ADJOINT FUNCTORS IN ALGEBRAIC GEOMETRY

ASHER AUEL

Abstract

A collection of facts about adjoint various adjoint functors in algebraic geometry.

Let $f: Y \rightarrow X$ be a morphism of (topological) spaces. We have functors:

$$
\begin{aligned}
f_{*}: \mathrm{Sh}_{/ Y} & \rightarrow \mathrm{Sh}_{/ X} \\
f^{-1}: \mathrm{Sh}_{/ Y} & \leftarrow \mathrm{Sh}_{/ X}
\end{aligned} \quad \text { (pushforward) }
$$

on categories of sheaves. Then in category theoretic terms:
f^{-1} is left adjoint to f_{*}
f_{*} is right adjoint to f^{-1}
Hom-set adjunction. There is an isomorphism of bifunctors:

$$
\Phi: \operatorname{Hom}_{\mathrm{Sh}_{/ Y}}\left(f^{*}-,-\right) \rightarrow \operatorname{Hom}_{\mathrm{Sh}_{/ X}}\left(-, f_{*}-\right)
$$

i.e. natural bijections

$$
\Phi_{\mathscr{F}, \mathscr{G}}: \operatorname{Hom}_{\mathrm{Sh}_{/ Y}}\left(f^{*} \mathscr{F}, \mathscr{G}\right) \rightarrow \operatorname{Hom}_{\mathrm{Sh}_{/ X}}\left(\mathscr{F}, f_{*} \mathscr{G}\right)
$$

for objects \mathscr{F} in $\mathrm{Sh}_{/ X}$ and \mathscr{G} in $\mathrm{Sh}_{/ Y}$.
(Co)unit adjunction. There are isomorphisms of functors:

$$
\begin{aligned}
& \varepsilon: f^{-1} \circ f_{*} \rightarrow \operatorname{id}_{\text {Sh }_{/ Y}} \quad \text { (counit) } \\
& \eta: \operatorname{id}_{\text {Sh }_{/ X}} \rightarrow f_{*} \circ f^{-1} \quad \text { (unit) }
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& \mathrm{id}_{f^{-1}}=\varepsilon f^{-1} \circ f^{-1} \eta \\
& \mathrm{id}_{f_{*}}=f_{*} \varepsilon \circ \eta f_{*} \\
& \mathrm{f}^{-1}: f_{*} \\
& \xrightarrow{f^{*} \eta} f^{-1} f_{*} f^{-1} \\
& f_{*} f^{-1} f_{*} \xrightarrow{\varepsilon f^{-1}} \\
& f_{*} \varepsilon f^{-1} \\
& f_{*}
\end{aligned}
$$

i.e. natural morphisms

$$
\begin{array}{lc}
\varepsilon_{\mathscr{G}}: f^{-1} f_{*} \mathscr{G} \rightarrow \mathscr{G} & \text { (counit) } \\
\eta_{\mathscr{F}}: \mathscr{F} \rightarrow f_{*} f^{-1} \mathscr{F} & \text { (unit) }
\end{array}
$$

satisfying

$$
\begin{array}{rllllll}
\mathrm{id}_{f-1} \mathscr{F} & =\varepsilon_{f-1} \mathscr{F} \circ f^{-1}\left(\eta_{\mathscr{F}}\right) & : f^{-1} \mathscr{F} & \xrightarrow{f^{*}\left(\eta_{\mathscr{F}}\right)} & f^{-1} f_{*} f^{-1} \mathscr{F} & \xrightarrow{\varepsilon_{f-1} \mathscr{\mathscr { P }}} f^{-1} \mathscr{F} \\
\operatorname{id}_{f_{*} \mathscr{G}} & =f_{*}\left(\varepsilon_{\mathscr{G}}\right) \circ \eta_{f_{*} \mathscr{G}} & : f_{*} \mathscr{G} & \xrightarrow{\eta_{f_{*}}} & f_{*} f^{-1} f_{*} \mathscr{G} & \xrightarrow{f_{*}\left(\varepsilon_{\mathscr{G}}\right)} & f_{*} \mathscr{G}
\end{array}
$$

E-mail address: auel@mathcs.emory.edu

[^0]
[^0]: Date: November 15, 2010.

