JOURNAL OF ALGORITHMS 19, 250-265 (1995)

Counting the Integers Factorable
via Cyclotomic Methods*

Carl Pomerance’

Mathematics Department, University of Georgia, Athens, Georgia 30602
and

Jonathan Sorenson?

Department of Mathematics and Computer Science, Butler University,
4600 Sunset Avenue, Indianapolis, Indiana 46208

Received October 1992, revised March 31, 1994

Let F(x,t, A) denote the number of integers up to x that algorithm A can
completely factor with probability at least 1/2 using at most ¢ arithmetic opera-
tions with integers at most x. In this paper we analyze F(x,t, A) for the p ~ 1 and
p + 1 integer factoring algorithms based on the first two cyclotomic polynomials.
We show that the p + 1 algorithms each factor a positive proportion more integers
in ¢ steps than trial division but far fewer than the elliptic curve method. @ 1995

Academic Press, Inc.

1. INTRODUCTION

Given a positive integer n, the complete factorization problem is to write
n as a product of primes. In this paper, we estimate the number of integers
that can be completely factored in random polynomial time using algo-
rithms based on the first two cyclotomic polynomials (see Bach and Shallit
[3]), including Pollard’s p — 1 factoring algorithm.

Traditional algorithm analysis focuses on finding the worst-case running
time of an algorithm. This information often predicts the behavior of an
algorithm in practice. It also provides a basis for comparing different
algorithms that solve the same problem.

* A preliminary version of this paper appeared as part of the second author’s Ph.D. thesis,
University of Wisconsin-Madison, June 1991.

1 Supported in part by NSF Grant DMS-8803297. E-mail: carl@math.uga.edu.

¥Supported in part by NSF Grant CCR-8552596. E-mail: sorenson@butler edu.

250

0196-6774 /95 $12.00

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CYCLOTOMIC METHODS 251

However, many integer-factoring algorithms with an exponential worst-
case running time have the ability to factor numbers of a special form in
polynomial time. One example of this is the trial division algorithm, which
can quickly factor integers that are composed entirely of small primes.
Note that practitioners often use trial division as their first choice when
trying to factor a number, resorting to algorithms with a better worst-case
running time, such as the elliptic curve method or quadratic sieve, when it
appears trial division will take too long.

Thus in addition to the worst-case running time, it is useful to know the
number of integers an algorithm can factor in random polynomial time. To
be precise, we compute F(x,t, A), the number of integers n < x that
algorithm A4 can completely factor with probability at least 1/2 using at
most ¢ arithmetic operations. By arithmetic operations, we mean additions,
subtractions, multiplications, divisions, gcd computations, and comparisons
of O(log x)-bit integers. Using fast multiplication techniques, these opera-
tions have bit complexity (log x)'*°®) [21, 22]. We make additional re-
marks on using classical algorithms for these operations at the end of this
paper.

Previously, F(x,t, A) was estimated for trial division and the elliptic
curve method by Hafner and McCurley [8]. In this paper, we estimate
F(x,t, A) for A being a particular implementation of Pollard’s p — 1
algorithm. A nearly identical argument works in the case of A4 being the
p + 1 algorithm of Williams [25]. As a consequence, we show that for a
given running time bound, these algorithms factor more integers than trial
division, but fewer than the elliptic curve method. We discuss both this
previous work and our new results below.

1.1. Notation

We write f < g if there exists a constant ¢ > 0 such that f(x) < ¢ -g(x)
holds for sufficiently large x, and f <, g means that the implied constant
depends on a. We write f = 8(g) if g < f <« g.

We let Q(n) denote the number of prime divisors of n, counting
multiplicities. We write (x, y) for ged(x, y). We shall always let p, g, r
denote primes.

1.2. Previous Work

Knuth and Trabb Pardo [12] analyzed the trial division algorithm (TD)
and gave estimates for F(x, x'/* TD) when u > 1 is fixed.

Hafner and McCurley [8] analyzed a trial division algorithm that uses a
probabilistic compositeness test (TDC) and a version of the elliptic curve
algorithm that has an initial trial division phase and a probabilistic com-

252 POMERANCE AND SORENSON

positeness test (ECM). For trial division, they showed that if log ¢t = o(log x)
and t/(log? x loglog x) — =, then

X

F(x,t,TDC) ~e‘/l logt, (1)

og x

where y is Euler’s constant, and e” = 1.78107241---. This implies that
TDC can completely factor ®(x loglog x/log x) integers below x in ran-
dom polynomial time. For the elliptic curve method, they showed that for
any C < 2, if t > log* x and log t = o((log x)'/€) for x — o, then

X

F(x,t,ECM) > (log 1)°©. (2)

log x

This implies that for any & > 0, ECM can completely factor at least
(x/log xXloglog x)*°~? integers up to x in random polynomial time,
provided x is sufficiently large depending on the choice of 8.

Assuming the Riemann hypothesis, Hafner [7] improved on this by
showing that if @ > 4 then

x (loglog)c)2

F(x,log® x,ECM) >, .
(x.log” x) log x logloglog x

1.3. New Results

Our results address the p + 1 factoring algorithms, with our focus being
on the p — 1 algorithm.

In Section 2, we analyze Pollard’s p — 1 integer-factoring algorithm.
Here we assume the algorithm uses a probabilistic compositeness test. Qur
results imply that, for a given time bound, the p — 1 algorithm factors a
positive proportion more integers than trial division, but far fewer than the
elliptic curve method. We elaborate below.

Let & > 0 be arbitrary. We show that there is an absolute constant «
such that

. Flx,,p—1)
lim inf za>1, (3)
x-x e’(x/log x)log ¢

if +> (log x)**® and log ¢ < (log x)' . Under the same conditions, we
also show that there is an absolute constant 8 such that

li F(x’t’p - l)
lin—’s:p e”(x/log x)logt

<B<= (4)

CYCLOTOMIC METHODS 253

Thus the p — 1 algorithm factors @(x loglog x/log x) integers in random
polynomial time. Under the assumption that for a random prime p, the
number p — 1 factors completely over small primes with the same proba-
bility as a randomly chosen integer near p, we show that as x — «

X

F(x,t,p—l)~c0-eylogxlogt, (5)
where ¢, = 1.685--. That is, a = B = ¢,.

Note that (1) and (3) imply that for a given ¢, the p — 1 algorithm
factors a positive proportion more integers than trial division, which is
interesting considering they have approximately the same worst-case run-
ning time. Also (2) and (4) imply that the elliptic curve method outper-
forms the p — 1 algorithm. These findings are not surprising; in fact
they substantiate the common belief among researchers that the p ~— 1
method falls between trial division and the elliptic curve method in its
effectiveness.

In Section 3, we briefly discuss the p + 1 factoring method and give a
few remarks.

2. AN ANALYSIS OF POLLARD’S p —1 ALGORITHM

The objective in this section is to prove the following:

THEOREM 2.1. Let 8 > 0 be arbitrary. There are absolute constants «, B
such that
F(x,t,p—-1) . F(x,t,p—1)

1 < a < liminf <
O A S (s /log n)log 1 = roP o7 (x/log x)log 1

<B<®

fort > (log x)**% and log t < (log x)' ™% (so that t — © with x).

Note that this theorem holds only for the algorithm as described below.

We begin by reviewing some facts about the p — 1 algorithm, character-
izing those integers it can factor, and introducing two number theoretic
functions, A(x,y) and s(y), to count them. The crux of the proof of
Theorem 2.1 involves the derivation of approximations for these two
functions.

2.1. The Algorithm

We begin by reviewing Pollard’s p — 1 algorithm.

Let p; denote the ith prime, let y > 2 and let p;: be the highest power
of p, not exceeding y. Then E = E(y) =TI1, _, p{' is the least common
multiple of the integers up to y. Write E = 2M, so that M is odd.

254 POMERANCE AND SORENSON

Suppose an integer n which we wish to factor is divisible by a prime p with
p — 1| E. Then for every a € (Z/(n))* we have a* = 1 (mod p). If g is
any other prime factor of n, then the probability that a random a €
(Z/(n))* satisfies af =1 (mod q) is (E,q — 1)/(g — 1). In particular, if
there is at least one prime factor ¢ of n with ¢ — 1 + E, and if a €
(Z/(n))* is chosen at random with the uniform distribution, then the
probability that d := (af — 1,n) is a proper divisor of n is at least 1/2.
Indeed, we have p | d and with probability at least 1/2 we have g + d. In
addition, if p*|n and p >y, then the probability that p? {d is 1/p, so
that in this case too, we have d a proper divisor of n with probability at
least 1/2.

If d = n, that is, af = 1 (mod n), we still have a chance to use a to
split n. This is fortuitous, since if n is square-free and every prime factor p
of n has p — 1| E, then we shall always be in the case d = n, provided
(a, n) = 1. The idea is that with probability at least 1/2 there is an integer
J,0 <j < e, such that > % +1 (mod n), but a*"'¥ = 1 (mod n). In this
case d = (a*’™ — 1,n) is a proper divisor of n. (The probability is condi-
tional on the event a* = 1 (mod n).)

For proofs, see Bach ef al. [2] or Bach et al. [1]. Note that this method
will work whenever n is composite and y is chosen sufficiently large. It is
common in practice to choose @ = 2 rather than using a randomly chosen
value for a.

The procedure described above will find a nontrivial divisor of a compos-
ite input n with probability at least 1/2. By repeating the procedure
{loglog nl times, we can reduce the probability of error to O(1/log n).
In addition we add a probabilistic compositeness test such as Solovay-
Strassen [24] or Miller—Rabin [14, 20], to determine if the divisors found by
the above method are prime (with some chance for error) and to know
when n has been completely factored. It is likely, of course, that a prime
power p“ with a > 1 will fail such a test. But if these tests are augmented
with a gcd computation, then the prime power will be factored (see Miller
[14], Lenstra et al. [13], or, for another view, Bach and Sorenson [4]). We
shall always understand these probabilistic compositeness tests to be so
augmented. Below is a pseudocode description of how the p — 1 algorithm
can be implemented to completely factor an integer n.

THE p — 1 FACTORING ALGORITHM
Input: a positive integer n and bound y

Mainline:
Compute s = w(y), find all the primes p, <y, and
compute the e;
Factor(n);
Halt;

CYCLOTOMIC METHODS 255

Procedure Factor(m):

If m is probably a prime then
Output(m);

Else
d = Split(m);
Factor(d);
Factor(m /d);

Return;

Function Split(m):
Repeat up to {log log n] times:
Choose a € (Z/(m))* uniformly at random;
{ Compute x := a® mod m where M = TT;_, p?:}
X = a
Fori = 2 to s do;
v = pfy
x = x" mod m;
Repeat e, + 1 times:
d = ged(x — 1, m);
If 1 <d < m then Return(d); { Divisor Found }
x = x* mod m;

Report failure and Halt;

Let us informally compute the number of arithmetic operations per-
formed by the p — 1 algorithm.

Function Split essentially computes a® mod m with m <n at most
O(log log n) times for a total of O(log E log log n) operations. Since log E
~y as y — = by the prime number theorem, this is O(y loglog n).

Let Q(n) denote the number of prime divisors of n counted with
multiplicity. Note that Q(n) = O(log n). Procedure Factor invokes func-
tion Split at most Q(n) times for O(yQ(n)loglog n) operations. Proce-
dure Factor also performs up to Q(n) compositeness tests. At O(log n log
log n) operations apiece, this is Q(log? n loglog n) operations. Let & > 0.
If y > (log n)**? then the cost of compositeness tests is negligible. Thus in
this case Procedure Factor uses O(yQ(n)loglog n) arithmetic operations
total.

256 POMERANCE AND SORENSON

Finding the primes up to y can be done with the sieve of Eratosthenes
in O(yloglog y) = O(y loglog n) operations. The e; can be found in
O(log y/log p;) operations for each prime p,, for a total of O(y) opera-
tions by the prime number theorem.

Thus, the total number of operations used by the p — 1 algorithm is at
most cy(2{(n)loglog n for some absolute constant ¢. In fact ¢ = 10 will do.

To summarize, the p — 1 algorithm uses the primes below a bound y to
attempt to remove prime divisors from n. If we give the algorithm
t = 50y(loglog n)? arithmetic operations, then

e y = 0(t/(loglog n)?) and

e the p — 1 algorithm can completely factor n with probability at
least 1/2 if Q(n) < Sloglog n, if n = pm where p is prime, and for every
prime g dividing m, q — 1 | E.

We now make some definitions. Let P(m) denote the largest prime factor
of the integer m if m > 1 and let P(1) = 1. Let £(y) be the set of all
integers m > 0 such that, for every prime g dividing m, P(qg — 1) <y.
(Think of the integers in %(y) as being “good.”) Let A(x,y) be the
number of integers n <x such that n = pm where p is prime and
m € Z(y).

We have the following:

LEMMA 22. Let F'(x,y,p — 1) denote the number of integers n < x
which are completely factored with probability at least 1/2 by the p — 1
algorithm with parameter y and with at most Sloglog x iterations of the
Procedure Factor. Then

F’(x,t/(SO(loglog x)z),p - 1) < F(x,4,p—1) < F'(x,t,p - 1).
Further, if 8 > 0 is arbitrary and y > (log x)**? then

F'(x,y,p—1) =A(x,y) + O(x/(log x)”a/z).

Proof. The first assertion follows from our discussion above. For the
second, suppose the p — 1 algorithm with parameter y completely factors
the integer n < x with probability > 1/2. Let g be a prime divisor of n
that divides some d constructed in the Split stage of the algorithm. Then
the algorithm has found an integer a such that af = 1 (mod g). If there is
a prime r >y with r | g — 1, clearly r + E. Thus the probability of finding
such an a is at most 1/r < 1/y. Since we allow O(loglog n) iterations at
each stage and a total of O((loglog n)?) iterations in all, the probability of
ever finding such an integer a is O((loglog x)?/y), which is less than 1,/2
for x large. This is a contradiction; therefore there exists no prime divisor
r>y of ¢ — 1, and hence g € £(y). Thus n is of the form pm with p
prime and m € &(y). That is, F'(x, y,p — 1) < A(x, y).

CYCLOTOMIC METHODS 257

Suppose n = pm with p prime and m € £(y). By our discussion above,
if g !m, then the p — 1 algorithm can remove the prime g with high
probability if ¢ — 1 | E. Thus n falls into one of the following classes:

1. the p — 1 method factors n with probability > 1/2,
2. n has more than Sloglog x prime factors,
3. there is a prime g | m such that ¢ — 1 + E.

It suffices to show that the number of integers n in classes (2) and (3) is
O(x/(log x)'*3/2).

From Erd8s and Sarkozy [6], the number of n <x in class (2) is
O(x/log? x).

Let &(y) be the set of primes g with g € £(y) but ¢ — 1 + E. (Think
of primes in @(y) as “bad.”) For such a prime ¢ we may write ¢ — 1 = rém
for some prime r <y, for some integer g with rf > y and for some integer
m with P(m) < y. The number of integers n < x divisible by such a prime
g is at most

x 1 1 1
L Z<xr ¥ ——=<x L o L —
qgeB(y) q qeB(y) q rsy,ré>y r P(m)<y m
Now
1 1 1
r 5= LY Yo+ X X
r<y,ré>y y72<r<y rf>yr r<y!/? r3>yr
1 1 1
< — + -« ——
yl/zzl, r’ ,5/2 y y'/*logy
and by Merten’s theorem (see Hardy and Wright [9]),
1 1 1 1
b —=[—[1+—+—+~--)=n(1+)<<logy.
Pimy<y ™ gsy 9 q g<y qg—1

Thus the number of integers n <x divisible by a prime in B(y) is
O(x/y'/?). Since y = (log x)** %, it follows that the number of n < x in
class (3) is O(x/(log x)'*/2), This completes the proof of the lemma. i

It is clear that the p — 1 algorithm will also factor numbers of the form
p“m where u > 1 and m € Z(y). But there are so few additional numbers
of this form that the results stay exactly the same when they are included.
One might alter the p — 1 algorithm by using the following exponent in
place of E:

E' = l—[pllogn/log pl
psy

258 POMERANCE AND SORENSON

However, as a consequence of our bound on the number of n < x in class
(3) above, the number of additional integers factored using E’ instead of
E is negligible.

In addition, there exist several extensions and improvements to the
p — 1 algorithm, which while quite practical, have no effect on our results,
and we will not discuss them here. For more details, see Montgomery [15],
Montgomery and Silverman [16], and Pollard [17].

2.2. Estimating Alx, y)

Now we concentrate on estimating A(x, y).

Let y(x,y) be the number of integers n < x such that P(n) <y. Let
#(y, z) be the set of all integers m such that m € £(y) and P(m) < z.
Let 7(x) be the number of primes p < x. Also let

) 1
+ ,
qg—1

s(y)= 11

q>y,q€.‘?(y)

where the product is over primes g.

THEOREM 2.3. Let 8> 0 be arbitrary. If logy < (logx)' "% and y >
(log x)** 2, then

xlo 1 1
A(x,y) =s(y)-e” 24 1+ O + VE .
log x logy log®/x

To prove this, we use the following lemma.

LEMMA 2.4. Let 6 > 0 be arbitrary. There is a number 2,(8) such that if
z>z(8) and log y < (log 2)'°, then

Y -z ¥

< sexp[—(log z)‘s].
q>z,qe?(y)q m>z—1,Plm)<y

1
m

Proof. The first inequality is clear since if ¢ > z and ¢ € £(y), then
1/q <1/(qg — 1) where q — 1 is an integer m with m >z — 1 and
P(m) < y. For the second sum we use partial summation, obtaining that it
is at most

z—-1

5]

1
;p,b(t,y) dt.

Using the estimate from Canfield et al. [5] on ¢(x, y), we get the upper
bound expl — (8 + o(1)Xlog z)? loglog z] from which the result follows. [

CYCLOTOMIC METHODS 259

Proof of Theorem 2.3. Let z = expl(log x)!~?/2). If n is counted by
A(x, y), then n is in at least one of the following classes:

1. n is divisible by a prime g € £(y) with ¢ > z,
2. n has more than 5Sloglog x prime factors,

3. nex(y2),

4. all other n counted by A(x, y).

We first show that the contribution to A(x, y) from n in the first three
classes is Os(x/log? x), thus it is negligible.
The number of n < x in the first class is at most

x
Y - <, x-exp[—(log 2)5/2] <; x/log? x,
q>z,9€Z(y)

by Lemma 2.4. From Erdds and Sarkézy [6] it follows that the number of
n < x in class (2) is O(x/log? x). Finally, the number of n < x in class (3)
is at most Y(x, z) = Oy(x/log? x) from [5).

Let w = exp[(log x)! ~2/°]. If x is sufficiently large and 7 is in class (4),
then n has a unique representation as pm, where m € #(y,z), m < w,
and p € #(y, z). Indeed, n has some representation as pm where m €
Z(y). Since n is not in class (1), we have m € #(y, z). Since n is not in
class (3), we have p & #(y, z), so that the representation as pm is unique.
Finally, since n is not in class (2), we have m < z°!°¢1%¢* <y for all
large x.

We conclude that

A(x,y) = Y Y, 1+ Os(x/log”x).

m<w p<x/m
meX(y,z2) pe#(y,z)

Since m < w, the inner sum is, by the prime number theorem,

w(x/m) — 0(Y 1) m(x/m) + O(z)

pEF(y, 2)
x/m x/m
log(x/m) M 0(log*(x/m))

(1 + O(1/1og?”’ x)).

mlog x

260 POMERANCE AND SORENSON

Thus the theorem will follow if we show

1
) = s(y) -e"(log y)(1 + O5(1/log y)). (6)

m<w,meH(y, z)

First we note that the restriction m < w in (6) may be dropped, since
Lemma 2.4 implies that

1
— = 0,(1).

)»

m>w . me#(y, z)

But

= 11 (1+1+—15+-~)= Il (1+ !)

1
me#(y,2) Tt qeF(y,z)

9 4q ge#(y, 1) q-1
1)7
=11 (1 +) (1 +) 11 (1 +) .
g<y q-1 ql—>Iy qg-1) g5 q9-1
qEZ(y) qeZ(y)

The first product is e(logy) + O(1); this is Merten’s Theorem (see Hardy
and Wright [9]). The second product is s(y) by definition. Finally, the
absolute value of the logarithm of the last product is

1 1 1
Z log(l+ _1) Z -—+0(Z‘—2)
qg>z.qe%(y) q q>z.q€$;(y)q q>z q

= 05(1/log y),
by Lemma 2.4. We have (6). [

2.3. Results on s(y)
Now we need to bound s(y).

THEOREM 2.5. We have

1 < liminf s(y) < limsup s(y) < .

y_’ * y — 0

Proof. From Theorem 2.2 in Pomerance [19] we have logs(y) <
Licetyq>y1/(@ = 1) = 0(1) so that s(y) < 1. It remains to show that
liminf s(y) > 1, which we do with the following lemma. Let [I(x,y)
denote the number of primes g < x such that ¢ € £(y).

CYCLOTOMIC METHODS 261
LEMMA 2.6. Ifa > 1 and b > 0 are such that Tl(x, x/*) > bw(x) for
sufficiently large x, then liminf , , _ s(y) = a”.

Proof. Simply use partial summation twice and use the prime number
theorem:

1
logs(y)= Y, log|l+) > Y
q€Z(y),q>y q-1 q€Z(y),q>y

= I1(¢t, (y, abw(t 1
= (zy)dt—————(y”>f’ E)dt+0()
¥ t y t log y

1
I ’ !
ogy

& f o

y

ye b 1
zf dt + Ol — | =bloga + 0O
tlogt log y

Pomerance (18] proves the lower bound IT(x, Vx) = bm(xX1 + o(1)) for
x — oo, where b = 1 — 4log(5/4) > 0.107425. Using this, Lemma 2.6 gives
s(y) > 1.0773 for all large y. This concludes the proof of Theorem 2.5. §

Lemma 2.2 and Theorems 2.3 and 2.5 combine to prove Theorem 2.1.

We conclude this section by giving a heuristic approximation for s(y),
which leads to the estimate lim . s(y) = ¢,, where ¢, = 1.685... is a
constant which we define below. Our heuristic is based on the following
loose principle: for g a prime, g — 1 factors completely over the primes
below y with the same probability as a randomly chosen integer below g.

Let p(u) denote Dickman’s function, so that p is the continuous
solution on [0,) to the differential delay equation up'(u) = —p(u — 1)
with the initial condition p(u) = 1 on the interval [0, 1]. We define

u

o = exp(flx pl) du).

The probability a randomly chosen number below x factors completely
over primes below y is asymptotically p(log x/log y) for exp(log® x) <
y < x. (See, for example, Hildebrand [10].) Thus we are assuming the
following,.

HypoTHESIS 2.7. Let u = log x/log y. Then I(x,y) ~ w(x)p(u) for
x —> owhenl <u <loglog y.

THEOREM 2.8. Hypothesis 2.7 implies that s(y) ~ ¢, fory — .

262 POMERANCE AND SORENSON

Proof. Let z = expl(log y)*]. By Lemma 2.4 we have, for y — <,
1 1
logs(y) =o() +)} —=o(1)+ r -

qEZ(y).q>y qe#(y,2),q>y 9
z1
=o(1) + [—dII(t,)
y

log loy
y 4 B)’

=0(1) +fy

=o(1) + E, + E,,

1
—dII(1, y) +[—dII(z,)

loglog y

say. For E;, Hypothesis 2.7, the prime number theorem, and integration by
parts gives

p()

log log y P()

E, —o(1)+f

for y — . For E,, integration by parts and noticing y < ¢'/'°81%¢7 in the
range of integration gives

2 H(t,tl/logk)gy) !l/(t’tl/loglogy)

>4
oo TOCETD g HRUEED,
2 yloglug ¥ t2 ylog log y [2

Using Hildebrand [10] this gives, for y — o,

z p(loglog y)
EZ <« floglugv t

y

dt < p(loglog y)log z = 0(1). |

Using Simpson’s rule to approximate p(u) and the above integral leads
to the estimate ¢, = 1.685 -

Let s*(y) be the same as s(y), but with the infinite product truncated to
10°. We wrote a program to calculate actual values of s*(y), and the table
below compares these actual values to what our hypothesis predicts for
s*(y).

s*(10) s*(100} 5*(1000) 5*(10%) 5*(10°)

Predicted value 1.685 1.685 1.674 1.620 1.514
Actual value 1.887 1.817 1.760 1.677 1.548

CYCLOTOMIC METHODS 263

The fact that p — 1 is even makes it slightly more likely to be smooth
(have only small prime factors) than a random number. Also p — 1 is
divisible by 3 with probability 1/2, which is higher than for a random
number. These observations fade into the background for large p’s, but
are more important for small p’s. Thus smaller primes p have a higher
chance of having p — 1 be p'/* smooth than larger primes, for a fixed
value of u. Thus we guess that s(y) converges to its conjectured limit, as
y — o, from above, and our data above support this. It may even be that
s(y) is nonincreasing.

In summary, Lemma 2.2 and Theorems 2.3 and 2.8 prove Eq. (5) from
Section 1, and that concludes our results on Pollard’s p — 1 algorithm.

3. REMARKS

We conclude with a few remarks and an open problem.

The p + 1 factoring algorithm of Williams [25] is very similar to the
p — 1 algorithm. Although it does not explicitly run the p — 1 algorithm, it
is successful in discovering the prime factor p of n if eitherp — lorp + 1
is smooth. Thus the method will completely factor n if n = pm where
every prime factor g of m has either ¢ — 1 or ¢ + 1 being y smooth. Thus
F(x,t,p + 1) 2 F(x,t,p — 1)- (1 + 0o(1)) for x > x and ¢ > (log x)**%. It
is natural to conjecture that the p + 1 method factors a positive propor-
tion more integers in ¢ arithmetic steps than the p — 1 method, but we
cannot prove this. One can show that F(x,t,p + 1) < xlogt/log x for
t > log?*? x; indeed the inequality cited from [19} in the proof of Theorem
2.5 is trivially generalized to g + 1.

Let us examine a subtle point in the definition of F(x,, A). Note that
F(x,t, A)/x gives the probability a randomly chosen integer below x can
be factored by algorithm A with probability > 1/2 in ¢ arithmetic
operations. This is different from the probability a randomly chosen
integer below x can be factored by algorithm A in ¢ arithmetic operations;
there may be many integers below x that algorithm A can factor with a
very small positive probability, and F(x,¢, A) does not count these. Let
E(x,t, A) denote the expected number of integers n < x that A can factor
in ¢ steps. Thus E(x,t, 4) > (1/2)F(x,t, A) in general. But it turns out
that, for A a cyclotomic factoring algorithm, we have E(x,t, A) ~
F(x,t, A) for t > (log x)** . This is because the probability of completely
factoring an integer not counted by F(x, t, A) is at most y~'*°®), where y
is the prime bound as used in this paper, and the probability of completely
factoring an integer counted by F(x,t, A) is in fact 1 — o(1), assuming that
A is implemented in a way similar to the p — 1 algorithm as presented
here.

264 POMERANCE AND SORENSON

For simplicity, we assume that all basic operations were implemented
using FFT methods, and thus had bit complexity (log x)' *°). However, in
practice classical methods such as those described by Knuth [11] are
normally used. Under this model, TDC takes about y log x bit operations
to trial divide an integer n < x using primes up to y, and p — 1 requires
about y(log x)* bit operations. Thus, the p — 1 algorithm must use a value
for y that is smaller than that used by TDC by a factor of approximately
log x in order to stay within the same running time bound ¢, if ¢+ were to
represent the number of bit operations. Nevertheless, if ¢ > (log x)', then
p — 1 will factor more integers that TDC for x sufficiently large. Using our
heuristic estimate, the lower bound on ¢ drops to a reasonable (log x)*3,

REFERENCES

1. E. Bach, M. Giesbrecht, and J. Mclnnes, The complexity of number theoretic problems,
Technical Report 247 /91, Department of Computer Science, University of Toronto,
January 1991.

2. E. Bach, G. Miller, and J. Shallit, Sums of divisors, perfect numbers, and factoring, SIAM
J. Comput. 4 (1986), 1143-1154.

3. E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comput. 52 (1989),
201-219.

4. E. Bach and J. Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9
(1993), 313-328.

S. E. R. Canfield, P. Erdés, and C. Pomerance, On a problem of Oppenheim concerning
“factorisatio numerorum,” J. Number Theory (1983), 1-28.

6. P. ErdGs and A. Sarkozy, On the number of prime factors of integers, Acta Sci. Math. 42
(1980), 237-246.

7. J. L. Hafner, On smooth numbers in short intervals under the Riemann hypothesis,
Technical Report RJ 7728, IBM Research Division, Oct. 1990, revised Aug. 1991.

8. 1. L. Hafner and K. S. McCurley, On the distribution of running times of certain integer
factoring algorithms, J. Algorithms 10 (1989), 531-556.

9. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
Univ. Press, Oxford, 1979.

10. A. Hildebrand, On the number of positive integers < x and free of prime factors >y,
J. Number Theory (1986), 289-307.

11. D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, 2nd ed.,
Vol. 2, Addison-Wesley, Reading, MA, 1981.

12. D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theoret.
Comput. Sci. 3 (1976), 321-348.

13. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factorization of
the ninth Fermat number, Math. Comput. 61 (1993), 319-349.

14. G. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13 (1976),
300-317.

15. P. L. Montgomery, Speeding the Pollard methods of factorization, Math. Comput. 48
(1987), 243-264.

16. P. L. Montgomery and R. D. Silverman, An FFT extension to the P — 1 factoring
algorithm, Math. Comput. 54 (1990), 839-854.

18.
19.

20.

21

22.

23.

24.

CYCLOTOMIC METHODS 265

J. M. Pollard, Theorems on factorizations and primality testing, Proc. Cambridge Philos.
Soc. 76 (1974), 521-528.

C. Pomerance, Popular values of Euler’s function, Mathematika 27 (1980), 84—89.

C. Pomerance, On the composition of the arithmetic functions o and ¢, Collog. Math. 58
(1989), 11-15, Fasc. 1.

M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980),
128-138.

. A. Schonhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform. 1

(1971), 139-144.

A. Schonhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7
(1971), 281-292.

J. Sorenson, Algorithms in number theory, Ph.D. thesis, University of Wisconsin-Madi-
son, June 1991. Available as Computer Sciences Technical Report 1027.

R. Solovay and V. Strassen, A fast Monte Carlo test for primality, SIAM J. Comput. 6
(1977), 84—-85. Erratum in 7 (1978), 118.

H. C. Williams, A p + 1 method of factoring, Math. Comput. 39 (1982), 225-234.

