Brill-Noether special cubic fourfolds

Asher Auel
Department of Mathematics
Yale University

AMS Summer Institute in Algebraic Geometry
University of Utah, Salt Lake City
Monday 27 July 2015

Cubic fourfolds

$X \subset \mathbb{P}^{5}$ smooth cubic hypersurface over \mathbb{C}
Torelli Theorem (Voisin). The integral polarized Hodge structure on $H^{4}(X, \mathbb{Z})$ recovers X up to isomorphism.

Integral Hodge Conjecture (Voisin). The cycle class map is an isomorphism $\mathrm{CH}^{2}(X) \rightarrow H^{4}(X, \mathbb{Z}) \cap H^{2,2}(X)=A(X)$.
$A(X)$ odd positive definite free \mathbb{Z}-lattice
$h^{2} \in A(X)$ distinguished element of norm 3
Fact. $A(X)=\mathbb{Z} h^{2}$ for very general X

Noether-Lefschetz loci

\mathcal{C} moduli space of cubic fourfolds
Noether-Lefschetz locus

$$
\{X \in \mathcal{C}: \operatorname{rk} A(X)>1\}=\bigcup_{d} \mathcal{C}_{d}
$$

$X \in \mathcal{C}_{d} \Longleftrightarrow$ exists $T \in A(X)$ such that $\left\langle h^{2}, T\right\rangle \subset A(X)$ is a primitive sublattice of rank 2 and discriminant d
$\Longleftrightarrow \quad X$ special cubic fourfold of discriminant d
(Hassett) $\mathcal{C}_{d} \neq \varnothing$ irreducible divisor $\Longleftrightarrow d>6$ and $d \equiv 0,2$ (6)
\mathcal{C}_{d} called Hassett divisors

Interpretation of \mathcal{C}_{d}

The general $X \in \mathcal{C}_{d}$ contains:
$d=8 \quad$ a plane
$d=12 \quad$ a cubic scroll
$d=14 \quad$ a quartic scroll or a quintic del Pezzo surface
$d=20 \quad$ a Veronese surface
$12 \leq d \leq 38$ certain smooth rational surfaces (Nuer)
$d=44 \quad$ the Fano model of an Enriques surface (Nuer)

Geometry of \mathcal{C}_{d}

(Li/Zhang) Compute the generating function of the degrees of \mathcal{C}_{d} as a modular form of weight 11 and level 3. These degrees get large: 3402, 196272, 915678, ...
(Nuer) \mathcal{C}_{d} is unirational for $d \leq 38$ and has \mathcal{C}_{44} has negative Kodaira dimension.
(Tanimoto/Várilly-Alvarado) \mathcal{C}_{d} is of general type for $d \gg 0$. Current state of the art is $d \geq 264$.

Tony's talk on Tuesday, 4:40-5:30 pm in SFEBB 170!

Rationality of cubic fourfolds

Conjecture. The very general cubic fourfold is not rational.
Example. X contains disjoint planes $\Longrightarrow X$ is rational
(Hassett) $X \in \mathcal{C}_{8}$ is rational on a countable union of divisors.

π quadric surface bundle degenerating along sextic $D \subset \mathbb{P}^{2}$
S moduli space of rulings, $\beta_{X} \in \operatorname{Br}(S)$ class of universal ruling
(Hassett) $\beta_{X}=0 \Longrightarrow X$ is rational
(A./Bernardara/Bolognesi/Várilly-Alvarado) There exist $X \in \mathcal{C}_{8}$ with X rational but $\beta_{X} \neq 0$.

Rationality of cubic fourfolds

(Beauville/Donagi, Bolognesi/Russo/Staglianò, A.)
Every $X \in \mathcal{C}_{14}$ is rational.

Challenge. Give new rationality constructions for cubic fourfolds.

(Katzarkov) HMS \Longrightarrow every $X \in \mathcal{C}_{26}$ is rational

Associated K3 surface

$H^{2}(S, \mathbb{Z}) \quad$ weight 2 signature $(2,20) \quad 1 \quad 201$
$H^{4}(X, \mathbb{Z}) \quad$ weight 4 signature $(21,2) \quad 0 \quad 1 \quad 21 \quad 1 \quad 0$
Polarized K3 surface $\quad(S, H)$ choice of ample $H \in \operatorname{Pic}(S)$
Marked cubic fourfold
(X, K_{d}) choice of rank $2 K_{d} \subset A(X)$
Primitive cohomology $\quad H^{2}(S, \mathbb{Z})_{0}=H^{\perp} \subset H^{2}(S, \mathbb{Z})$
Nonspecial cohomology

$$
H^{4}(X, \mathbb{Z})_{0}=K_{d}^{\perp} \subset H^{4}(X, \mathbb{Z})
$$

(Hassett) Exists a polarized K3 surface (S, H) of degree d with $H^{4}(X, \mathbb{Z})_{0} \cong H^{2}(S, \mathbb{Z})_{0}(-1) \Longleftrightarrow 4 \nmid d, 9 \nmid d, p \nmid d$ for $p \equiv 2$ (3) $d=14,26,38,42,62,74, \ldots$
S is an associated $K 3$ surface to X
(Hassett) $\mathcal{C}_{d}^{\text {mar }} \hookrightarrow \mathcal{K}_{d}$ embedding of moduli spaces

Associated K3 category

Semiorthogonal decomposition of the derived category $\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathcal{A}_{X}, \mathscr{O}_{X}, \mathscr{O}_{X}(1), \mathscr{O}_{X}(2)\right\rangle$

$$
\mathcal{A}_{X}=\left\{E \in \mathrm{D}^{\mathrm{b}}(X): \operatorname{Ext}^{\bullet}\left(\mathscr{O}_{X}(i), E\right)=0, i=0,1,2\right\}
$$

\mathcal{A}_{X} looks like the derived category of a K3 surface
Example. $X \in \mathcal{C}_{8} \Longrightarrow \mathcal{A}_{X} \cong \mathrm{D}^{\mathrm{b}}\left(S, \beta_{X}\right)$
(Huybrechts) There are finitely many X^{\prime} such that $\mathcal{A}_{X} \cong \mathcal{A}_{X^{\prime}}$. If X is very general, then \mathcal{A}_{X} determines X uniquely.

Suspicions and conjectures

Suspicion (Harris, Hassett). X is rational $\rightsquigarrow X$ has an associated K3 surface

Conjecture (Kuznetsov). X is rational $\Longleftrightarrow \mathcal{A}_{X} \cong \mathrm{D}^{\mathrm{b}}(S)$ for a K3 surface S
(Addington/Thomas) $\mathcal{A}_{X} \cong \mathrm{D}^{\mathrm{b}}(S) \Longrightarrow X$ has an associated K3 surface S. The converse holds generically on \mathcal{C}_{d} if $4 \nmid d, 9 \nmid d, p \nmid d$ for $p \equiv 2$ (3).
(Voisin) $4 \nmid d \Longrightarrow$ every $X \in \mathcal{C}_{d}$ has universally trivial CH_{0}
Voisin's plenary talk from week 1! Alena Pirutka's talk on Tuesday, 2:00-2:50 pm, SFEBB 180!

Brill-Noether general cubic fourfolds

(Mukai) Polarized K3 surface (S, H) is Brill-Noether general if

$$
h^{0}(S, N) h^{0}(S, M)<h^{0}(S, H)=2+d / 2=g+1
$$

for any nontrivial decomposition $H=N \otimes M$.
Example. $\operatorname{Pic}(S)=\mathbb{Z} H \Longrightarrow(S, H)$ is BN general
(Lazarsfeld) $\operatorname{Pic}(S)=\mathbb{Z} H \Longrightarrow C \in|H|$ is BN general curve
Fact. $C \in|H|$ is BN general curve $\Longrightarrow(S, H)$ is BN general K 3
Open question. What about the converse?
Checked for $g \leq 10$ and $g=12$ by Mukai.
Definition. $\left(X, K_{d}\right)$ marked cubic fourfold is $B N$ general if associated K 3 surface (S, H) is BN general

Brill-Noether special cubic fourfolds

Definition. The complement of BN general is $B N$ special.

The BN special loci are contained in the union of finitely many Noether-Lefschetz divisors, indexed by Clifford index.
(Saint-Donat, Reid, Donagi/Morrison, Green/Lazarsfeld, Mukai, Ciliberto/Pareschi, Knutsen, Johnsen, Lelli-Chiesa) Classification of BN special K3 surfaces via vector bundles and lattice theory. Completely done for $g \leq 12$.
(Program.) Carry this out for cubic fourfolds.

Brill-Noether special cubic fourfolds

Theorem (A).

- $X \in \mathcal{C}_{14}$ has a BN general marking of discriminant 14 $\Longleftrightarrow X$ is pfaffian.
- $X \in \mathcal{C}_{14}$ has a BN special marking of discriminant 14 $\Longleftrightarrow X$ contains disjoint planes.

The image of $\mathcal{C}_{14}^{\mathrm{BN}} \hookrightarrow \mathcal{K}_{14}^{\mathrm{BN}}$ is contained in only one of five K 3 Noether-Lefschetz divisors, with maximal Clifford index.

Corollary. Every $X \in \mathcal{C}_{14}$ is pfaffian or contains disjoint planes (or both), hence is rational.

Next frontier is $d=26$. Need good constructions of BN general K3 surfaces of degree $d=26$. Input from moduli theory of curves of $g=14$?

