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Problem 1 (Andrei Rapinchuk). Groups with bounded generation.

An abstract group Γ has bounded generation (BG ) if there exist γ1, . . . , γd ∈ Γ
with Γ = 〈γ1〉 · · · 〈γd〉 = { γn1

1 γ
n2
2 · · · γ

nd
d | n1, n2, . . . , nd ∈ Z }.

What are some examples? Finitely generated nilpotent groups. What else?
Carter and Keller showed that Γ = SLn(Z) for n ≥ 3 has BG, see [7]. This fact
can be rephrased in the terminology of elementary linear algebra. It is a basic fact
that, over a field, every invertible matrix can be reduced to the identity matrix
by elementary row operations. The same is true for matrices with integer entries.
(Furthermore, for a matrix with determinant 1, the only necessary row operation is
adding a multiple of one row to another row, so we see that the original matrix is
a product the elementary matrices, which are unipotent.) What Carter and Keller
proved is that every matrix in SLn(Z) (for fixed n ≥ 3) can be reduced to the
identity in a bounded number of steps.

For SL(n,Z), the γ1, . . . , γd are elementary matrices, so are unipotent. For a long
time, it was an open question whether such γ1, . . . , γd ∈ SLn(Z) can be chosen to
be semi-simple elements, but it was recently proved that this is impossible, see [10].
More generally, the expectation is that if a group has no unipotent elements, then
it usually should not have BG. As an example of this, it was recently shown that if
Γ is boundedly generated by semisimple elements, then Γ is virtually solvable, i.e.,
has a solvable subgroup of finite index. Therefore, if Γ ⊂ GLn(C) is an anisotropic
group, i.e., if every element is semisimple, then Γ has BG if and only if Γ is finitely
generated and virtually abelian, i.e., has an abelian subgroup of finite index.

A profinite group ∆ has bounded generation (BG ) if there exist elements γ1, . . . , γd ∈
∆ such that ∆ = 〈γ1〉 · · · 〈γd〉 where the overline means the topological closure.

There exist many S-arithmetic groups Γ = G(Z) with the congruence subgroup

property (CSP ), which (roughly speaking) means that Γ̂ =
∏

pG(Zp), where the
hat ̂ means the profinite completion, and the product is over all primes. See the
survey [14], and the references within, for more details on the CSP. It is known that

this implies that Γ̂ has BG as a profinite group. (On the other hand, if the original
group Γ is anisotropic, then we know from above that Γ does not have BG.)

Question. Given an abstract group Γ whose profinite completion Γ̂ has BG, can

one find γ1, . . . , γd ∈ Γ such that Γ̂ = 〈γ1〉 · · · 〈γd〉.
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We know that there exist such γ1, . . . , γd in Γ̂ (because we assume Γ̂ has BG as a
profinite group), but the question is whether these elements can be chosen to be in
the original group Γ, instead of in the profinite completion.

The easiest case might be to take an integral quadratic form q. If q has Witt
index ≥ 2 over R, then Spin(q)(Z) is known to have CSP (this was proved by
M. Kneser); otherwise, one can consider the group of points Spin(q)

(
Z[1/s]

)
over a

suitable localization. This would be a good test case.

Problem 2 (Peter Abramenko). Generation by elementary matrices.

Following P.M. Cohn [9], we call a (not necessarily commutative) ring R with 1
a GEn ring (n a natural number > 1) if GLn(R) is generated by elementary and
invertible diagonal matrices, i.e., if GLn(R) = GEn(R).

For commutative R this is equivalent to SLn(R) = En(R). We will restrict to
(commutative) integral domains in the following. It is clear that fields and Euclidean
domains are GEn rings for all n. GEn properties of S-arithmetic rings are also well
known (but also not relevant to this problem). A. Suslin [16] studied the question
of when GEn properties of a base ring A carry over to (Laurent) polynomial rings
over A. In particular, he obtained the following:

Theorem 1. If A is a field or Euclidean domain, and `, m and n are natural
numbers with ` ≤ m, then R = A[t1, ..., tm; 1/t1, ..., 1/t`] is a GEn ring for all n > 2.

This leaves the question when these rings are also GE2. A general answer was
given by H. Chu [8]. Among his results for integral domains S are the following:

Theorem 2. If R = S[t] is a GE2 ring, then S is a field.

Corollary. If A is a field, m > 1, and ` < m or A is any integral domain that is
not a field, m is any natural number and ` < m, then R = A[t1, ..., tm; 1/t1, ..., 1/t`]
is not a GE2 ring.

Theorem 3. If R = S[t, 1/t] is a GE2 ring, then S is a Bezout domain.

Corollary. If A is a field and ` = m > 2 or A is any integral domain which is not
a field and ` = m > 1, then R = A[t1, ..., tm; 1/t1, ..., 1/tm] is not a GE2 ring.

It is worth noting that for Laurent polynomial rings the situation is more com-
plicated than for polynomial rings as described in Theorem 2. Namely, Chu also
proved:

Theorem 4. If S is a valuation domain (but not a field ), then R = S[t, 1/t] is still
a GE2 ring.

So the most interesting questions in this context which (to the best of our knowl-
edge) are still open after many decades are the following two:

Question 1. Is Z[t, 1/t] a GE2 ring, i.e., is SL2

(
Z[t, 1/t]

)
= E2

(
Z[t, 1/t]

)
?

Obviously, the latter group is finitely generated. So a weaker variant of this
question would be:

Question 1′. Is SL2

(
Z[t, 1/t]

)
finitely generated?

Question 2. Is it true for some/all/no fields F that R = F [t1, t2, 1/t1, 1/t2] is a
GE2 ring?
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Problem 3 (Eugene Plotkin and Boris Kunyavskii). Matrix word maps.

Let w(x, y) ∈ F2 be a nontrivial word in the free group on x, y. Let G = PSL2(C).
Then w defines a map w : G×G→ G : (g1, g2) 7→ w(g1, g2).

Question. Is w always surjective? In other words, for any a ∈ PSL2(C), does the
equation w(x, y) = a always have a solution?

The answer is believed to be “yes”. This has been checked by computer for “short
words” and it’s also true if w is a commutator or belongs to the second commutant
subgroup in the derived series. However, nobody knows what happens if the word
lies deeper in the derived series. For more details, see [13].

On the other hand, the answer is “no” for G = SL2(C). A counterexample can
be obtained by taking w(x) = xn, where n is even. In general, if G is a connected,
semisimple algebraic group over C, then the power map x 7→ xn cannot be surjective
on G(C) unless n is relatively prime to the order of the center of G.

One might want to generalize to any adjoint algebraic group G, but there are
counterexamples in general, which requires a slight modification of the question.
The only group which might possess exactly the same property is PSL(n,C).

Problem 4 (Uriya First). Extensions of torsors.

Let F be a field, e.g., F = C. Let G,H1, H2 algebraic groups over F and consider
morphisms H1 → G and H2 → G.

Question. Is there a G-torsor T → X over an F -variety X that is extended from
H1 but not from H2?

As an example, for On → GLn and Spn → GLn, the question is equivalent to the
existence of a locally free module E on X such that E has a regular quadratic form
but not a regular symplectic form. This is known to be true for small n, e.g., [4],
and also when n is divisible by 4 (unpublished).

Of course, if there is a morphism H1 → H2 compatible with the morphisms to
G, then every G-torsor extended from H1 is also extended from H2. The general
expectation is that, if there is no such morphism, then the question has a positive
answer for some F -variety X.

If one bounds the complexity of the possible X, then this becomes harder. For
example, for PGLp → PGLp the identity map and Z/pZ o µp → PGLp and taking
X = Spec(F ), then this question is equivalent to whether there exists a noncyclic
p-algebra. Similarly, for G→ G the identity map and {1} → G the inclusion of the
trivial subgroup, the question has a positive answer over X = Spec(F ) if and only
if G is not a special group.

At the opposite extreme, the question should be easiest to answer if one takes
“X = BG,” and the question is open even in the topological category.

If we restrict to affine X, then, by taking Levi subgroups of H1, H2 and replacing
G with G/radu(G), we can reduce to the case where G, H1, H2 are reductive (at
least if F is perfect).

Past work has addressed special cases of this problem using topological methods,
by choosingX to be an appropriate finite dimensional algebraic approximation of the
classifying space BG(C) of the complex Lie group G(C). While the first use of such
approximations is Raynaud’s [15] study of stably free modules, this technique has
been developed in the past decade by Antieau and Williams [1, 2, 3] with dramatic
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results on the purity problem for torsors. The results in [4] and [17] use similar
techniques to address the above question. These methods usually require careful
analysis of topological obstruction invariants tailored to the specific choice of the
groups H1, H2, G. Also, they are oblivious to unipotent radicals, e.g., if H1 = B2,
H2 = T2, G = GL2, then we cannot use such methods. Is there a way to address
this problem in general (rather than treating special cases separately), and more
generally, in the presence of unipotent radicals?

Problem 5 (Chen Meiri). Local-global property for commutators.

Let O be a ring of S-integers with infinitely many units and consider SL2(O).

Question. If g ∈ SL2(O) is locally a commutator, then is g a commutator?

Here, “locally” means in the profinite completion. For carefully chosen p, there
are counterexamples when O = Z[1

p
]. Are there any counterexamples when O is the

ring of integers in Q
(√

D
)

where D is a square-free positive integer?
Since O has infinitely many units, we know that SL2(O) has the congruence

subgroup property, so “locally” is equivalent to checking modulo all congruence
subgroups.

One can ask the same question for SL2(Z), or the free subgroup F2 ⊂ SL2(Z).
Khelif [12] proved that the answer is “yes“ for the free group (though here the con-
gruence subgroup property does not hold), and the same methods apply to SL2(Z),
see [11]. However, for a general free product of finite cyclic groups Cn ∗ Cm, the
question is open.

Problem 6 (Dave Morris). Normal subsemigroups.

Let G be a simple algebraic group over a field K of characteristic 0. A subset
N ⊂ G(K) is a normal subgroup if and only if N is nonempty, closed under mul-
tiplication, closed under inverses, and closed under conjugation from G. We have
general classification results for all normal subgroups.

Question. Classify the normal subsemigroups (so not assumed to be closed under
inverses).

In fact, this classification should reduce to the classical one, as conjectured in [20]:

Conjecture. Every normal subsemigroup is a subgroup.

Maybe one expects the conjecture to also hold for arithmetic groups such as
SLn(Z) for n ≥ 3?

The question can be rephrased in different ways, as the following are equivalent:

• every normal subsemigroup is a subgroup,
• for every x ∈ G(K) there exist y1, . . . , yn such that x−1 = xy1 · · ·xyn (where
xy = y−1xy is the conjugate of x by y),
• for every x ∈ G(K), there exist y1, . . . , yn such that 1 = xy1 · · ·xyn ,
• there does not exist a nontrivial bi-invariant partial order on G(K), i.e.,
x < y ⇒ gx < gy and xg < yg for all g ∈ G(K) (and “nontrivial” means
there exist some x and y such that x < y).

The conjecture was verified when K is algebraically closed or a local field, and
when G is a split classical group. But it is open for K = Q.
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Problem 7 (Andrei Rapinchuk). How to classify algebraic groups?

Let K be an arbitrary field and L/K a fixed quadratic extension. Can one classify
all simple groups over K that are split over L?

Specifically, say that G is L/K-admissible if G has a maximal K-torus T that
is anisotropic over K but splits over L. (For example, C/R-admissible tori are
compact.) Can we classify these groups?

It would be especially interesting to work out the case of types E6, E7, E8.
Something is special about C/R, which is that there is a unique nonsplit central

simple algebra, which makes the classification nice, see [5, 6].
This notion of L/K-admissible groups was introduced by Boris Weisfeiler (or

Vĕısfĕıler) [18], [19], and there is a theory of the admissible tori in G, including
elementary moves that allow one to move from one admissible torus to another.
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