Azumaya algebras without involution

Asher Auel

Department of Mathematics Yale University

2014 Spring Southeastern Section Meeting University of Tennessee, Knoxville, Tennessee Saturday 22 March 2014, 3:00 – 3:30 pm Galois Cohomology and the Brauer Group

Albert's Theorem

k field Br(k) Brauer group A central simple k-algebra, [A] \in Br(k)

Definition. An *involution* (of the first kind) on *A* is a *k*-algebra isomorphism $\sigma : A \to A^{op}$ such that $\sigma^{op} \circ \sigma = id_A$.

Example. Assume char(k) \neq 2. $A = \langle i, j : i^2 = a, j^2 = b, ij = -ji \rangle$ quaternion algebra $a + bi + cj + dij \mapsto a - bi - cj - dij$ standard involution

Proposition. A has an involution \implies per(A) = 2

$$\begin{array}{l} A \otimes A \longrightarrow \mathsf{End}(A) \\ x \otimes y \longmapsto (z \mapsto x \, z \, \sigma(y)) \end{array}$$

Theorem (Albert). $per(A) = 2 \implies A$ has an involution

Saltman's Theorem

R ring *A* Azumaya *R*-algebra $\sigma: A \rightarrow A^{op}$ involution

Proposition. A has an involution \implies per(A) = 2

Theorem (Saltman). $per(A) = 2 \implies A$ is Brauer equivalent to an Azumaya algebra with involution

Theorem (Knus–Parimala–Srinivas). $per(A) = 2 \implies M_2(A)$ has an involution, i.e., there exists locally free *A*-module *P* of rank 2 such that $End_A(P)$ has an involution

Question. If per(A) = 2 then can A fail to have an involution?

P locally free *R*-module of finite rank *L* invertible *R*-module $b: P \times P \rightarrow L$ nondegenerate (skew-)symmetric bilinear form $\psi_b: P \rightarrow \text{Hom}(P, L)$ isomorphism

Definition. The *adjont involution* associated to *b* is

$$\sigma_b : \mathsf{End}(P) \longrightarrow \mathsf{End}(P)^{\mathsf{op}}$$
$$f \longmapsto \psi^{-1} \circ f^{\vee L} \circ \psi$$

where $f^{\vee L}$: Hom $(P, L) \rightarrow$ Hom(P, L) is the *L*-dual of *f*.

Theorem (Saltman). Any involution on End(P) is adjoint to some $b : P \times P \rightarrow L$.

Trivial Answer

- **Theorem (Saltman).** Any involution on End(P) is adjoint to some $b : P \times P \rightarrow L$.
- **Corollary.** If $P \ncong P^{\vee} \otimes L$ for any invertible *R*-module *L* then End(*P*) has no involution.

Examples.

- **1** (A) $X = \mathbb{P}^1$, $\mathscr{P} = \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O}(1)$ $\mathscr{E}nd(\mathscr{P})$ has no involution
- ② (U. First) *R* ring of integers in a number field *K*/ℚ with Cl(*R*) ≅ ℤ/4ℤ

Question'. If $[A] \in {}_{2}Br(R)$ then can every Brauer equivalent algebra of the same degree fail to have an involution?

Preliminary Reductions

Question'. If $[A] \in {}_{2}Br(R)$ then can every Brauer equivalent algebra of the same degree fail to have an involution?

Degree considerations:

- 1 deg(A) = 2 \implies A has (standard) involution More generally, can deal with ind(A) = 2.
- 2 deg(A) odd ⇒ A is split
 We know how to handle this case.
- A is always Brauer equivalent to A₁ ⊗ A₂ where ind(A₁) is odd and ind(A₂) = 2ⁿ (Antieau–Williams) A not always isomorphic to A₁ ⊗ A₂

So we can reduce to considering $ind(A) = 2^n$ with $n \ge 2$. First open case is deg(A) = ind(A) = 4.

Results

- **Theorem (A–First).** For every $n \ge 2$, there exists a ring *R* and an Azymaya *R*-algebra *A* of degree 2^n and period 2 such that no Azumaya *R*-algebra *B* of degree 2^n Brauer equivalent to *A* has an involution.
- **Remark.** For n = 2, i.e., deg(A) = 4, we can take R to be a finitely generated \mathbb{C} -algebra of dimension 3.

Examples with *R* of smaller dimension over more complicated fields are also possible.

Sketch of Proof

 $G = \mathbf{GL}_4/\mu_2$ **B**G classifying "space" (topological, simplicial, stack)

Facts.

- **1** *G*-tors \longleftrightarrow (*A*, *V*, φ) *2-torsion data A* Azumaya algebra of degree 4 *V* is locally free of rank 16 $\varphi : A \otimes A \rightarrow \text{End}(V)$ isomorphism
- (A, V, φ) universal 2-torsion data on BG (A, V, φ) = f*(A, V, φ) on X for some f : X → BG
 Br(BG) ≅ Z/2Z generated by A

Proposition. The Azumaya algebra **A** on **B**G has no involution.

Sketch of Proof

Proposition. The Azumaya algebra **A** on **B**G has no involution.

Proof.

- A = End(P) split Azumaya algebra of degree 4 with no involution on X, e.g., X = P¹ and P = Ø^{⊕3} ⊕ Ø(1)
- A extends to 2-torsion datum (End(P), P ⊗ P, φ_P)
 φ_P : End(P)^{⊗2} → End(P^{⊗2}) canonical isomorphism
- via the classifying map $f: X \to BG$ (End(P), $P \otimes P, \varphi_P$) = $f^*(A, V, \varphi)$
- if **A** had an involution then $End(P) = f^*A$ would

Sketch of Proof

Details left out:

Proving that no Azumaya algebra *B* of degree 4 on *BG*, Brauer equivalent to *A*, has an involution.

The passage from "space" BG to an affine scheme using quasi-projective approximation of BG à la Totaro. This step is not new (e.g., Antieau–Williams).

Questions

Find examples with R of minimal dimension (say over \mathbb{C})? For Azumaya algebras of degree 4, we can take "generic" algebra constructions?

Find examples over projective varieties?