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Finite fields: Up to isomorphism, there is exactly one for each

prime or prime power.

Let π∗(x) denote the number of such in [1, x], and let π(x)

denote the number of primes.

Legendre conjectured

π(x) ≈ x

log x − 1.08366
,

while Gauss conjectured

π(x) ≈
∫ x

2

dt

log t
.

Since both expressions are ∼ x/ log x it is clear that they should

also stand as conjectural approximations to π∗(x).
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Let’s check it out.

At x = 106 we have

π(106) = 78478, π∗(106) = 78734.

Further,

106

log(106) − 1.08366
= 78543,

∫ 106

2

dt

log t
= 78627.
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Fast forwarding to the twenty-first century:

Using an algorithm of Meissel & Lehmer as improved by

Lagarias, Miller & Odlyzko and by Deléglise & Rivat,

π(1023) = 1925320391606803968923,

π∗(1023) = 1925320391619238700024

(found by Oliveira e Silva). Further, Legendre’s approximation:

1023

log(1023) − 1.08366
≈ 1.92768 × 1021,

while the approximation of Gauss is

∫ 1023

2

dt

log t
≈ 1925 320391614054155138.
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In fact, the Riemann Hypothesis implies that for x ≥ 3,

∣

∣

∣

∣

π(x) −
∫ x

2

dt

log t

∣

∣

∣

∣

<
√

x log x,

∣

∣

∣

∣

π∗(x) −
∫ x

2

dt

log t

∣

∣

∣

∣

<
√

x log x.

And each of these inequalities implies the RH.
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Say K is an algebraic number field. We know that K = Q(θ)
for some algebraic integer θ. Let f(x) ∈ Z[x] be the minimum

polynomial for θ. Note that (K : Q) = d if and only if

deg(f) = d.

So, one way to count algebraic number fields is to count

polynomials. For example, consider all polynomials

xd + ad−1xd−1 + · · · + a0 ∈ Z[x]

with each |ai| ≤ N . There are (2N + 1)d such polynomials.

Some may be reducible. Some may give rise to the same field.

But as N increases, we will eventually get to (the isomorphism

class of) every field.

van der Waerden: Most of these polynomials are irreducible,

and in fact, most of them give a field K whose normal closure

has degree d!, that is, the Galois group is Sd.
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f(x) = xd + ad−1xd−1 + · · · + a0 ∈ Z[x], |ai| ≤ N.

van der Waerden: Conjectured that the number of non-Sd

choices for f is O(Nd−1). (Essentially proved when d = 3 by

Lefton (1979) and in the case d = 4 by Dietmann (2006).)

Gallagher (1972): All but O(Nd−1/2 logN) choices for f are

non-Sd.

Liu & Murty (1999): Found a simple proof but with the weaker

exponent d − 1/3.
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Another way to count: discriminants

What is the discriminant?

If θ1, θ2, . . . , θd form an integral basis for K over Q (that is,

OK = Zθ1
⊕

Zθ2
⊕ · · ·⊕Zθd, where OK is the ring of integers

of K), then

disc(K) = det(σi(θj))
2,

where σ1, σ2, . . . , σd are the different isomorphisms of K into the

complex numbers.

Note that disc(K) ∈ Z.
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Unlike with counting polynomials, where there are infinitely

many polynomials that give the same field, with discriminants,

our field K has just one statistic, and it’s an integer.

However, there is no confusion with polynomials, as there is a

mapping from polynomials to isomorphism classes of fields.

With discriminants, we have a mapping from fields to integers,

but one integer might be the discriminant of many

non-isomorphic fields.
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Artin: In 1928 conjectured that non-isomorphic cubic fields

have distinct discriminants.

This perhaps is the natural generalization from quadratic fields.

Scholz & Taussky: In 1934 found four integers which are each

discriminants for two non-isomorphic complex cubic fields.

We have since found many other examples, with the record

multiplicity being 9.

Ellenberg & Venkatesh: At most |D|1/3+ε cubic fields can have

discriminant D.

For more on discriminant multiplicities see the website of

Daniel C. Mayer: http://www.algebra.at/index e.htm
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Let Nd(X) denote the number of algebraic number fields K ⊂ C

with |disc(K)| ≤ X. (Note that we are counting fields, not

discriminants, so that isomorphic fields get counted with

multiplicity.)

Further, if G is a finite group, let Nd(G, X) be the number of

such fields K whose normal closure has Galois group isomorphic

to G. For there to be any such fields K, it is necessary that G

is a transitive permutation group on d letters.

Is this condition sufficient???
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Let’s try d = 2, quadratic fields. Here there is a one-to-one

correspondence with fundamental discriminants. (That is, the

multiplicity for a discriminant is always 1.)

fundamental discriminant: squarefree, > 1, and 1 (mod 4)

or 4 times a squarefree number that is 2 or 3 (mod 4).

Using what’s known about the distribution of squarefree

numbers, we have

N2(X) ∼ 1

ζ(2)
X =

6

π2
X.

One might also ask about real and complex fields separately,

that is, positive and negative discriminants. Easy, it’s 50-50:

N2,0(X) ∼ 3

π2
X, N0,1(X) ∼ 3

π2
X.
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Let us compare this asymptotic formula for the distribution of

quadratic field discriminants with the numerical evidence. For

example, for X = 1025, we have

N2,0(X) = 3039635 509270133143448215,

N0,1(X) = 3039635 509270133143069580,

3

π2
X = 3039635 509270133143316384,

(Cohen, Diaz y Diaz, & Olivier). Since the Dirichlet generating

function for the squarefree integers is

ζ(s)

ζ(2s)
,

it is conjectured that the error should be of magnitude

O(X1/4). The best that’s proved is o(X1/2) unconditionally and

O(X17/54+ε) on RH (Walfisz, Montgomery–Vaughan, Graham,

Baker–Pintz, Jia).
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Now, let’s try cubic fields. There are two possible groups for

the normal closure: C3, S3.

For C3, Cohn (1954), following work of Hasse (1930), showed

that

N3(C3, X) = cX1/2 + O(X1/3+ε),

where

c =
11

√
3

36π

∏

p≡1 (mod 3)

(

1 − 2

p(p + 1)

)

≈ 0.1585 . . . .

By the numbers, for X = 1037, we have

N3(C3, X) = 501310370031289126,

cX1/2 = 501310370 031520350,

(Cohen, Diaz y Diaz, & Olivier). It is conjectured that the

error is perhaps O(X1/6).
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For S3-cubic fields, we have Davenport & Heilbronn (1971):

N3,0(X) ∼ 1

12ζ(3)
X, N1,1(X) ∼ 1

4ζ(3)
X.

Among early efforts to actually tabulate these cubics, we have

Fung & Williams (1990, 1994):

N1,1(10
6) = 182417,

1

4ζ(3)
106 = 207977

and Llorente & Quer (1988):

N3,0(10
7) = 592922,

1

12ζ(3)
107 = 693256.

(The count for N3,0 includes 501 cyclic cubic fields and has

been corrected by −1 after Cohen, Diaz y Diaz, & Olivier.)
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Concerning the count 182417 vs. the prediction 207977, Fung

& Williams (1990):

“Davenport and Heilbronn have proved a theorem which says

that this density should approach the asymptotic limit of

(4ζ(3))−1 ≈ .20798. If however, the reader were to plot the

[empirical] density, he would be somewhat astonished to see

that this density is increasing so slowly that his first impression

would be that it will not make it to the Davenport–Heilbronn

limit. Thus, it remains a challenging problem, assuming the

D–H limit is not in error, to explain the origin of this slow

convergence. . . . [O]n the real side, . . . the problem is further

aggravated by even slower convergence. To date, and to our

knowledge, no good quantitative explanation of this

phenomenon has been given.”
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Well, we’ve now computed to 1011 (Belabas 1997):

N3,0(X) = 6715773 873, N1,1(X) = 20422230540,

1

12ζ(3)
X = 6932561 438,

1

4ζ(3)
X = 20797684315.

Belabas 1999: The error from the Davenport–Heilbronn main

term is at most

O
(

X/ exp(
√

logX)
)

.
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Roberts 2000: Conjectured that the error is asymptotically

c′X5/6, where

c′ =
4ζ(1/3)

5Γ(2/3)3ζ(5/3)
≈ 0.147685261

in the totally real case, and
√

3c′ in the complex case:

N3,0(X) ≈ 1

12ζ(3)
X − c′X5/6, N1,1(X) ≈ 1

4ζ(3)
X −

√
3c′X5/6.

Looking at the numbers at X = 1011:

N3,0(X) N1,1(X)

actual : 6 715773 873, 20422230540

predicted : 6 715789 120, 20422223646.
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Theorem (Belabas, Bhargava, & P 2008):

N3,0(X) =
1

12ζ(3)
X + O

(

X7/8(logX)2
)

,

N1,1(X) =
1

4ζ(3)
X + O

(

X7/8(logX)2
)

.
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Let

ξd(s) =
∑

K

|disc(K)|−s,

where K runs over the isomorphism classes of number fields of

degree d. The Davenport–Heilbronn theorem implies that ξ3(s)

is analytic in the region <(s) > 1. Cohen had asked if it could

be continued to a larger region. As a bonus, we have ξ3(s)

analytic for <(s) > 7/8.

(Shintani:

∑

[K:Q]=3

|disc(K)|−s ζK(2s)

ζK(4s)

has a meromorphic extension to C with the two rightmost poles

simple at s = 1 and s = 5/6.)
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And we have an added bonus: using a result of Hasse (1930)

that connects cubic orders to the 3-torsion of a quadratic field

with the same discriminant, we have

Theorem (Belabas, Bhargava, & P 2008):

∑

0<D≤X

#Cl3(D) =
4

π2
X + O

(

X7/8+ε
)

,

∑

−X≤D<0

#Cl3(D) =
6

π2
X + O

(

X7/8+ε
)

.

(The main terms were due to Davenport & Heilbronn.)
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Our proof rests on the Delone & Faddeev (1964)

correspondence:

There is a natural correspondence between cubic orders up to

isomorphism and classes of irreducible binary cubic forms

modulo GL(2,Z). The correspondence preserves discriminant

and content.

This result allows us to deal with cubic fields in a very concrete

way. But, it is maximal orders that correspond naturally to

fields, and in the Delone–Faddeev result, we are dealing with all

orders.
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So, say we start with all cubic orders. A result of Davenport

(1951) says that the number of classes of binary cubic forms f

with |disc(f)| ≤ X is

cX + O(X5/6)

(actually separate results for positive and negative

discriminants). So this is great! A power-saving error term. But

we want binary cubic forms corresponding to maximal orders.

So, we try an inclusion-exclusion argument where we count

orders O with |disc(O)| ≤ X which have index in their maximal

order divisible by q.
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Going over to binary cubic forms, and from them to the lattice

of coefficients modulo GL(2,Z), we note that having the index

of O divisible by q corresponds to congruence conditions in the

lattice modulo q2. Further, the number of these congruence

classes is

q8
∏

p|q

(

p−2 + p−3 − p−5
)

≈ q6

out of the total of q8 classes.

We show that in a particular congruence class that can occur

with first coordinate fixed as a mod q2, the count is q−8 times

the full number of all orders plus the error term

O
(

q−6a−1/3X5/6 + q−4a−2/3X2/3 + logX
)

.
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We also have an approximate equi-distribution result for the

parameter “a” (the leading coefficient of the cubic form)

among these roughly q6 residue classes. We take a sum of our

estimates for the various fixed residue classes. The main term,

as mentioned, is about q−2 times the full number of lattice

points, and the error turns out as

O

(

q

ϕ(q)
(q−2/3X5/6 + q6 logX)

)

.

The major shape of the argument is inclusion-exclusion over

the variable q. So that we might truncate the process at a

reasonable point, we also need a uniform upper bound

corresponding to large values of q. This can be done via

elementary methods.
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We’ve dealt with finite fields, quadratic fields, cubic fields;

hmmm, what could be next?
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For a quartic field over Q, possible Galois groups for the normal

closure are C4, V4, A4, D4, and S4.

The general case when the group is abelian has been

considered by many: Khushvaktov (1977), Urazbaev (1977),

Baily (1980), Zhang (1984), Mäki (1985), and Wright (1989).

In particular,

N4(C4, X) = cX1/2 + O(X1/3+ε),

N4(V4, X) = (c2(logX)2 + c1 logX + c0)X
1/2 + O(X1/3+ε).
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These results are also refined by signature. Supported by

massive computation, Cohen, Diaz y Diaz, & Olivier (2006)

conjecture much smaller error estimates in these counts (but

with an explicit X1/3-secondary term in the case of C4.)

The case of A4 is not completely solved, but heuristically and

numerically, we seem to have N4(A4, X) of the shape

X1/2 logX. Wong (2005) proves O(X5/6+ε).
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The case of D4 provides a bit of a surprise. Here, Cohen, Diaz

y Diaz, & Olivier (2002) proved that

N4(D4, X) = cX + O(X3/4+ε).

The constant c is explicit; they suggest in later numerical work

a secondary term of shape X1/2 with a still-smaller error term.

The main result is surprising because it says that a positive

proportion of integers are discriminants of D4-quartic

extensions, and supposedly it is supposed to be S4 that’s the

generic case!
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A folk conjecture, perhaps due to Narkiewicz:

Nd(X) ∼ cdX

for each integer d ≥ 2, where cd > 0. This conjecture was

refined by Cohen (2000), Malle (2002, 2004), and Bhargava

(2007). These refinements suggest that when degree d fields

are counted separately by their Galois groups, that those

groups which contain a transposition, when viewed as a

transitive permutation group on d letters, will contribute a

positive proportion to the count. And those groups which do

not contain a transposition will contribute at most O(X1/2+ε).

Note that the transitive permutation groups on 4 letters which

contain a transposition are precisely D4 and S4, thus

“explaining” the surprise.
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In his dissertation, Bhargava (2001) found asymptotic formulas

of a constant times X for N4(S4, X) and N5(S5, X), further

refined by signature.

In particular, combining his result for S4 with the known results

on other quartic fields, one gets that, counted by discriminant,

0.17111 of them are D4 and 0.82889 of them are S4 (with

these fractions rounded of course).

The proofs are complicated, but in a nutshell, Bhargava finds

analogies for the Delone–Faddeev correspondence for cubic

fields. In particular for quartic fields, he considers pairs of

ternary quadratic forms modulo GL(2,Z)×SL(3,Z). And for

quintics, he considers quadruples of alternating bilinear forms in

five variables modulo the action of GL(4,Z)×SL(5,Z).
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The numbers for S4-quartic fields are not too convincing. They

are difficult to compute, and for all signatures they have only

been enumerated up to X = 107. At this level, the actual and

predicted counts are

1635 308, 2534771

(exact count by Cohen, Diaz y Diaz, & Olivier (2006)).

Malle has continued the count to 109 in the totally real case,

and at that level, the actual vs. predicted counts are

17895702, 25347714.

Perhaps there is a secondary term of magnitude X7/8?
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Belabas, Bhargava, & P (2008):

N4(S4, X) =
5

24

∏

p

(

1 + p−2 − p−3 − p−4
)

X + O
(

X23/24+ε
)

,

with natural refinements for the 3 possible signatures.

We have a class number bonus here too. Heilbronn (1971)

showed that for a given noncyclic cubic field K3, the number of

S4-quartic fields which have cubic resolvent field isomorphic to

K3 is #Cl2(K3) − 1. So, we prove that

∑

0<disc(K3)≤X

#Cl2(K3) =
5

4

∑

0<disc(K3)≤X

1 + O(X23/24+ε),

∑

0>disc(K3)≥−X

#Cl2(K3) =
3

2

∑

0>disc(K3)≥−X

1 + O(X23/24+ε).
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Our proofs are similar, but more complicated. Playing the role

of “a” in the prior argument for cubic fields (it was the leading

coefficient of the binary cubic form) we now have four actors,

named a, b, c, d. These are the coefficients of x2, xy, xz, y2,

respectively, in the first of the two ternary quadratic forms.

Our result counting the number of quartic orders with index

divisible by q and with first four coefficients given by a, b, c, d

has a simple main term, but the error term is computed from

4094 different 4-fold multiple integrals. Luckily only 33 of

these are dominant, and only 3 are critical. The moral:

Though the plan is the same simple inclusion-exclusion, the

execution of the plan was not easy!
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