The normal approximation to the hypergeometric distribution

Mark A. Pinsky, Northwestern University

1 Introduction

In Feller [F], volume 1, 3d ed, p. 194, exercise 10, there is formulated a version of the local limit theorem which is applicable to the hypergeometric distribution, which governs sampling without replacement. In the simpler case of sampling with replacement, the classical DeMoivre-Laplace theorem is applicable. Feller's conditions seem too stringent for applications and are difficult to prove. It is the purpose of this note to re-formulate and prove a suitable limit theorem with broad applicability to sampling from a finite population which is suitably large in comparison to the sample size.

2 Formulation, statement and proof

We begin with rational numbers $0<p<1$ and $q=1-p$. The population size is N and the sample size is n, so that $n<N$ and $N p, N q$ are both integers. The hypergeometric distribution is

$$
\begin{equation*}
P(k ; n, N)=\frac{\binom{N p}{k}\binom{N q}{n-k}}{\binom{N}{n}} \quad 0 \leq k \leq n \tag{1}
\end{equation*}
$$

This is expressed in terms of the usual binomial distribution by writing

$$
\begin{aligned}
\binom{N p}{k} & =\frac{(N p)_{k}}{k!}=\frac{(N p)(N p-1) \cdots(N p-k+1)}{k!} \\
& =\frac{p^{k}}{k!} N^{k}\left(1-\frac{1}{N p}\right) \cdots\left(1-\frac{k-1}{N p}\right) \\
\binom{N q}{n-k} & =\frac{(N q)_{n-k}}{(n-k)!}=\frac{(N q)(N q-1) \cdots(N q-(n-k)+1)}{(n-k)!} \\
& =\frac{q^{n-k}}{(n-k)!} N^{n-k}\left(1-\frac{1}{N q}\right) \cdots\left(1-\frac{n-k-1}{N q}\right) \\
\binom{N}{n} & =\frac{N_{n}}{n!}=\frac{N^{n}}{n!}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{n-1}{N}\right)
\end{aligned}
$$

so that

$$
\begin{align*}
P(k ; n, N) & =p^{k} q^{n-k}\binom{n}{k} \times R(k ; n, N) \\
R(k ; n, N): & =\frac{\Pi_{j=1}^{k-1}\left(1-\frac{j}{N p}\right) \Pi_{j=1}^{n-k-1}\left(1-\frac{j}{N q}\right)}{\Pi_{j=1}^{n-1}\left(1-\frac{j}{N}\right)} \tag{2}
\end{align*}
$$

The DeMoivre-Laplace limit theorem applies to the first factor of P. It remains to show that $R(k ; n, N) \rightarrow 1$ under suitable conditions. To do this, note that $1-x \leq e^{-x}$ for all x and that for small positive x we have the lower bound $1-x \geq e^{-x(1+\epsilon)}$ for $0 \leq x \leq \delta$ where $\delta=\delta(\epsilon) \downarrow 0$ when $\epsilon \downarrow 0$. Thus

$$
\begin{aligned}
R(k ; n, N) & \leq \frac{e^{-\sum_{j=1}^{k-1} \frac{j}{N p}} e^{-\sum_{j=1}^{n-k-1} \frac{j}{N q}}}{e^{-(1+\epsilon) \sum_{j=1}^{n-1} \frac{j}{N}}} \\
& =\frac{e^{-\frac{k(k-1)}{2 N p}} e^{-\frac{(n-k)(n-k-1)}{2 N q}}}{e^{-(1+\epsilon) \frac{n(n-1)}{2 N}}}
\end{aligned}
$$

where we have assumed that $n / N \rightarrow 0$ in order to estimate the denominator. Now consider $k \rightarrow \infty$ so that

$$
k=n p+x \sqrt{n p q}, \quad n-k=n q-x \sqrt{n p q}
$$

Then

$$
\begin{array}{r}
\frac{k(k-1)}{2 N p}=\frac{n^{2} p^{2}+2 x n p \sqrt{n p q}+x^{2} n p q}{2 N p}-\frac{n p+x \sqrt{n p q}}{2 N p} \\
\frac{(n-k)(n-k-1)}{2 N q}=\frac{n^{2} q^{2}-2 x n q \sqrt{n p q}+x^{2} n p q}{2 N q}-\frac{n q-x \sqrt{n p q}}{2 N q} \\
\frac{k(k-1)}{2 N p}+\frac{(n-k)(n-k-1)}{2 N q}=\frac{n^{2}}{2 N}+\frac{x^{2} n}{2 N}-\frac{n}{N}+\frac{x \sqrt{n p q}(p-q)}{2 N p q} \tag{3}
\end{array}
$$

We can now summarize these calculations in the following form.
Theorem 1. If $N \rightarrow \infty, n \rightarrow \infty$ so that $n^{2} / N \rightarrow 0$ and $x_{k}:=(k-n p) / \sqrt{n p q} \rightarrow$ x, then both numerator and denominator of (2) tend to 1 and

$$
P(k ; n, N) \sim \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi n p q}}
$$

in the sense that the ratio of the two sides tends to 1 .
Proof. It suffices to apply the usual DeMoivre-Laplace limit theorem to the first factor; from (3) we see that the numerator of (2) tends to 1 while the denominator clearly tends to 1 . In particular

$$
1 \leq \liminf R(k ; n, N) \leq \lim \sup R(k ; n, N) \leq 1
$$

and the result follows.

2.1 An improved result

A more general result can be obtained if instead we use the quadratic Taylor expansion

$$
\begin{equation*}
1-x=e^{-x+O\left(x^{2}\right)}, \quad x \rightarrow 0 \tag{4}
\end{equation*}
$$

Using this, the denominator of (2) is written

$$
\begin{aligned}
\Pi_{j=1}^{n-1}\left(1-\frac{j}{N}\right) & =e^{-\sum_{j=1}^{n-1}\left(\frac{j}{N}+O\left(\frac{j}{N}\right)^{2}\right)} \\
& =e^{-\frac{n(n-1)}{2 N}+O\left(\frac{n^{3}}{N^{2}}\right)}
\end{aligned}
$$

A similar estimate is applied to the numerator, to obtain
Theorem 2. If $N \rightarrow \infty, n \rightarrow \infty$ so that $n^{3} / N^{2} \rightarrow 0$ and $(k-n p) / \sqrt{n p q} \rightarrow x$, then

$$
P(k ; n, N) \sim \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi n p q}}
$$

Proof. In this case the common factor of n^{2} / N cancels from both the numerator and denominator, so that we have $\lim R(k ; n, N)=1$, from whence the result.

3 Feller's result

The above analysis excludes the case when $n / N \rightarrow t 0$. In this case the form of the limit will be different, since $R(k ; n, N)$ tends to a non-trivial limit. To see this, we apply Stirling's formula to the denominator of (2) to obtain

$$
\begin{equation*}
\Pi_{j=1}^{n-1}\left(1-\frac{j}{N}\right) \sim \frac{N_{n}}{N^{n}}=\frac{e^{-N t}}{(1-t)^{N(1-t)+\frac{1}{2}}}\left(1+O\left(\frac{1}{N}\right)\right) \tag{5}
\end{equation*}
$$

To analyse the numerator of (2), we first note that $k / N p \sim t+x \sqrt{q t / N p}$; to evaluate the first factor in the numerator we replace N by $N p$ and t by $t+x \sqrt{q t / N p}$ in (5) to obtain
$\Pi_{j=1}^{k-1}\left(1-\frac{j}{N p}\right) \sim \frac{(N p)_{k}}{(N p)^{k}}=\frac{e^{-N p(t+x \sqrt{q t / N p})}}{(1-t-x \sqrt{q t / N p})^{N p(1-t-x \sqrt{q t / N p})+\frac{1}{2}}}\left(1+O\left(\frac{1}{N}\right)\right)$
Similarly, the second factor is evaluated by noting that $(n-k) /(N q) \sim t-$ $x \sqrt{p t / N q}$, thus replacing N by $N q$ and t by $t-x \sqrt{p t / N q}$ in (5) to obtain
$\Pi_{j=1}^{n-k-1}\left(1-\frac{j}{N q}\right) \sim \frac{(N q)_{n-k}}{(N q)^{n-k}}=\frac{e^{-N q(t-x \sqrt{p t / N q})}}{(1-t+x \sqrt{p t / N q})^{N q(1-t+x \sqrt{p t / N q})+\frac{1}{2}}}\left(1+O\left(\frac{1}{N}\right)\right)$

It remains to take logarithms of the resulting quotient and to analyse the terms when $N \rightarrow \infty$. Supressing some unsightly but straight-forward computations, we obtain

$$
\begin{equation*}
R(k ; n, N) \sim \frac{1}{\sqrt{1-t}} e^{-\frac{t x^{2}}{2(1-t)}} \tag{6}
\end{equation*}
$$

In the limiting case of $t=0$ this agrees with the previous result, obtained when $n / N \rightarrow 0$ sufficiently fast. In the general case of $t 0$ this gives the following form of Feller's result.
Theorem 3. If $N \rightarrow \infty, n \rightarrow \infty$ so that $n / N \rightarrow t \in(0,1)$ and $x_{k}:=(k-$ $n p) / \sqrt{n p q} \rightarrow x$, then

$$
P(k ; n, N) \sim \frac{e^{-a x^{2} / 2}}{\sqrt{2 \pi n p q(1-t)}}, \quad a:=1+\frac{t}{(1-t)}=\frac{1}{1-t}
$$

Proof. It suffices to multiply the above computation by the usual de-Moivre Laplace result.

4 Solution by Feller's hint

The usual de-Moivre Laplace limit theorem can be re-written as an asymptotic formula for binomial coefficients:

$$
\begin{equation*}
\binom{m}{k} \sim \alpha^{-k} \beta^{k-m} \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi m \alpha \beta}}, \quad m \rightarrow \infty \tag{7}
\end{equation*}
$$

where $\alpha, \beta 0, \alpha+\beta=1, k=m \alpha+y \sqrt{m \alpha \beta}$. We apply this to the denominator and twice to the numerator of (1): for the denominator we set $m=N, k=N t$, $y=0, \alpha=t$ to obtain

$$
\begin{equation*}
\binom{N}{N t} \sim \frac{t^{-N t}(1-t)^{-N(1-t)}}{\sqrt{2 \pi N t(1-t)}} \tag{8}
\end{equation*}
$$

To analyse the numerator, we set $m=N p, \alpha=t, y=x \sqrt{q /(1-t)}$ to obtain

$$
\binom{N p}{N t p+x \sqrt{N t p q}} \sim t^{-N t p-x \sqrt{N t p q}}(1-t)^{-N p(1-t)+x \sqrt{N t p q}} \frac{e^{-x^{2} q /(2(1-t))}}{\sqrt{2 \pi N p t(1-t))}} .
$$

Similarly for the second factor of the numerator

$$
\binom{N q}{N t q-x \sqrt{N t p q}} \sim t^{-N t q+x \sqrt{N t p q}}(1-t)^{-N q(1-t)-x \sqrt{N t p q}} \frac{e^{-x^{2} p /(2(1-t))}}{\sqrt{2 \pi N q t(1-t))}} .
$$

The product of these two expressions simplifies to

$$
t^{-N t}(1-t)^{-N(1-t)} \frac{e^{-x^{2} /(2(1-t))}}{\sqrt{2 \pi N p t(1-t)} \sqrt{2 \pi N q t(1-t)}} .
$$

Dividing this by (8), we obtain the result:

$$
P(k ; n, N) \sim \frac{e^{-x^{2} / 2(1-t)}}{\sqrt{2 \pi N p q t(1-t)}} .
$$

5 Reference

[F] W. Feller, Intoduction to Probability Theory and its Applications, John Wiley and Sons, Third Edition, 1968.

