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0.1 Topological Groups

Definition 1. A set G is a topological group if G is a group, G is a topological
space, and the group operations in G are continuous in the topological space
G, i.e. (a, b) 7→ ab : G×G → G and a 7→ a−1 : G → G are continuous maps.

Definition 2. A topological group is locally compact if there exists a compact
neighborhood about each point. Examples are Q, Rn, matrix groups...

Definition 3. A topological field K is a field and a topological space such
that addition, multiplication, and inversion on the non-zero element are all
continuous maps.

I want to classify all locally compact topological fields. I will assume my
fields do not have the discrete topology, since any topological group with the
discrete topology is locally compact. My goal will be to build a multiplicative
homomorphism of the field to the non-negative real number and show that
this is in fact, a valuation on the field.

0.2 Haar measure

On any locally compact group G (written additively here) there exists a Haar
measure µ, a positive continuous linear functional

µ : Cc(G) → R

on the space of continuous real function on G with compact support, which
is left invariant:

µ(f) =
∫

G
f(x)dµ(x) =

∫
G

f(g + x)dµ(x), for all g ∈ G.

This can also be seen in the language of measure theory as a regular σ-
additive function on the σ-algebra of Borel B G, generated by the open sets
U of G. I will loosely call vol(U)=µ(U)=µ(χU) the volume or measure of the
set U . Left invariance means vol(U) = vol(g + U) for all g ∈ G. We say a
measure µ is regular if for all U ∈ B,

µ(U) = sup{µ(K) : K ⊂ U,K is compact} = inf{µ(K) : U ⊂ K, K is compact}.

This Haar measure is unique up to a positive constant: Let µ and ν be
two Haar measures on a locally compact group G, then there exists a positive
constant c such that µ = cν.
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0.3 Modulus

Let K be a locally compact topological field, and let µ be a Haar measure
on the additive group K.

Now let α be an automorphism of K, and define the measure α(µ) by

α(µ)(U) = µ(α(U)), for all U ∈ B.

Then α(µ) is invariant and is thus also a Haar measure on K. Thus we have
α(µ) = m(α) · µ, where m(α) only depends on α, and is independent of the
choice of Haar measure, since Haar measures are proportional. This is called
the modulus of the automorphism α. Thus there is a modulus function

m : Aut(K) → R>0.

Specifically look at automorphisms of of the form x 7→ ax for any a ∈ K∗.
Then I will denote my m(a) the modulus of this automorphism. Thus by
definition,

vol(aU) = m(a) · vol(U), for all a ∈ K∗, U ∈ B.

Now note that for a, b ∈ K∗,

m(ab)vol(U) = vol(abU) = m(a)vol(bU) = m(a)m(b)vol(U),

so m(ab) = m(a)m(b), and thus m : K∗ → R>0 is a homomorphism. We
generally extend the modulus so that m : K → R≥0 defining m(0) = 0.

Claim 4. There is a positive constant C such that

m(x + y) ≤ C max(m(x), m(y)), for all x, y ∈ K,

where
C = sup

m(z)≤1
m(z + 1)

is the smallest such constant.

Proof. Let x, y ∈ K. If x = y = 0 then the statement is trivial. Suppose
y 6= 0 and m(x) ≤ m(y). Let z = xy−1 thus

m(z) = m(x)m(y−1) = m(x)m(y)−1 ≤ 1.
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Now we have,

m(x + y) = m((xy−1 + 1)y) = m(z + 1)m(y) = C ′ max(m(x), m(y)).

Where C ′ ≤ C and letting y = 1 shows that C is the smallest such constant.

By the properties the modulus m has exhibited so far, m is a generalized
absolute value.

Definition 5. A generalized absolute value on a field K is a homomorphism
f : K∗ → R≥0 with f(0) = 0 defined such that for some C > 0,

f(x + y) ≤ C max(f(x), f(y)) for all x, y ∈ K.

If C = 1 this is the non-Archimedean absolute value. An absolute value
obeying the triangle inequality, |x + y| ≤ |x| + |y| ≤ 2 max(|x|, |y|), and has
C = 2, but in fact the converse is also true.

Proof. Notice that

f(a1 + a2 + a3 + a4) ≤ C max(f(a1 + a2), f(a3 + a4)) ≤ C2 max
1≤i≤4

f(ai),

or by induction, for n = 2r,

f(a1 + . . . + an) ≤ Cr max f(ai) = 2r max f(ai) = n max f(ai).

If n is not a power of two, fill it up with ai = 0 for n ≤ i ≤ 2r, then

f(a1 + . . . an) ≤ 2n max f(ai).

Now for any x, y ∈ K,

f((x + y)n) ≤ f

( ∑
i=0..n

(
n

i

)
xiyn−i

)

≤ 2(n + 1)
∑

f
((

n

i

))
f(x)if(y)i−1

≤ 2(n + 1)
∑

2
(

n

i

)
f(x)if(y)i−1

= 4(n + 1)(f(x) + f(y))n.

Thus
f(x + y) ≤ 41/n(n + 1)1/n(f(x) + f(y)) → f(x) + f(y).
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The square of the regular absolute value has C = 4,

|x + y|2 = (|x|+ |y|)2 ≤ (2 max(|x|, |y|))2 = 4 max(|x|2, |y|2).

Thus any generalized absolute value with C ≤ 2 makes a field into a metric
space. So some power of a generalized absolute value will be a metric on a
field. Thus our locally compact field K is a metric space. And the topology
generated by m is the same as the topology on K.

Now I will bring in a result from the theory of topological groups.

Claim 6. Let H be a locally compact subgroup of a Housdorff topological
group G. Then H is closed.

Applying this to our scenerio, our locally compact field K is closed in its
completion (both are metric spaces by the comments above) Thus our locally
compact field K is also complete.

Now we can begin to classify by the value of the constant C.
We also need to know:

Claim 7. Any discrete subfield of a non discrete locally compact field of
charactoristic 0 is finite.

Proof. This involves first showing that the modulus m is continuous, then
showing that closed balls defined by m are compact. Then you have {an} → 0
in K iff m(a) < 1.

Now let F be a discrete subfield. Choose a ∈ K with m(a) > 1, then
m(a−n) = m(a)−n → 0, thus a−n → 0 blah blah...

Case 1: Suppose C = 1. Then K has a non-Archimedeann absolute
value. Since K has charactoristic 0 and is not discrete by hypothesis, Q ⊂ K
is not discrete, and so the absolute induces a non-trivial non-Archimedean
absolute value onto Q, so by Ostrowski’s Theorem this is equivalent to a
p-adic absolute value. Since K is complete, it contains the completion of Q
under this absolute value, i.e. Qp ⊂ K. Now with some more work one can
show that a locally compact normed space over Qp is finite dimensional.

Case 2: Suppose C > 1. Thus once more, K induces a non-trivial
absolute value onto Q, which is not non-Archimedean. So by Ostrowski’s
Theorem this is equivalent to the regular absolute value on Q and again,
since K is complete, K contains R. So K is a real vector space over R, one
can show the only two such possibilities are R and C.


