [v, 0]. If ϕ : V → H is a semigroup homomorphism into a
group H, then there is a unique group homomorphism G(ϕ) : G(V ) → H such that

V
ϕ //

ϕV !!D
DD

DD
DD

D H

G(V )

G(ϕ)

<<zzzzzzzz

commutes. In fact, G(ϕ)
(
[v, w]

)
= ψ(v)ψ(w)−1. More generally, if ϕ : V → S

is a semigroup homomorphism into a semigroup S, then there is a unique group
homomorphism G(ϕ) such that

V
ϕ //

ϕV

��

S

ϕS

��
G(V )

G(ϕ)
// G(S)

commutes. Here, G(ϕ)
(
[v, w]

)
= [ϕ(v), ϕ(w)]. If S is a group, then G(S) = S and

ϕS = idS , and this diagram reduces to the previous one.
We will almost always write ϕ in place of G(ϕ).

Example B.2. We have G(N,+) ∼= (Z,+). On the other hand, G(N ∪ {∞},+) ∼=
{ 0 } ∼= G(N, ·). While G(Z+, ·) ∼= (Q+, ·).

Appendix C. The Internal Tensor Product

In [RW98], we only considered a very special case of the internal tensor product
which sufficed for the study of imprimitivity bimodules. Here we want to consider
C∗-algebras A and B together a Hilbert A-module X, a Hilbert B-module Y, and a
homomorphism ϕ : A→ L(Y). We can view Y as a left A-module — a · y := ϕ(a)y
— and form the A-balanced module tensor product X⊙AY; recall that this is simply
the quotient of the vector space tensor product X⊙Y by the subspace N generated
by

{x · a⊗ y − x⊗ ϕ(a)y : x ∈ X, y ∈ Y, and a ∈ A }.
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The B-module structure is given by (x ⊗A y) · b := x ⊗A y · b. Our object here
is to equip X ⊙A Y with a B-valued inner product and use [RW98, Lemma 2.16]
to pass to the completion X ⊗ϕ Y which is a Hilbert B-module called the internal
tensor product. I’ll give a minimal treatment here just sufficient for our purposes
in Section 9.3. A more complete treatment can be found in Lance [Lan94]. Here we
take a slight short-cut, and merely equip X⊙Y with a B-valued pre-inner product.
As it turns out, elements in N all have 0-length, and we can, and do, view X ⊗ϕ Y

as a completion of X ⊙A Y.41

Proposition C.1 ([Lan94, Proposition 4.5]). Let X be a Hilbert A-module and Y

and Hilbert B-module with a homomorphism ϕ : A→ L(Y). Then there is a unique
B-valued pre-inner product on X ⊙ Y such that

(C.1) 〈〈x⊗ y , z ⊗ w〉〉
B

:=
〈
y , ϕ

(
〈x , z〉

A

)
w
〉

B
.

The completion X ⊗ϕ Y is a Hilbert B-module which satisfies

x · a⊗ϕ y = x⊗ϕ ϕ(a)y

for all x ∈ X, y ∈ Y, and a ∈ A.

Proof. As in Propositions 2.64, 3.16, and 3.36 of [RW98], the universal property of
the algebraic tensor product ⊙ implies that (C.1) determines a unique sequilinear
form on X ⊙ Y. The only real issue is to prove that this form is positive.

So let t :=
∑
xi ⊗ yi. Then

(C.2) 〈〈t , t〉〉
B

=
∑

i,j

〈
yi , ϕ

(
〈xi , xj〉

A

)
yj
〉

B
.

But [RW98, Lemma 2.65] implies that M :=
(
〈xi , xj〉

A

)
is a positive matrix in

Mn(A). Thus there is a matrix D such that M = D∗D, and there are dkl ∈ A such
that

〈xi , xj〉
A

=
∑

k

d∗kidkj .

Thus (C.2) equals
∑

i,j,k

〈
yi , ϕ(d∗kidkj)yj

〉
B

=
∑

i,j,k

〈
ϕ(dki)yi , ϕ(dkj)yj

〉
B

=
∑

k

〈(∑

i

ϕ(dki)yi)
)
,
(∑

i

ϕ(dki)yi)
)〉

B

≥ 0 �

Now we want to see that each T ∈ L(X) determines an operator T ⊗ϕ 1 on the
internal tensor product X ⊗ϕ Y. In general, T ⊗ϕ 1 can fail to be compact when T
is unless we also assume that ϕ(A) ⊂ K(Y) (see [Lan94, p. 43]).

Proposition C.2 ([Lan94, Proposition 4.7]). Let A, B, X, Y, and ϕ be as above,
and let Z be a Hilbert A-module. If T ∈ L(X,Z), then there is unique operator
T ⊗ϕ 1 ∈ L(X ⊗ϕ Y,Z ⊗ϕ Y) such that

T ⊗ϕ 1(x⊗ϕ y) = Tx⊗ϕ y.
If ϕ(A) ⊂ K(Y) and T ∈ K(X), then T ⊗ϕ 1 ∈ K(X ⊗ϕ Y).

41The difference is that Lance goes the extra mile and proves that the pre-inner product is
actually an inner product (that is, definite) on X ⊙A Y.
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Proof. We clearly have a well-defined operator T ⊗ 1 on X ⊙ Y, and if t ∈ X ⊙ Y

and s ∈ Z ⊙ Y, then straightforward calculations reveal that

〈〈(T ⊗ 1)t , s〉〉
B

= 〈〈t , (T ∗ ⊗ 1)s〉〉
B
.

Similarly, if S ∈ L(Z,X), then on the algebraic tensor products, (T ⊗ 1) ◦ (S⊗ 1) =
(TS ⊗ 1). Since there is a R ∈ L(X) such that ‖T‖21X − T ∗T = R∗R, for all
t ∈ X ⊙ Y,

‖T‖2‖t‖2
X⊗ϕY

− ‖(T ⊗ 1)t‖2
X⊗ϕY

= 〈〈‖T‖2t , t〉〉
B
− 〈〈(T ∗T ⊗ 1)t , t〉〉

B

= 〈〈((‖T‖21X − T ∗T ) ⊗ 1)t , t〉〉
B

= ‖(R⊗ 1)t‖2
X⊗ϕY

≥ 0.

It follows that T ⊗ 1 is bounded, and extends to an operator T ⊗ϕ 1 ∈ L(X ⊗ϕ
Y,Z ⊗ϕ Y) such that (T ⊗ϕ 1)∗ = T ∗ ⊗ϕ 1 and ‖T ⊗ϕ 1‖ ≤ ‖T‖. Furthermore, if
Z = X and ϕ∗(T ) := T⊗ϕ1, then ϕ∗ is a homomorphism from L(X) into L(X⊗ϕY).

For the second assertion, note that if x ∈ X, then

(C.3) y 7→ x⊗ϕ y

is a linear map of Y into X ⊗ϕ Y. Since

‖〈〈x⊗ϕ y , x⊗ϕ y〉〉
B
‖ =

〈
y , ϕ

(
〈x , x〉

A

)
y
〉

B
≤ ‖x‖2

A‖y‖2
B ,

(C.3) determines an operator υx : Y → X ⊗ϕ Y with ‖υx‖ ≤ ‖x‖A. Since

〈〈υx(y) , x⊗ w〉〉
B

=
〈
y , ϕ

(
〈x , z〉

A

)
w
〉

B
,

υx ∈ L(Y,X ⊗ϕ Y) with υ∗x(z ⊗ϕ w) = ϕ(〈x , z〉
A
)w. Using this, we compute that

(θx·a,y ⊗ 1)(z ⊗ϕ w) = θx·a,y(z) ⊗ϕ w
= x · a〈y , z〉

A
⊗ϕ w

= x⊗ϕ ϕ
(
a〈y , z〉

A

)
w

= x⊗ϕ ϕ(a)ϕ
(
〈y , z〉

A

)
w

= υx
(
ϕ(a)ϕ

(
〈y , z〉

A

)
w
)

= υx ◦ ϕ(a) ◦ υ∗y(z ⊗ϕ w).

It follows that if ϕ(a) ∈ K(Y), then θx·a,y ⊗ 1 = υxϕ(a)υ∗y is compact. Since the
Cohen Factorization Theorem ([RW98, Proposition 2.31] suffices) implies every x ∈
X is of the form z ·a for some z ∈ X and a ∈ A, it follows that ϕ∗(θx,y) ∈ K(X⊗ϕY)
for all x, y ∈ X. Since ϕ∗ is a homomorphism and K(X) is generated by the θx,y,
we have ϕ∗

(
K(X)

)
⊂ K(X ⊗ϕ Y) as desired �

Remark C.3. In [Lan94, Proposition 4.7], Lance also shows that the homomorphism
ϕ∗ is injective if ϕ is, and surjective if ϕ is.

Corollary C.4. Suppose that A, B, X, Y, Z, and ϕ are as in Proposition C.2. If
T ∈ L(X,Z) has closed range, then

ker(T ⊗ϕ 1) = kerT ⊗ϕ Y.
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Proof. By Theorem 9.6, X = kerT ⊕ (kerT )⊥. Therefore we can identify X ⊗ϕ Y

with kerT ⊗ϕ Y ⊕ (kerT )⊥ ⊗ϕ Y, and it will suffice to see that T ⊗ϕ 1 restricted
to (kerT )⊥ ⊗ϕ Y is injective. To see this, it suffices to see that T |(kerT )⊥ ⊗ϕ 1 is

injective as an operator from (kerT )⊥ ⊗ϕ Y to T (X) ⊗ϕ Y. But the open mapping
theorem that T |(kerT )⊥ : (kerT )⊥ → T (X) has a bounded inverse S, and as in
the proof of Lemma 9.15, T |(kerT )⊥ is adjointable. Then S ⊗ϕ 1 is an inverse for
T |(kerT )⊥ ⊗ϕ 1. �
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