Azumaya algebras without involution

Asher Auel

Department of Mathematics
Yale University

2014 Spring Southeastern Section Meeting
University of Tennessee, Knoxville, Tennessee
Saturday 22 March 2014, 3:00-3:30 pm
Galois Cohomology and the Brauer Group

Albert's Theorem

k field
$\mathrm{Br}(k)$ Brauer group
A central simple k-algebra, $[A] \in \operatorname{Br}(k)$
Definition. An involution (of the first kind) on A is a k-algebra isomorphism $\sigma: A \rightarrow A^{\mathrm{op}}$ such that $\sigma^{\mathrm{op}} \circ \sigma=\mathrm{id}_{A}$.

Example. Assume char $(k) \neq 2$.
$A=<i, j: i^{2}=a, j^{2}=b, i j=-j i>$ quaternion algebra
$a+b i+c j+d i j \mapsto a-b i-c j-d i j$ standard involution
Proposition. A has an involution $\Longrightarrow \operatorname{per}(A)=2$

$$
\begin{aligned}
& A \otimes A \longrightarrow \operatorname{End}(A) \\
& x \otimes y \longmapsto(z \mapsto x z \sigma(y))
\end{aligned}
$$

Theorem (Albert). $\operatorname{per}(A)=2 \Longrightarrow A$ has an involution

Saltman's Theorem

R ring
A Azumaya R-algebra
$\sigma: A \rightarrow A^{\mathrm{op}}$ involution
Proposition. A has an involution $\Longrightarrow \operatorname{per}(A)=2$
Theorem (Saltman). $\operatorname{per}(A)=2 \Longrightarrow A$ is Brauer equivalent to an Azumaya algebra with involution

Theorem (Knus-Parimala-Srinivas). $\operatorname{per}(A)=2 \Longrightarrow M_{2}(A)$ has an involution, i.e., there exists locally free A-module P of rank 2 such that $\operatorname{End}_{A}(P)$ has an involution

Question. If $\operatorname{per}(A)=2$ then can A fail to have an involution?

Split Algebras

P locally free R-module of finite rank
L invertible R-module
$b: P \times P \rightarrow L$ nondegenerate (skew-)symmetric bilinear form $\psi_{b}: P \rightarrow \operatorname{Hom}(P, L)$ isomorphism

Definition. The adjont involution associated to b is

$$
\begin{aligned}
\sigma_{b}: \operatorname{End}(P) & \longrightarrow \operatorname{End}(P)^{\mathrm{op}} \\
f & \longrightarrow \psi^{-1} \circ f^{\vee L} \circ \psi
\end{aligned}
$$

where $f \vee L: \operatorname{Hom}(P, L) \rightarrow \operatorname{Hom}(P, L)$ is the L-dual of f.
Theorem (Saltman). Any involution on $\operatorname{End}(P)$ is adjoint to some $b: P \times P \rightarrow L$.

Trivial Answer

Theorem (Saltman). Any involution on $\operatorname{End}(P)$ is adjoint to some $b: P \times P \rightarrow L$.

Corollary. If $P \not \approx P^{\vee} \otimes L$ for any invertible R-module L then End (P) has no involution.

Examples.
(1) (A) $X=\mathbb{P}^{1}, \mathscr{P}=\mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O}(1)$ $\operatorname{End}(\mathscr{P})$ has no involution
(2) (U. First) R ring of integers in a number field K / \mathbb{Q} with $\mathrm{Cl}(R) \cong \mathbb{Z} / 4 \mathbb{Z}$

Question'. If $[A] \in{ }_{2} \operatorname{Br}(R)$ then can every Brauer equivalent algebra of the same degree fail to have an involution?

Preliminary Reductions

Question'. If $[A] \in{ }_{2} \operatorname{Br}(R)$ then can every Brauer equivalent algebra of the same degree fail to have an involution?

Degree considerations:
(1) $\operatorname{deg}(A)=2 \Longrightarrow A$ has (standard) involution More generally, can deal with $\operatorname{ind}(A)=2$.
(2) $\operatorname{deg}(A)$ odd $\Longrightarrow A$ is split We know how to handle this case.
(3) A is always Brauer equivalent to $A_{1} \otimes A_{2}$ where $\operatorname{ind}\left(A_{1}\right)$ is odd and ind $\left(A_{2}\right)=2^{n}$ (Antieau-Williams) A not always isomorphic to $A_{1} \otimes A_{2}$

So we can reduce to considering $\operatorname{ind}(A)=2^{n}$ with $n \geq 2$.
First open case is $\operatorname{deg}(A)=\operatorname{ind}(A)=4$.

Results

Theorem (A-First). For every $n \geq 2$, there exists a ring R and an Azymaya R-algebra A of degree 2^{n} and period 2 such that no Azumaya R-algebra B of degree 2^{n} Brauer equivalent to A has an involution.

Remark. For $n=2$, i.e., $\operatorname{deg}(A)=4$, we can take R to be a finitely generated \mathbb{C}-algebra of dimension 3 .

Examples with R of smaller dimension over more complicated fields are also possible.

Sketch of Proof

$\mathbf{G}=\mathbf{G L}_{4} / \mu_{2}$
BG classifying "space" (topological, simplicial, stack)
Facts.
(1) G-tors $\longleftrightarrow(A, V, \varphi)$ 2-torsion data

A Azumaya algebra of degree 4
V is locally free of rank 16
$\varphi: A \otimes A \rightarrow \operatorname{End}(V)$ isomorphism
(2) $(\boldsymbol{A}, \boldsymbol{V}, \varphi)$ universal 2-torsion data on $\boldsymbol{B G}$ $(A, V, \varphi)=f^{*}(\boldsymbol{A}, \boldsymbol{V}, \varphi)$ on X for some $f: X \rightarrow \boldsymbol{B} G$
(3) $\operatorname{Br}(\boldsymbol{B} G) \cong \mathbb{Z} / 2 \mathbb{Z}$ generated by \boldsymbol{A}

Proposition. The Azumaya algebra \boldsymbol{A} on $\boldsymbol{B} \boldsymbol{G}$ has no involution.

Sketch of Proof

Proposition. The Azumaya algebra \boldsymbol{A} on $\boldsymbol{B} \boldsymbol{G}$ has no involution.
Proof.

- $A=\operatorname{End}(P)$ split Azumaya algebra of degree 4 with no involution on X, e.g., $X=\mathbb{P}^{1}$ and $P=\mathscr{O}^{\oplus 3} \oplus \mathscr{O}(1)$
- A extends to 2-torsion datum $(\operatorname{End}(P), P \otimes P, \varphi P)$ $\varphi_{P}: \operatorname{End}(P)^{\otimes 2} \rightarrow \operatorname{End}\left(P^{\otimes 2}\right)$ canonical isomorphism
- via the classifying map $f: X \rightarrow \boldsymbol{B} G$
$\left(\operatorname{End}(P), \boldsymbol{P} \otimes \boldsymbol{P}, \varphi_{P}\right)=f^{*}(\boldsymbol{A}, \boldsymbol{V}, \boldsymbol{\varphi})$
- if \boldsymbol{A} had an involution then $\operatorname{End}(P)=f^{*} \boldsymbol{A}$ would

Sketch of Proof

Details left out:
Proving that no Azumaya algebra B of degree 4 on $B G$, Brauer equivalent to \boldsymbol{A}, has an involution.

The passage from "space" $\boldsymbol{B} G$ to an affine scheme using quasi-projective approximation of $\boldsymbol{B G}$ à la Totaro. This step is not new (e.g., Antieau-Williams).

Questions

Find examples with R of minimal dimension (say over \mathbb{C})? For Azumaya algebras of degree 4, we can take "generic" algebra constructions?

Find examples over projective varieties?

