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1 Introduction

In Feller [F], volume 1, 3d ed, p. 194, exercise 10, there is formulated a version of
the local limit theorem which is applicable to the hypergeometric distribution,
which governs sampling without replacement. In the simpler case of sampling
with replacement, the classical DeMoivre-Laplace theorem is applicable. Feller’s
conditions seem too stringent for applications and are difficult to prove. It is
the purpose of this note to re-formulate and prove a suitable limit theorem with
broad applicability to sampling from a finite population which is suitably large
in comparison to the sample size.

2 Formulation, statement and proof

We begin with rational numbers 0 < p < 1 and q = 1− p. The population size
is N and the sample size is n, so that n < N and Np,Nq are both integers.
The hypergeometric distribution is

P (k;n, N) =

(
Np
k

)(
Nq
n−k

)(
N
n

) 0 ≤ k ≤ n. (1)

This is expressed in terms of the usual binomial distribution by writing
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so that

P (k;n, N) = pkqn−k

(
n

k

)
×R(k;n, N)

R(k;n, N) : =
Πk−1

j=1

(
1− j

Np

)
Πn−k−1

j=1

(
1− j

Nq

)
Πn−1

j=1

(
1− j

N

) (2)

The DeMoivre-Laplace limit theorem applies to the first factor of P . It remains
to show that R(k;n, N) → 1 under suitable conditions. To do this, note that
1 − x ≤ e−x for all x and that for small positive x we have the lower bound
1− x ≥ e−x(1+ε) for 0 ≤ x ≤ δ where δ = δ(ε) ↓ 0 when ε ↓ 0. Thus

R(k;n, N) ≤ e
−

∑k−1

j=1
j

Np e
−

∑n−k−1

j=1
j

Nq

e
−(1+ε)

∑n−1

j=1
j
N

=
e−

k(k−1)
2Np e−

(n−k)(n−k−1)
2Nq

e−(1+ε)
n(n−1)

2N

where we have assumed that n/N → 0 in order to estimate the denominator.
Now consider k →∞ so that

k = np + x
√

npq, n− k = nq − x
√

npq

Then

k(k − 1)
2Np

=
n2p2 + 2xnp

√
npq + x2npq

2Np
−

np + x
√

npq

2Np

(n− k)(n− k − 1)
2Nq

=
n2q2 − 2xnq

√
npq + x2npq

2Nq
−

nq − x
√

npq

2Nq

k(k − 1)
2Np

+
(n− k)(n− k − 1)

2Nq
=

n2

2N
+

x2n

2N
− n

N
+

x
√

npq(p− q)
2Npq

(3)

We can now summarize these calculations in the following form.
Theorem 1. If N →∞, n →∞ so that n2/N → 0 and xk := (k−np)/

√
npq →

x, then both numerator and denominator of (2) tend to 1 and

P (k;n, N) ∼ e−x2/2

√
2πnpq

in the sense that the ratio of the two sides tends to 1.
Proof. It suffices to apply the usual DeMoivre-Laplace limit theorem to the
first factor; from (3) we see that the numerator of (2) tends to 1 while the
denominator clearly tends to 1. In particular

1 ≤ lim inf R(k;n, N) ≤ lim sup R(k;n, N) ≤ 1

and the result follows.
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2.1 An improved result

A more general result can be obtained if instead we use the quadratic Taylor
expansion

1− x = e−x+O(x2), x → 0 (4)

Using this, the denominator of (2) is written

Πn−1
j=1

(
1− j

N

)
= e

−
∑n−1

j=1 ( j
N +O( j

N )2)

= e−
n(n−1)

2N +O( n3

N2 )

A similar estimate is applied to the numerator, to obtain
Theorem 2. If N →∞, n →∞ so that n3/N2 → 0 and (k − np)/

√
npq → x,

then

P (k;n, N) ∼ e−x2/2

√
2πnpq

Proof. In this case the common factor of n2/N cancels from both the numerator
and denominator, so that we have lim R(k;n, N) = 1, from whence the result.

3 Feller’s result

The above analysis excludes the case when n/N → t0. In this case the form of
the limit will be different, since R(k;n, N) tends to a non-trivial limit. To see
this, we apply Stirling’s formula to the denominator of (2) to obtain

Πn−1
j=1

(
1− j

N

)
∼ Nn

Nn
=

e−Nt

(1− t)N(1−t)+ 1
2

(
1 + O(

1
N

)
)

(5)

To analyse the numerator of (2), we first note that k/Np ∼ t + x
√

qt/Np;
to evaluate the first factor in the numerator we replace N by Np and t by
t + x

√
qt/Np in (5) to obtain

Πk−1
j=1

(
1− j

Np

)
∼ (Np)k

(Np)k
=

e−Np(t+x
√

qt/Np)

(1− t− x
√

qt/Np)Np(1−t−x
√

qt/Np)+ 1
2

(
1 + O(

1
N

)
)

Similarly, the second factor is evaluated by noting that (n − k)/(Nq) ∼ t −
x
√

pt/Nq, thus replacing N by Nq and t by t− x
√

pt/Nq in (5) to obtain

Πn−k−1
j=1

(
1− j

Nq

)
∼ (Nq)n−k

(Nq)n−k
=

e−Nq(t−x
√

pt/Nq)

(1− t + x
√

pt/Nq)Nq(1−t+x
√
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2

(
1 + O(

1
N

)
)
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It remains to take logarithms of the resulting quotient and to analyse the terms
when N → ∞. Supressing some unsightly but straight-forward computations,
we obtain

R(k;n, N) ∼ 1√
1− t

e−
tx2

2(1−t) (6)

In the limiting case of t = 0 this agrees with the previous result, obtained when
n/N → 0 sufficiently fast. In the general case of t0 this gives the following form
of Feller’s result.
Theorem 3. If N → ∞, n → ∞ so that n/N → t ∈ (0, 1) and xk := (k −
np)/

√
npq → x, then

P (k;n, N) ∼ e−ax2/2√
2πnpq(1− t)

, a := 1 +
t

(1− t)
=

1
1− t

Proof. It suffices to multiply the above computation by the usual de-Moivre
Laplace result.

4 Solution by Feller’s hint

The usual de-Moivre Laplace limit theorem can be re-written as an asymptotic
formula for binomial coefficients:(

m

k

)
∼ α−kβk−m e−y2/2

√
2πmαβ

, m →∞ (7)

where α, β0, α + β = 1, k = mα + y
√

mαβ. We apply this to the denominator
and twice to the numerator of (1): for the denominator we set m = N , k = Nt,
y = 0, α = t to obtain (

N

Nt

)
∼ t−Nt(1− t)−N(1−t)√

2πNt(1− t)
. (8)

To analyse the numerator, we set m = Np, α = t, y = x
√

q/(1− t) to obtain(
Np

Ntp + x
√

Ntpq

)
∼ t−Ntp−x

√
Ntpq(1− t)−Np(1−t)+x

√
Ntpq e−x2q/(2(1−t))√

2πNpt(1− t))
.

Similarly for the second factor of the numerator(
Nq

Ntq − x
√

Ntpq

)
∼ t−Ntq+x

√
Ntpq(1− t)−Nq(1−t)−x

√
Ntpq e−x2p/(2(1−t))√

2πNqt(1− t))
.

The product of these two expressions simplifies to

t−Nt(1− t)−N(1−t) e−x2/(2(1−t))√
2πNpt(1− t)

√
2πNqt(1− t)

.
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Dividing this by (8), we obtain the result:

P (k;n, N) ∼ e−x2/2(1−t)√
2πNpqt(1− t)

.
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