

The probability that a p-adic polynomial splits.

Asher Auel, University of Pennsylvania
Joint work with:
Joe P. Buhler, CCR Labs

The p-adic integers

The ring \mathbf{Z}_{p} is a local ring, with unique maximal ideal $p \mathbf{Z}_{p}$ and units

$$
\mathbf{Z}_{p}^{*}=\mathbf{Z}_{p} \backslash z \mathbf{Z}_{p}=\left\{a_{0}+a_{1} p+\cdots \in \mathbf{Z}_{p}: a_{0} \neq 0\right\}
$$

If $a \in \mathbf{Z}_{p}$ is not a unit, then

$$
\begin{aligned}
a & =a_{k} p^{k}+a_{k+1} p^{k+1}+\cdots \\
& =p^{k}\left(a_{k}+a_{k+1} p+\cdots\right) \\
& =p^{k} u, \quad \text { for some } u \in \mathbf{Z}_{p}^{*},
\end{aligned}
$$

so there's a disjoint union

$$
\mathbf{Z}_{p} \backslash\{0\}=\bigcup_{k=0}^{\infty} p^{k} \mathbf{Z}_{p}^{*} .
$$

Absolute Value (Norm)

Definition 1.

$$
|a|_{p}=\left\{\begin{array}{ll}
p^{-v_{p}(a)} & \text { if } a \neq 0 \\
0 & \text { if } a=0
\end{array},\right.
$$

where

$$
v_{p}(a)= \begin{cases}\min \left(a_{v}: a_{v} \neq 0\right) & \text { if } a \neq 0 \\ \infty & \text { if } a=0\end{cases}
$$

is called the valuation of $a=a_{0}+a_{1} p+a_{2} p^{2}+\cdots$.

The p-adic absolute value has all the properties any absolute value should and more,

$$
\begin{gathered}
|a b|_{p}=|a|_{p}|b|_{p} \\
|a+b|_{p} \leq \max \left(|a|_{p},|b|_{p}\right)
\end{gathered}
$$

The ring \mathbf{Z}_{p} with $|\cdot|_{p}$ is a compact metric space, in fact, a compact topological group.

Integration

Theorem. Let G be a compact topological group, then there exists a unique Haar measure (integral) on G, i.e. a map

$$
\int_{G}: C(G, \mathbf{R}) \rightarrow \mathbf{R}
$$

such that

- it's normalized : $\int_{G} \mathbf{1}=1$
- positive: $f>0 \Rightarrow \int_{G} f>0$
- continuous in the sup-norm topology of $C(G, \mathbf{R})$
- linear
- translation invariant: $\int_{G} f(x+a)=\int_{G} f(x)$.

Example. We will integrate the continuous function $x \mapsto|x|_{p}: \mathbf{Z}_{p} \rightarrow \mathbf{R}$. First, by the decomposition of the p-adic integers,

$$
\int_{\mathbf{Z}_{p}}|x|_{p}=\sum_{k=0}^{\infty} \int_{p^{k}} \mathbf{Z}_{p}^{*}|x|_{p}=\sum_{k=0}^{\infty} \int_{p^{k}} \mathbf{Z}_{p}^{*}\left|p^{k} u\right|_{p}=\sum_{k=0}^{\infty} \frac{1}{p^{k}} \int_{p^{k}} \mathbf{Z}_{p}^{*} \mathbf{1} .
$$

Now note that we have the disjoint union

$$
\mathbf{Z}_{p}=\bigcup_{r=0}^{p-1}\left(r+p \mathbf{Z}_{p}\right)
$$

of sets which are all translates, so they all have the same volume, namely $1 / p$, thus we have

$$
\int_{\mathbf{Z}_{p}^{*}} \mathbf{1}=\frac{p-1}{p}
$$

and by similar arguments,

$$
\int_{p^{k} \mathbf{Z}_{p}^{*}} \mathbf{1}=\frac{1}{p^{k}} \frac{p-1}{p} .
$$

Continuing on, we have

$$
\int_{\mathbf{Z}_{p}}|x|_{p}=\sum_{k=0}^{\infty} \frac{1}{p^{k}} \int_{p^{k}} \mathbf{Z}_{p}^{*} \mathbf{1}=\sum_{k=0}^{\infty} \frac{1}{p^{k}} \frac{1}{p^{k}} \frac{p-1}{p}=\frac{p-1}{p} \frac{1}{1-\frac{1}{p^{2}}}=\frac{p}{p+1} .
$$

The quadratic case

Consider the map parametrizing the split quadratic polynomials,

$$
\begin{aligned}
\varphi: \mathbf{Z}_{p}^{2} & \rightarrow \operatorname{Split}_{p}(2) \subset \mathbf{Z}_{p}[x] \\
(a, b) & \mapsto(x-a)(x-b)=x^{2}-(a+b) x+a b .
\end{aligned}
$$

It's a surjective (almost everywhere) 2-to-1 map. We have an isomorphism of topological groups

$$
\begin{aligned}
\mathbf{Z}_{p}[x]_{2} & \xrightarrow{\sim} \mathbf{Z}_{p}^{2} \\
x^{2}-c x+d & \mapsto(c, d),
\end{aligned}
$$

and so the composition

$$
\begin{aligned}
\tilde{\varphi}: \mathbf{Z}_{p}^{2} & \rightarrow \mathbf{Z}_{p}^{2} \\
(a, b) & \mapsto(a+b, a b) .
\end{aligned}
$$

So now we just need to compute the integral,

$$
s_{p}(2)=\int_{\text {Split }_{p}(2)} \mathbf{1}=\int_{\varphi\left(\mathbf{Z}_{p}^{2}\right)} \mathbf{1}=\frac{1}{2} \int_{\mathbf{Z}_{p}^{2}}|\operatorname{det}(J \tilde{\varphi})|_{p}
$$

$$
\begin{aligned}
s_{p}(2) & =\frac{1}{2} \int_{\mathbf{Z}_{p}^{2}}|a-b|_{p} d a d b \\
& =\frac{1}{2} \int_{b \in \mathbf{Z}_{p}}\left(\int_{a \in \mathbf{Z}_{p}}|a-b|_{p} d a\right) d b \\
& =\frac{1}{2} \int_{\mathbf{Z}_{p}}|a|_{p} d a \\
& =\frac{1}{2} \frac{p}{p+1} .
\end{aligned}
$$

So in particular

$$
s_{2}(2)=\frac{1}{3} .
$$

Also note that

$$
\lim _{p \rightarrow \infty} s_{p}(2)=\frac{1}{2}
$$

The general split case

Now define a map

$$
\begin{aligned}
\varphi_{n}: \mathbf{Z}_{p}^{n} & \rightarrow \operatorname{Split}_{p}(n) \subset \mathbf{Z}_{p}[x] \\
a=\left(a_{1}, \ldots, a_{n}\right) & \mapsto \prod_{j=1}^{n}\left(x-a_{j}\right)
\end{aligned}
$$

Then φ_{n} is a (almost everywhere) n!-to-1 mapping Again, by the standard isomorphism of topological groups,

$$
\begin{aligned}
\tilde{\varphi}_{n}: \mathbf{Z}_{p}^{n} \rightarrow \mathbf{Z}_{p}[x] & \stackrel{\sim}{\rightarrow} \mathbf{Z}_{p}^{n} \\
\left(a_{1}, \ldots, a_{n}\right) & \mapsto\left(a_{1}+\cdots+a_{n}, \ldots, a_{1} \cdots a_{n}\right)
\end{aligned}
$$

So we have to compute

$$
\begin{aligned}
s_{p}(n) & =\operatorname{vol}\left(\operatorname{Split}_{p}(n)=\tilde{\varphi}_{n}\left(\mathbf{Z}_{p}\right)\right) 1=\frac{1}{n!} \int_{\mathbf{Z}_{p}^{n}}\left|\operatorname{det}\left(J \tilde{\varphi}_{n}\right)\right|_{p} \\
& =\frac{1}{n!} \int_{\mathbf{Z}_{p}^{n}} \prod_{i<j}\left|a_{i}-a_{j}\right|_{p} d a
\end{aligned}
$$

Theorem. Let p be a prime. Denote by $s_{p}(n)$ the probability that a monic polynomial of degree n with p-adic integer coefficients will split completely, then we have the following recursion

$$
\left.s_{p}(n)=\sum_{\lambda} \prod_{k=0}^{p-1} p^{-\left(\lambda_{2}+1\right.}\right) I_{\lambda_{k}}
$$

where the sum is taken over all $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{p-1}\right) \in \mathbf{N}^{p}$ such that $\lambda_{0}+\cdots+\lambda_{p-1}=n$. I define $I_{0}=1$, and $I_{1}=1$ is obvious.

Corollary. With the above notation,

$$
\lim _{p \rightarrow \infty} s_{p}(n)=\frac{1}{n!}
$$

For $p=2$ the recursion is

$$
s_{2}(n)=\sum_{r+s=n} 2^{-\binom{r+1}{2}-\binom{s+1}{2}} s_{2}(r) s_{2}(s)
$$

where the sum is taken over all non-negative integers r and s with $r+s=n$. Setting

$$
r_{n}:=2^{-\binom{n+1}{2}} s_{2}(n)
$$

we can write this recursion as

$$
2^{\binom{n+1}{2}} r_{n}=\sum_{i=0}^{n} r_{i} r_{r-i}
$$

Extension to Extensions

The p-adic integers \mathbf{Z}_{p} are the ring of integers of the field of p-adic numbers \mathbf{Q}_{p}. One extension of this problem is to ask
"What is the probability that a polynomial will have roots in a given algebraic extension of \mathbf{Q}_{p} ?'"

There are in fact only a finite number of extensions of a given degree over \mathbf{Q}_{p}. For example, over \mathbf{Q}_{2}, there are 7 different quadratic extensions. Below I give a list of these extensions and the probability that a monic irreducible quadratic polynomial has roots in that extension:

As we computed, the completely splitting polynomials have probability $1 / 3$, as these are the only ways that the polynomials can factor, the sum of these probabilities is

$$
\frac{1}{3}+\frac{1}{3}+\frac{1}{12}+\frac{1}{12}+\frac{1}{24}+\frac{1}{24}+\frac{1}{24}+\frac{1}{24}=1
$$

