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ABsTrRACT. I will attempt to give a self-contained treatment which will make pre-
cise and then prove the statement that “the antiderivative of exp(—z?) can not be
written in terms of the usual, so-called elementary, functions of Calculus.

1. INTRODUCTION

For years I've begun teaching techniques of integration to first year college students
by warning them that integration—more precisely antidifferentiation—is harder than
differentiation. In particular, I am fond of pointing out that “it is easy to write down
simple expressions, such as exp(—x?), that don’t have an antiderivative which can
be expressed in terms of the standard functions of calculus.” Of course, it is a tad
difficult to explain precisely what one means. In the previous semester, I was quite
happy to point out that by the Fundamental Theorem of Calculus every continuous
function had an antiderivative; so

erf(x) = /01’ exp(—t?) dt

is certainly an antiderivative of exp(—z?). On the other hand, it is not hard to accept
that whatever “expressing an antiderivative in elementary terms” means, erf isn’t it.
In this article, my goal is to show that functions such as

foy=e,  ga)=",  and  h(e) =

do not have elementary anti-derivatives. Naturally, the first task is to decide exactly
what an elementary function is.
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2. ELEMENTARY FUNCTIONS

The approach here is to use the language of field theory. We start with the field
Fo = C(z) of complex rational functions. Of course, Fy is much too small—we know!
of lots more functions than these, so naturally we’ll add new functions by adjoining
elements to Fy. For example, we may want to add f(z) = log(z). Immediately we run
into the question of domain. Here we will content ourselves with restricting attention
to a suitable open subset € of the plane. (Somewhat more generally, we could, for
example, let © be part of the usual Riemann surface for log.) So, we assume that
f is an analytic function on Q which satisfies /() = 2z for all z € Q (f is called a
branch of log(z)). Then we let K = M(2) denote the field of meromorphic functions
on . Then C(z) C K and we can define F; = F(f) to be the smallest subfield of K

containing the functions

g(z) = ro(2) + ri(2)f(2) + -+ ra(2) ([(2)"

for ro,r1,...,r € Fo. Naturally, if fi1, fo,..., fu € M(Q), then we can iterate the
process to obtain a subfield C(z, fi1,..., f,) of M(): that is,

Cz)=FoCHRCFHRC---CF=Czf,..., fa)

where Fii1 = Fi( frt1)-

We will be primarily interested in subfields £ of M(Q) which are differential in
the sense that &' = { f': f € £} C €. Remarkably, many subfields are automatically
differential.

Lemma 1. Suppose that F is a differential subfield of M(Q) and that f € M(RQ) is
algebraic over F. Then f' € F(f); that is, F(f) is a differential subfield.

Proof. It p(X) = ro(2z) + -+ rn(z)X™ is the minimal polynomial of f over F, then
ro(2) +ri(2)f(2) + -+ (=) (£(2)" '
r1(=) 4 20a(2) () 4+ nra(2)(£(2) "

(1) f'(z) =

O

Definition 2. We say that a differential subfield of M(Q) is an elementary extension
of C(z) on Qif &€ =C(z, f1,..., f,) for functions fr € M(£) such that either

(1) frg1 is algebraic over F,

(2) exp(fr+1) belongs to Fy, or

(3) frt1 = exp(g) for some g € Fy,
for k=10,1,...,n — 1. In case (2), we say that fi41 is a logarithm of Fj. Similarly,
in case (3), we say that fyi1 is an exponential of Fy.

'One could speculate just how much we know about functions like f(z) = log(z), but we’ll give
that a pass here.
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Remark 3. A subfield of M(Q) of the form C(z, f1,..., f.) with each f; satisfying one
of (1), (2), or (3) in Definition 2 is automatically differential and therefore elementary.
To see this, it suffices to notice that Fi(fr41) is differential if Fj is. However, this
follows from Lemma 1 in case (1), and is clear in cases (2) and (3).

Finally, we can define an elementary function.

Definition 4. A function f in M(Q) is elementary on Q if f belongs to some ele-
mentary extension of C(z) on (.

A few moments reflections shows that the definition of an elementary function is
incredibly generous; it is difficult to conceive of a function which is not elementary.

Example 5. All the trigonometric functions and their inverses are elementary. For
example:

and

sin™'(2) = —ilog(iz £ V1 — 2?)

are both elementary. The first is contained in C(z,¢**). The second is the logarithm
of a function algebraic over C(2)?.

FExample 6. Even complicated compositions are easily seen to be elementary: f(z) =
sin(cos(z)) is in (C(Z7 ei*, elcos(z)>‘

The above example is no accident, and is a general fact.
Lemma 7. All (meromorphic)® composites of elementary functions are elementary.

Sketch of Proof. Suppose that f, ¢, and f o ¢ are meromorphic on €), and that f
and ¢ are elementary. We want to show that z — f(g(z)) is elementary. Let
feCz fi,..., fa). Since quotients of elementary functions are elementary, we can

assume that f € C(z, f1,..., fu—1)[fa]- Thus it suffices to consider f(z) = r(z) (p(z))k
where r € € = C(z, f1,..., fu_1) and p is either algebraic over £ or a logarithm or
exponential of £. An induction argument allows us to assume that z +— r(g(z)) is
elementary, and, since products of elementary functions are trivially elementary, we
only have to see that z — p(g(z)) is elementary.

First suppose that p is algebraic over £. Then there are r;,...,rg € &€ such that

ri(2)(p(2)) 4o ro(2) = 0

2Tt is not true that the inverse of an elementary function is elementary [1]. This does not appear
to be easy to see and is certainly beyond the scope of this article

3We only look at compositions that are meromorphic. This is to avoid worrying about what
happens near zero for atrocities like ¢(z) = 1/sin(1/2).
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for all z € ). By induction, we can assume that each function z — r; (g(z)) belongs
to some elementary extension £'. Then z — p(g(z)) is algebraic over &', and is
elementary.

If p is a logarithm of £, then by definition the function h(z) = exp(p(z)) isin &,
and induction once again implies that hog is elementary and belongs to an elementary
extension £”. Then, z +— p(g(z)) is a logarithm of £ and is elementary.

Finally, if p is an exponential of &, say p(z) = exp(h(z)) for some h € &, we have
hog in an elementary extension £’ by induction, and z +— p(g(z)) is an exponential

of £&". O

Ezxample 8. Tt follows that perfectly ridiculous functions like local solutions & to

(h(z))5 cos <log(z)> + (h(z))3 tan(ez + sin_1(2)> +7=0

are elementary on their domains.

3. THE MAIN RESULTS

In spite of showing that virtually every conceivable function is elementary, we
are going to prove the following theorem which asserts that many common anti-
derivatives fail to be elementary—even if one is willing to sharply restrict the domain!

Theorem 9. There is no open set ) on which the functions defined by exp(—z?),
exp(z)/z, and sin(z)/z have elementary anti-derivatives. In fact, if f € C(z) and
g € C(z) is non-constant, then z — f(z) exp(g(z)) has an elementary anti-derivative
if and only if there is an a € C(z) such that f = a' + ag’.

Our proof of this result is based on two rather difficult results. The first is a
classical result of Liouville* suitably generalized by Ostrowski.

Theorem 10 (Liouville). Let F = C(z) (or any other differential field of mero-
morphic functions containing C(z)) considered as a subfield of M(Q) for some open
subset Q0. Then a function g € F has an elementary anti-derivative if and only if

there are constants ¢y, ...,c, € C, and functions uy, ..., u,,v € F such that
n /
u”
2 = ci— +v.
(2) g Z; s

The first step towards the proof of Theorem 10 is the following lemma which will
also play a crucial role in the proof of the main theorem.

Lemma 11. Suppose that g is a non-constant element of C(z). Then § = € is
transcendental over C(z).

4Liouville developed his results in the period between 1833 and 1841. Actual references may be
found in the bibliography of [1]
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This lemmain turn depends on the following result which will also have applications
elsewhere.

Lemma 12. Suppose that F is a differential subfield of M(Q) containing C(z). Then
if o € Aut(f/C(z)), then o(0') = o(0) for all f0 € F.

Proof. Define D : F — F by D(f) = f'—o™* <0'(f)/>. It is not hard to see that D is
a derivation on F (i.e., D(x +y) = D(x) + D(y) and D(zy) = D(x)y + «D(y)), and
that D(C(Z)) = {0}. Now if p is the minimal polynomial in C(z)[X] with p(#) = 0,
then

Since p/(#) # 0, D(8) = 0; this proves the claim®. [J

Proof of Lemma 11. Suppose that § were not transcendental. Then # would be con-
tained in a normal algebraic extension F of C(z) of degree n < oo. Suppose that
o€ Aut(f/C(z)). Then Lemma 12 implies that o(f) = o(f') for all f € M(Q),
so that o(0) = o(¢'0) = ¢'0(0). Since the order of Aut (f/C(Z)) is n, and since ¢ is

not constant, we have

!

@) A D U
Put u =[], 0(8). Note that if p is the minimal monic polynomial of § in C(z)[X],
then p(z) =[], (X — 0'((9)); this shows that u € C(z). It follows from (3) that u # 0.

Thus v'/u is in C(z) and a derivative of n - ¢ in C(z). The last statement implies
that all the poles of u'/u have order 2. On the other hand the fact that u is non-
constant implies that u’/u has poles, and any such poles must be of order 1. This
contradiction completes the proof. [

Liouville’s original work depended on a rather subtle analysis of the structure of
elementary functions. This is exploited in [1], but, at least I found, the language and
style involved there to be rather difficult to absorb. The proofs given here will be
based on the following result of Rosenlicht [2].

>This is essentially a proof that differentiation is the unique derivation extending differentiation
on any algebraic extension of C(z).
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Proposition 13 (Rosenlicht). Assume that F is a differential subfield of M().
Suppose that § € M(Q) is transcendental over F, and that either § € F or
0'/0 € F. Finally suppose that c¢1,...,¢c, € F are linearly independent over Q, that
v, U, ..., U, € F(0), and that

n

!
Nt ol e FlO).
u;

=1

Then v is actually in F[0]. Furthermore, if ' € F, then each u; must be in F. On
the other hand, if 0'/0 € F, then for each i = 1,...,n, there is an integer v; such
that u; /0" € F.

We will postpone the proot of Proposition 13 until the very last. However our main
result in now a straightforward consequence of Theorem 10 and Proposition 13.

Proof of Theorem 9. Suppose that a(z) = f(z) exp(g(z)) with f,g € C(z), f # 0,
and g ¢ C. If o has an elementary anti-derivative, them we can apply Theorem 10

with F = C(z, e?). Thus

(4) fegzzciﬂ—l-v/
=1 g

with ¢1,...¢, € Cand v,uq,...,u, € C(z,€9).

Lemma 14. We may assume that the constants ¢y, ..., ¢, appearing in (4) are lin-
early independent over Q.

Proof. Otherwise we may as well assume that ¢, = (mye; + -+ + my—1¢,-1)/m with

mi,...,my,, m integers and m # 0. For 1 <¢ <n —1, let w; = u/", d; = ¢;/m, and
W —n = u,. Then if we put d, = ¢,, we have d,, = myd; + --- + my_1d,—1, and
m—1_y 1
whfw; = % = m%, for 1 <1 <n—1. With these notations,
"W i wh o omw!
o= d;— + o' = d; | = 4 —2= v’
Y=L (G e)

n—1 s\ !
(wiw l) /
= gy
- W;Wn
=1
]

It follows from Lemma 11 that e? is transcendental over C(z). Thus we may
apply Proposition 13 with F = C(z) and 6 = e to conclude that v € C(z)[e?] and
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u; = h;e"? for some functions h; € C(z) and integers v;. In particular, u}/u; € C(2)
and

(5) fe? +0' € C(2).
On the other hand, v = Z;n:() bjejg with b, € C(z) and b, # 0. Thus

(6) =) (W b e
7=0

Notice that if both j and b; are nonzero, then having 0’ +75b;9" = 0 would imply that ¢’
had poles of order 1—a contradiction®. Thus for each J =1, we have (b + jb;g’) # 0
whenever b; # 0. However as e? is transcendental over (C( ), we Certamly have
{1,e9,¢e%,...,e™ } linearly independent over C(z). Therefore (5) implies that m =
1, and f must be the coefficient of € in (6). That is, f = ' + ag’ with a € C(z).
This proves the last statement in the Theorem as z — a(z) exp(g(z)) would be an
anti-derivative of « in the event f = da' + ag’.

If a(z) = exp(—2?), then we could apply the above with f(z) =1 and g(z) = —2%
Therefore o has an elementary anti-derivative if and only if there is a rational function
a such that

(7) 1 =d'(z) — 2za(2).
However, a has a partial fraction decomposition of the form
m  nr am
8 alz) =p(z) + —
® D=
where p is a polynomial and @ has poles z1, ..., z, of multiplicities nq,...,n, (with

n; > 1 for all ¢). Clearly, p = 0 as otherwise the right-hand side of (7) has degree
equal to deg(p)+ 1 > 0. On the other hand, if @ has a pole of order s > 1 at zg, then
the right-hand side of (7) has a pole of order s + 1. This is a contradiction, and we
conclude that exp(—z?) does not have an elementary anti-derivative.

If a(z) = (1/2)exp(z), so that f(z) = 1/z and g(z) = z. This requires that we

solve
9) =d'(z) + a(z).

However, the right-hand side of (9) has no poles of order one. Thus « can’t have
an elementary integral. In fact, neither does z — (1/z)exp(wpz) for any non-zero
constant wqy € C.

n | =

b’ . . .
5Because ¢’ = —ﬁ must be nonzero, since ¢ is nonconstant, and hence has poles which must be
7

of order one.
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Finally we are left with the question of whether ¢(z) = sin(z)/z has an elementary
integral. Note that if we define 0(z) = exp(iz), then ¢(z) = (1/2iz) (0(2) — 0(2)_1>.
Furthermore, we have just concluded that neither 6/z nor 1/(z60) have elementary
anti-derivatives. Unfortunately, it does not immediately follow from this that ¢ can
not have an elementary anti-derivative!

We need to introduce some notation and conventions for functions in v € C(z, 9).
These functions are rational in C(z)[f]; that is v is a quotient of polynomials in
(=) with coefficients in C(z). We use the notation vi<z, 0(2)) to denote a function
of the form p(@(z))/q(@(z)) for p,q € C(2)[X]. In particular, we can view v as a
function of two independent variables where v(z,w) = p(w)/q(w) (keep in mind that
the coefficients of p and ¢ are functions of z). Thus we can write Dyv for the partial
derivative of v with respect to its first variable, and D,v for the partial with respect
to the second”.

Now back to ¢. If ¢ did have an elementary integral u, then Theorem 10 would
allow us to assert that there are functions v, vq, ..., v,, which are rational in C(z)[6],
such that

u(z) = vg (Z, 0(2)) + Z ¢ log<vi<z, 0(2))),

=1
and the ordinary chain rule implies that

1 1 .
(10) 5= (9(2) - %> = Divo(z,0(2)) 4+ Davo(z,0(2))if(z)
N XT: . Dle'(Z, 0(2)) + Dzvi<z, 0(2))@0(2)
— vi(z,0(2))
Since 6 is transcendental over C(z) (Lemma 11), (10) must hold with (z) replaced

by any value ¢ in the domain of both sides. In particular, we can replace 0(z) by
1f(z) for any p sufficiently close to 1. It follows that

21—.2 (W(Z) - @)

is the derivative of u,(z) = vg (Z, ,u@(z)) + > . cilog (vZ'(Z, ,u@(z))) This would imply
that

is an elementary anti-derivative of #(z)/z, and this is impossible. This contradiction
completes the proof. [

"For example, suppose that ¢ = 1 and p(X) = ro(2)+71(2)X +- - +rx(2)X*. Then Dyv(z,w) =
ro(z)+ri(z)w+ -+ rﬁc(z)wk, while Dov(z, w) = ri(2) + -+ krp(2)w* !
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The last bit about sin(z)/z is actually a very special case of a generalization of
Theorem 10 given in [1, III §13] which says that, assuming ¢; and y; are algebraic
over C(z) and no g; is a constant multiple of another g¢;, then w = e9y; +--- + ey,
has an elementary anti-derivative only if each e%y; does. This is beyond our current
scope.

Now we have to pay for our fun and prove the two hard results, Theorem 10 and
Proposition 13, on which all the above depends.

Proof of Theorem 10. By assumption (and Remark 3) there is a tower of differential
fields

F=FCF C- CFn,
such that ¢ € Fjy, and for each ¢ = 1,2,.... N, F; = Fi_1(fi) where, if f; is not

algebraic over F,;_q, then f; is either a logarithm or exponential of F;_;.

Notice that if N = 0, then the result is trivially true. So we can proceed by
induction on N. So we can assume that N > 0 and apply the induction hypothesis
to the tower F; C -+ C Fy. Consequently, we can assume that

~
(11) g—;clm—l—v,
where ¢q,...,¢, € C as desired, but v, uq,...,u, are only known to be in F;. Our
task is to show that we can modify r,cq,..., ¢, uq, ..., u, such that uy,...,u, € F.

For notational convenience, we write § = f; so that F; = F(0). Also, the argument
of Lemma 14 implies that we may assume that the ¢; are linearly independent over
Q. (This will be needed when we try to apply Proposition 13.)

We first concentrate on the case where 8 is transcendental over F. If 4 is logarithm
of F, then ¢ = d'/a for some a € F. We apply Rosenlicht’s Proposition 13 which
implies that each u; belongs to F and that v belongs to F[f]. Then (11) also forces
v' to belong to F. We will have obtained the result in the present case if we can show

all this forces v to be of the form ¢ + d with ¢ € C and d € F. But

(12) v=> bt
7=0

with b; € F. We can assume that m > 0, and that b,, # 0 (otherwise we're done).
Anyway,

!
o' =b 0" + <mbma— + b;n_1> 0™~ 4 (an element of F[f] of degree < m — 1).
a

Since v’ € F, we get b/ =0, so b,, is a constant function. Similarly, if m > 1, then we

also have 0 = (mbma’/a + b;n_1>, which equals (mb,,0 + b,,—1)". Thus (mb,,0 + b,,—1)
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is a constant and belongs to F. This contradicts the transcendency of 8 over F, and
completes the proof in the logarithmic case.

Now suppose that 6 is an exponential of F. Then 6'/0 = o' for some a € F. Again
we can apply Proposition 13 to conclude that each u; is of the form a;0* for a € F
and v; an integer, while v € F[f]. Now calculate that

u:al 0 d ,

—=—+ = —+vya

u o a; 0 a;
and plugging into (11) we get

r Cl;» .

9= a—+(v+(wi+-+u)a).

=1 ¢
Thus we may assume that each u; actually belongs to F. This again forces v’ to
belong to F, and we only need to see that v € F too. But v has the form (12) with
each b; in F and b,, # 0. In this case,

Z b' + 70, a
7=0
If m # 0, we have b/, — mb,,a’ = 0. This implies that

0/
(b, 0™) =0 0™ + b,m0™ 0 = o™ (b’ + mb,, §>

= 0"(b), + mbya’) = 0.
This forces b,,0™ to belong to F, which is nonsense. This disposes of the cases where
6 is transcendental over F.

Finally, we are left only with the case that 6 is algebraic over F. Let K be the
smallest normal extension of F containing F;. For any ¢ in Aut(K/F) we have

g:ZcZZEu —I-Zcz U((u’ o(v)).

=1

(We saw in the proof of Lemma 11 that o(f) = o(f’) for all f € K.) Therefore

K :Flg = zi: Z Z(ZZZ))/ Z T ¢~ <HU / + <Z a(v))l.

=1 o

Since both [[, o(w;) and [], o(v) are invariant under Aut(K/F), they are in F. Thus
we can divide both sides by [K : F] to get the desired result. O

Before I tackle Rosenlicht’s fundamental result, I'll need a little lemma.
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Lemma 15. Suppose that py,...,py are distinct irreducibles in K[0]®. Also suppose

that { ap. }Zj;"k:l are polynomials in K[0] such that p,, and a,,,,, are relatively prime

forallm=1,...,N. Then

(13) 3 zm: Gk

F
m=1 k=1 pm
is not in K[6].

Proof. Let M = max,, n,. If (13) were in K[f], then we could multiply by
(p1p2 - - . py )M to conclude that is a subset of { p,, }, q1,- .. qn7, such that

(14) 3 Z—:

m=1

is in K[f] with 0 < N’ < N and each a,, relatively prime to each ¢,,. But (14) equals

ar [I0_, gm + qib

HZ:I qm
for some b € K[f]. Thus if (14) is in K[#], then ¢; divides the numerator of (15), and
therefore ¢; divides a; H]\Tf:z ¢m. This is a contradiction and completes the proof. [

(15)

Proof of Proposition 13. We let K be a finite normal algebraic extension of F in

which the functions v, uq, ..., u, split into linear factors. That is, we assume that
N
u; :giH(G—Zj)“iﬂ, 1=1,2,....n
j=1
N -M
v = Z Z hy; (0 — z;)" + an element of K[0],
j=1 v=—1

where h,; and z; are elements of K, each ¢; is a nonzero element of K, and p;; is an
integer. Note that y;; and h,; will often be zero. By an argument only slightly more
complicated than that in Remark 3, we see that K is differential?, and therefore so
is K(0). Moreover, K[0] is closed under differentiation as well.

With these notations, our basic assumption is that

(16) Zc%+zcmij0_j £ 3 (hs (0 = 2,)") € K[0).
¢ i J v

=1

8We could replace K[0] by any UFD, and K(6) by its fraction field.
For each f € K, consider the miminal polynomial p € F[X] of f. If p(X) = r5(2)+- - +rmn(2)X™
for functions r; € F, then f'(z) is given by the formula (1). Thus f' € K.
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I intend to show that, unless z; = 0, all the y;; and h,; are zero. This will be shown
to suffice.
We have either 8 = a or ' = af for some a € F. We will consider that cast §' = a

first. Then

/ . —_ A~
G—ZJ_CL Z;

17 = :
( ) f— 25 f— 25

Next I claim that (17) is in lowest terms. (Recall that p/q is in lowest terms if p and
q are relatively prime in K[f].) Since the denominator is irreducible, this amounts to
showing that a —z; # 0. But, if a = zI, then a = 0(2}) = o(z;) for all 0 € Aut(K/F)
(see the proof of Lemma 11). Therefore [K : Fla = (3, U(Zj))l, and a = b’ for some
b € F. This implies that (# — b)’ = 0, so that ¢ — b is a constant and 6 € F. This is
nonsense, and establishes the claim.

In the case 6’ = af), we have

/ . [ .
(9—2]_@(9 Z;

0 — 25 B 0 — 25 ’
and again I claim that the quotient is in lowest terms, provided that z; # 0. Here
that means that 2/ # az;. If not, then we would have 2}/z; = a, and once again

o(zj)/o(z;) = a for all o € Aut(K/F). Then

NS =

Letting D = [K : F], we have Da = /b for some non-zero b in F. Thus

(QD)/ B oy B y

or b o b’
which implies that (#P/b) = 0. This, in turn, implies that #”/b € F which is
a contradiction. Thus we have shown that in all cases but one, the faction (8" —
z;)/ (0 — z;) is in lowest terms. The exceptional case occurs when 6/ € F and
zj =0. Then (¢ —z,)/(0 —z;,) =0"/0 € F.

Now consider

(18) (hui(0 = 2)") = bl (0 — 2)" + vhy; (0 — z;)" 7 (0 = 2)).

As above, except in the exceptional case or when h,; = 0, (18) is of the form K[d]
plus a fraction which, in lowest terms, had a linear numerator and a denominator of
degree —v 4+ 1 > 1. In the exceptional case where z; =0 and §'/0 = a € F, we have

(ho;(0 — 2;)") = 0 (hl,; + vhy;a).
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I claim that if h,; # 0, then also h,; + vh,;a # 0. If the claim were false, then we
have h,,./h,; = —va, and <0'(hl,]‘)>//0'(hl,]‘) = —va for all o € Aut(K/F). Once again

R ) I )
R Flra= ) = (i)

so that —Nva = —b/b with N = [K : F] and 0 # b € F. But then (0=V") /0~ =
—Nva = ¥/b, and (0=N"/b)’ = 0. This implies that §=V"/b € F | which is a
contradiction. So in the exceptional case, (18) has a fractional part which, in lowest
terms, has a denominator of degree —r > 0. It follows from Lemma 15 that if
any h,; # 0, then (16) can not reduce to a polynomial in K[f]. In particular, v €
Klo|u F(8) = Flo].
Thus we are left with
0 — =

Z ciﬂijﬁ - IC[(Q]
J

zjio
Using Lemma 15 again, it follows that > ¢;u;; = 0 whenever z; # 0. Since the ¢; are
independent over Q by assumption, we have p;; = 0 unless z; = 0 (and /6 € F). In
any case, there are integers v, ..., v, (all zero in the event ' € F and equal to p;;
when z; = 0 and 0'/6 € F) such that u;/0" € K. But then u,;/6" € KN F(0) = F.

This completes the proof of Rosenlicht’s result, and completes our investigation. [
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