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ABSTRACT. We study the Brill-Noether theory of curves on K3 surfaces that are
Hodge theoretically associated to cubic fourfolds of discriminant 14. We prove
that any smooth curve in the polarization class has maximal Clifford index and
deduce that a cubic fourfold contains disjoint planes if and only if it admits a
Brill-Noether special associated K3 surface of degree 14. As an application, we
prove that the complement of the pfaffian locus, inside the Noether—Lefschetz
divisor C14 in the moduli space of cubic fourfolds, is contained in the irreducible
locus of cubic fourfolds containing two disjoint planes.

INTRODUCTION

Let X be a cubic fourfold, i.e., a smooth cubic hypersurface X C P> over the com-
plex numbers. Determining the rationality of X is a classical question in algebraic
geometry. Some classes of rational cubic fourfolds have been described by Fano [11]
and Tregub [48], [49]. Beauville and Donagi [5] prove that pfaffian cubic fourfolds,
i.e., those defined by pfaffians of skew-symmetric 6 x 6 matrices of linear forms, are
rational. Hassett [19] describes, via lattice theory, Noether—Lefschetz divisors Cy4 in
the moduli space C of smooth cubic fourfolds. A parameter count shows that Cy4 is
the closure of the locus Pf of pfaffian cubic fourfolds; Hodge theory shows (see [50,
§3 Prop. 2]) that Cs is the locus of cubic fourfolds containing a plane. Hassett [18]
identifies countably many divisors of Cg consisting of rational cubic fourfolds. Re-
cently, Addington, Hassett, Tschinkel, and Varilly-Alvarado [2] identify countably
many divisors of C1g consisting of rational cubic fourfolds, and Russo and Stagliano
[45], [46] have shown that the very general cubic fourfolds in Cog, Csg, and Cgo are
rational. Nevertheless, it is expected that the very general cubic fourfold (as well as
the very general cubic fourfold containing a plane) is not rational.

Short of a pfaffian presentation, how can one tell if a given cubic fourfold is
pfaffian? Beauville [4] provides a homological criterion for a cubic hypersurface
to be pfaffian, which for cubic fourfolds is equivalent to containing a quintic del
Pezzo surface, but it is not clear how to translate this criterion into Hodge theory.
More generally, how can one understand the complement Ci14 ~\ Pf of the pfaffian
locus? Such questions are implicit in [3] and [48], where cubic fourfolds with certain
numerical properties are shown to be outside or inside, respectively, the pfaffian
locus. In particular, Tregub studies the locus Cr; of cubic fourfolds that contain two
disjoint planes, showing that this locus is irreducible of codimension 2 in C, and that
the general member does not contain a smooth quartic rational normal scroll nor a
quintic del Pezzo surface, hence cannot be pfaffian. Our main result is that this is
essentially all of the complement of the pfaffian locus.
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Theorem 1. The complement of the pfaffian locus Pf, inside the Noether—Lefschetz
divisor C14 of the moduli space of cubic fourfolds, is contained in the irreducible locus
Crt of cubic fourfolds containing two disjoint planes.

In other words, any X € Ci4 is pfaffian or contains two disjoint planes (or both).

The proof combines several ingredients revolving around the Brill-Noether theory
of special divisors on curves in K3 surfaces of degree 14. We use the determination,
due to Mukai [40], [41] of the smooth projective curves C of genus 8 that are linear
sections of the grassmannian G(2,6) C P4, This turns out to be equivalent to C
lacking a g2, equivalently, that C' is Brill-Noether special. We also use a modified
conjecture of Harris and Mumford, as proved by Green and Lazarsfeld [15], as well as
the generalization due to Lelli-Chiesa [36], on line bundles on K3 surfaces computing
the Clifford indices of smooth curves in a given linear system. We also need the
earlier work of Saint-Donat [47] and Reid [43], [44], on hyperelliptic and trigonal
linear systems on K3 surfaces, as well as useful refinements due to Knutsen [24],
[25], [26] of the original result by Green and Lazarsfeld. Combining these results
with lattice theory computations for cubic fourfolds and their associated K3 surfaces,
as developed by Hassett [18], [19], we prove that the Clifford index of curves in the
polarization class of any K3 surface of degree 14 associated to X must take the
maximal value 3 (see Theorem 4.4), putting strong constraints on the geometry of
cubic fourfolds in terms of the Brill-Noether theory of their associated K3 surfaces.

More generally, one might call a cubic fourfold X Brill-Noether special if X has
an associated K3 surface S that is Brill-Noether special in the sense of Mukai [41,
Def. 3.8], a condition implying that S has an ample divisor such that the general
curve in its linear system is Brill-Noether special, see §1.2. Then our main result can
be summarized by saying that a special cubic fourfold of discriminant 14 is Brill-
Noether special if and only if it contains two disjoint planes. It would be interesting
to study the Brill-Noether special loci in other divisors C4 of special cubic fourfolds,
for example, in Coq, C3g, and Cqo. In the context of discriminant 26, Farkas and
Verra [12] also appeal to the Brill-Noether theory of some associated K3 surfaces.

Our result, and more generally the ability to detect a pfaffian cubic fourfold
via Hodge theory, has two immediate applications. First, we obtain a new explicit
proof that every cubic fourfold in Cy4 is rational: Beauville and Donagi [5] prove that
any pfaffian cubic fourfold is rational, and by a much more classical construction
going back to Fano, every cubic fourfold containing disjoint planes is rational; this
covers all cubic fourfolds in Cy4. This rationality result was initially obtained by
Bolognesi, Russo, and Stagliano [6] using a much more classical approach involving
one apparent double point surfaces, though this has been recently subsumed by the
path-breaking work on the deformation invariance of rationality by Kontsevich and
Tschinkel [28]. Second, we prove the existence of nonempty irreducible components
of Pf N1I, which are necessarily of codimension > 3 in C. This immediately implies
that the pfaffian locus is not Zariski open in Ci4. While this result was initially
obtained in the course of conversations with M. Bolognesi and F. Russo based on
the computer algebra calculations of G. Stagliano and earlier drafts of our respective
papers, the proof presented in §5.1 does not require any explicit computer algebra
computations (as opposed to the proof in [6]). However, it still seems plausible
that the pfaffian locus is open inside the moduli space of marked cubic fourfolds of
discriminant 14.
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1. BRILL-NOETHER THEORY FOR POLARIZED K3 SURFACES OF DEGREE 14

All varieties are assumed to be over the complex numbers and all K3 surfaces are
assumed to be smooth and projective.

1.1. Grassmannians and curves of genus 8. Let G(2,6) C P be the grassman-
nian of 2-planes in a 6-dimensional vector space, embedded in P via the Pliicker
embedding. It was classically known that a general flag of linear subspaces P C @
of dimension 6 and 7 in P'* cut from G(2,6) a K3 surface of degree 14 containing a
canonical curve C of genus 8.

Recall that a g), on a smooth projective curve C' is a line bundle A of degree d
with h0(C, A) > r + 1; it is complete if h°(C, A) = r + 1.

Theorem 1.1 (Mukai [40]). A smooth projective curve C' of genus 8 is a linear
section of the Grassmannian G(2,6) C P if and only if C has no g2.

The Brill-Noether theorem states that when p(g,r,d) =g — (r+1)(g —d+r) is
negative, the general curve of genus g has no g);. A curve supporting such a g is
called Brill-Noether special. A curve not supporting any g; whenever p(g,r,d) <0
is called Brill-Noether general. When p(g,r,d) = —1, Eisenbud and Harris [10]
proved that the locus of curves, in the moduli space M, of curves of genus g, that
support such a g}, is irreducible of codimension 1. In particular, the locus of curves
of genus 8 having a g% is of codimension 1 in Ms.

The Clifford index of a line bundle A on a smooth projective curve C'is the integer

V(A) = deg(A4) —27(A),
where 7(A) = h%(C, A) — 1 is the rank of A. The Clifford index of C is
7(C) = min{y(A) : h%(C, A) > 2 and h*(C, A) > 2}

and a line bundle 4 on C is said to compute the Clifford index of C if v(A) = v(C).
Clifford’s theorem states that (C') > 0 with equality if and only if C'is hyperelliptic;
similarly 7(C) = 1 if and only if C is trigonal or a smooth plane quintic. At the
other end, v(C) < [(g — 1)/2| with equality whenever C' is Brill-Noether general.
Up to taking the adjoint line bundle we ® AV, which has the same Clifford index,
we can always assume that nontrivial special divisors g; satisfy 1 < < |(g—1)/2]
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and 2 < d < g—1. For g =8, we list them for the convenience of the reader:

¥ 3 2 1 0
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In genus 8, the Brill-Noether special locus is controlled by the existence of a g2.

Lemma 1.2. A smooth projective curve C of genus 8 is Brill-Noether special if and
only if it has a complete g%.

Proof. First note that if a curve has a complete g/, then it has a complete g§ for
all £ between d — g and r. Hence if C has a g% then it has a complete g%. We can
argue by the Clifford index. In Clifford index 3, the only special divisor is a g2. For
Clifford index 2, we use the facts that any genus 8 curve with a g3 has a gj and any
genus 8 curve with a gi has a g2, see [40, Lemmas 3.4, 3.8]. In Clifford index 1, any
genus 8 curve is trigonal, so taking twice the g% and adding a base point will result
in a g%. Finally, in Clifford index 0, the curve is hyperelliptic, so taking thrice the g4
and adding a base point will result in a g2. O

1.2. Brill-Noether theory for polarized K3 surfaces. A polarized K3 surface
(S, H) of degree d is a smooth projective K3 surface S together with a primitive
ample line bundle H of self-intersection d > 2. If C' C S is a smooth irreducible
curve in the linear system |H|, then d = 2g — 2, where g is the genus of C. Following
Mukai [41, Def. 3.8], we say that a polarized K3 surface (S, H) of degree 2¢g — 2 is
Brill-Noether general if hO(S, H') h°(S, H") < h%(S, H) = g + 1 for any nontrivial
decomposition H = H' ® H”. Otherwise, we say Brill-Noether special. If a smooth
irreducible curve C' € |H| is Brill-Noether general then it follows that (S, H) is
Brill-Noether general, cf. [23, Rem. 10.2]. While the converse is an open question
in general, for low degrees it was checked by Mukai, using a case-by-case analysis.

Theorem 1.3. A polarized K3 surface (S, H) of degree < 18 or 22 is Brill-Noether
general if and only if some smooth irreducible C' € |H| is Brill-Noether general.

Of course, we are mainly interested in the degree 14 case, where the results
assembled below will suffice to prove the theorem.

The existence of special divisors on curves in a K3 surface was considered by
Saint-Donat [47] and Reid [43], [44]. Harris and Mumford conjectured that the
gonality of a curve should be constant in a linear system on a K3 surface. A
counterexample was found by Donagi and Morrison [9] (in fact, this turned out
to be the unique counterexample, cf. [7], [27]) and the conjecture was modified by
Green [16, Conj. 5.8] to one about the constancy of the Clifford index in a linear
system. In a similar spirit, one is interested in the question of when a given g); on a
curve in a K3 surface is the restriction of a line bundle from the K3. The conjecture
of Green was proved in a celebrated paper by Green and Lazarsfeld.

Theorem 1.4 (Green—Lazarsfeld [15]). Let S be a K3 surface and C C S a smooth
irreducible curve of genus g > 2. Then y(C") = ~(C) for every smooth curve
C' € |C|. Furthermore, if v(C) < (g — 1)/2| then there exists a line bundle L on
S whose restriction to any C' € |C| computes the Clifford index of C'.
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We can thus define the Clifford index (S, H) of a polarized K3 surface (S, H) to
be the Clifford index of any smooth irreducible curve C' € |H|, which is well-defined
by Theorem 1.4.

In the case where (S, H) has degree 14, so that C' € |H| has genus 8, we have
that v(S, H) < 3. If (S, H) is Brill-Noether general, then by Theorem 1.3, some
curve C' € |H| is Brill-Noether general (hence has maximal Clifford index), so that
v(S,H) = 3. When (S, H) is Brill-Noether special and (S, H) < 3, the result
of Green and Lazarsfeld allows us to find a line bundle on S whose restriction to
C € |H| computes the Clifford index. In fact, already for (S, H) < 1, results of
Saint-Donat [47, Thm. 5.2] and Reid [43, Thm. 1] ensure that these line bundles
can be chosen to be elliptic pencils, see §1.3 for details. Finally, when (S, H) is
Brill-Noether special and (S, H) = 3, we would like to know if a g2 on a curve
C € |H| is the restriction of a line bundle on S. Since a g2 has the generic Clifford
index, we cannot appeal to the result of Green and Lazarsfeld. This situation, of
Clifford general but not Brill-Noether general polarized K3 surfaces, is discussed
more generally in [23, §10.2].

To this end, we have the following much more powerful result of Lelli-Chiesa,
concerning when a specific g/, on a curve C' C S lying in a K3 surface is the restriction
of a line bundle on §.

Theorem 1.5 (Lelli-Chiesa [36]). Let S be a K3 surface and C C S a smooth
irreducible curve of genus g > 2 that is neither hyperelliptic nor trigonal. Let A
be a complete g}, such that r > 1, d < g —1, p(g,r,d) < 0, and v(A) = ~(C).
Assume that there is no irreducible genus 1 curve E C S such that E.C = 4 and no
irreducible genus 2 curve B C S such that B.C = 6. Then A is the restriction of a
globally generated line bundle L on S.

This result comes from an in-depth study of generalized Lazarsfeld-Mukai bundles
extending the original strategy of [15].

Remark 1.6. According to [36, Thm. 4.2ff.], the hypothesis on curves of genus 1 and
2 is completely satisfied as long as v(C') > 2; otherwise, there is a list of seven ex-
ceptional cases when v(C') = 2. We also remark that, according to the construction
in the proof of [36, Thm. 4.2] (see also [35, Lemma 3.3] and [15, Lemma 3.1}), the
line bundle L can be chosen to be globally generated, though this is not mentioned
in the statement of the main theorem in [36].

When a K3 surface has Picard rank one, Lazarsfeld [34] has shown that the general
curve in the linear system of the polarization class is Brill-Noether general. Hence
Brill-Noether special K3 surfaces have higher Picard rank.

1.3. Brill-Noether special K3 surfaces via lattice-polarizations. Let > be
an even nondegenerate lattice of signature (1,p — 1) with a distinguished class H
of even norm d > 0. A X-polarized K3 surface is a polarized K3 surface (S, H) of
degree d together with a primitive isometric embedding ¥ < Pic(S) preserving H.
For a general discussion of lattice-polarized K3 surfaces and their moduli, see [8].
In particular, there exists a quasi-projective coarse moduli space Ky, of dimension
20 — p and a forgetful morphism Ky — K; to the moduli space of polarized K3
surfaces of degree d. The main result of this section is the following characterization
of Brill-Noether special K3 surfaces of degree 14 via lattice polarizations. The same
result is obtained by Greer, Li, and Tian [17] using a different calculation.
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7=0 =1 r=2 7=3

H E H E H E H L H L
H[14 2 H[14 3 H[14 4 H[14 6 H[14 7
E|2 0 E|3 0 El4 0 L|6 2 L|7 2
dg = —4 ds =-9 ds = —16 ds = —8 ds = —21
di=-14 || d2=-14-9 | d)d=-14-4 | d} =-14-2 dy = —
(b7 C) - (678) (b7 C) - (576> <b7 C) — (272) (b, C) = (474) (b, C) = (77 12)

TABLE 1. Lattices embedded in Brill-Noether special K3 surfaces of
degree 14 and Clifford index ~. Here, d and dy denote the discrimi-
nants of the lattice and of (H)*, respectively. The pair (b,c) refers
to the unique rank 3 cubic fourfold lattice, whose associated lattice
is the given one, normalized as in Proposition 3.1.

Theorem 1.7. If a polarized K3 surface (S, H) of degree 14 is Brill-Noether special
then it admits a lattice polarization for one of the five rank 2 lattice appearing in
Table 1 and (S, H) is bounded above by the corresponding value of v on the table.
In particular, the Brill-Noether special locus in K14 is the union of five divisors
indexed by the lattices in Table 1.

Before the proof of the theorem, we need some lemmas on elliptic pencils on K3
surfaces, which are mostly contained in the work of Saint-Donat [47] and Knut-
sen [25], [26]. By an elliptic pencil we mean a line bundle E on a K3 surface S such
that the generic member of the linear system |E| is a smooth genus one curve. A
result of Saint-Donat [47, Prop. 2.6(ii)] says that if E' is generated by global sections
and E? = 0, then E is a multiple of an elliptic pencil. If E is an elliptic pencil then
E is primitive in Pic(S) (cf. [22, Ch. 2, Remark 3.13(i)]), E? = 0, h°(S, E) = 2, and
h'(S,E) = 0.

Lemma 1.8. Let (S, H) be a polarized K3 surface of degree 29 —2 > 2, let C' € |H|
be a smooth irreducible curve, and let E be a globally generated line bundle on S
with E?> =0 and E.C =d < 2g9—2. Then E|¢ is a g}i if and only if E is an elliptic
pencil such that h'(S, E(—C)) = 0.

Proof. First remark that since H is base point free and (E—C).C =d—(29—2) <0
by hypothesis, we get that h°(S, E(—C)) = 0, cf. [26, Proof of Prop. 2.1].

Now, assume that E is an elliptic pencil and that h'(S, E(~C)) = 0. Then the
long exact sequence in cohomology associated to the exact sequence of sheaves

0—E(-C)—FE—E|c—0

together with the fact that hY(S,E) = 2, implies that h°(C,E|c) = 2. Since
deg(E|c) = E.C = d, we have that E|¢ is a g).

Now assume that E|c is a g}. By Saint-Donat [47, Prop. 2.6(ii)], E = F®* for an
elliptic pencil F' and some k > 1 dividing d. Again considering the same long exact

sequence as above, the last terms, when rewritten using Serre duality and the fact
that H°(S, EV) = 0 since E is effective, read

HY(S,E|c) - H(S,E(-C)Y) = 0.
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By Riemann-Roch on C, we have h!(S, E|¢) = h'(C, E|c) =2 — (d — g + 1), hence
h(S,E(—C)V) <2 — (d — g+ 1). By Riemann-Roch on S, we have

BO(S, B(—C)")—hL(E(=C)) = 2+%(E—C)2 _ 2+%(—2d+2g—2) — 9 (d—g+1),

using Serre duality and the fact that H°(S, E(—C)) = 0, hence h°(S, E(—C)Y) >
2—(d—g+1) and h'(S,E(—C)) = 0. However, the beginning terms of the long
exact sequence read

0— H°(S,E) - H°(S,E|c) - H (E(-C))

implying that h%(S, E) = h%(C, E|¢) = 2 (since E|¢ is a g!). But h°(S,E) =k + 1
and thus we conclude that k£ =1, i.e., F is an elliptic pencil. (|

Proof of Theorem 1.7. Let C C S be a smooth irreducible curve (of genus 8) in the
linear system of H. We argue by the Clifford index of (S, H), equivalently, of C'.

If v(C) = 0, i.e., C is hyperelliptic by Clifford’s Theorem, then by Saint-Donat
[47, Thm. 5.2] (cf. Reid [43, Prop. 3.1]), the g3 on C is the restriction of an elliptic
pencil E such that E.H = 2.

If v(C) =1, i.e., C is trigonal, then by Reid [44, Thm. 1] (cf. [47, Thm. 7.2]),
after verifying 8 > i32 + 3+ 2, the g3 on C is the restriction of an elliptic pencil E
such that £.H = 3.

In these first two cases, the sublattice of Pic(S) generated by H and FE is primitive.
Indeed, if not, then this sublattice admits a finite index overlattice contained in
Pic(S). However, using the correspondence between finite index overlattices and
isotropic subgroups of the discriminant form (cf., Nikulin [42, §1.4]), we find that,
in this case, the only finite index overlattice would admit a class F' € Pic(S), where
el = E, for e = 2 or 3, respectively. However, as F is an elliptic pencil on S, it is
a primitive class in Pic(S), hence no such overlattice exists.

If v(C) = 2, then by Green-Lazarsfeld [15] (since the generic value of the Clifford
index is 3, see Theorem 1.4), there is a line bundle L on S such that L|c is a gj
or a g3. Then L.H = deg(L|c) = 4 or 6, respectively. Furthermore, by a result of
Knutsen [24, Lemma 8.3], we can choose L satisfying

0<L?’<4 and 2L°<LH and 2=L.H—-IL?—-2

with L? = 4 or 2L? = L.H if and only if H = 2L. However, since 14 is squarefree,
H = 2L is impossible, hence the only possibilities are that L? = 0 and L.H = 4,
L?=0and L.H =6, or L> =2 and L.H = 6. As a consequence of Martens’ proof
[38] of the main result of [15] (cf. proof of [24, Lemma 8.3]), we can also choose L
generated by global sections and with h'(S, L(—C)) = 0. Suggestively, in the two
former cases, we denote L by FE.

We now argue that the case E? = 0 and E.H = 6 is impossible. First assume
that E' is an elliptic pencil. Lemma 1.8 then implies that E|c is a gé, contradicting
the assumption that it is a gg-. Hence E cannot be an elliptic pencil. Thus by
the result of Saint-Donat mentioned above, £ = kF for k = 2,3,6 and an elliptic
pencil F. The case k = 6 is impossible, since F'2 = 0 and F.H = 1 contradicts the
ampleness of H. For k = 2,3, we have F? = 0 and F.H = 6/k < 3, so that results
of Saint-Donat [47, Prop. 5.2, 7.15] imply that F|¢ is a gé/k, contradicting the fact

that y(C) = 2.
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In the remaining two cases, we argue that the sublattice of Pic(S) generated by
H and F (resp. H and L) is primitive. As before, we appeal to the correspondence
between finite index overlattices and isotropic subgroups of the discriminant form
(cf., Nikulin [42, §1.4]). In the case E? = 0 and E.H = 4, the only finite over-
lattice would contain a class dividing E, however since E|c must be a g, then by
Lemma 1.8, E is an elliptic pencil and is thus a primitive class in Pic(S). Hence, the
sublattice generated by H and F is primitive. In the case L? = 2 and L.H = 6, the
only finite index overlattice would contain a class F' € Pic(S) such that 2F = H— L,
however, such F' would then satisfy F? = (H — L)?/4 = 1, which is impossible since
Pic(S) is an even lattice. Hence, the sublattice generated by H and L is primitive.

Finally, assume that (C') = 3. Then all the hypotheses of the results of Lelli-
Chiesa [36] (see Theorem 1.5) are satisfied, hence there exists a line bundle L on S
such that L|¢ is a g2. In particular, L.C = deg(L|¢) = 7. As before, by Remark 1.6,
L can be chosen to be globally generated, so that 2n = L? > 0. Furthermore, by
[23, Prop. 10.5], we can choose L so that L? = 2. The sublattice of Pic(S) generated
by H and L is then primitive since its discriminant is squarefree.

Thus in each case, the polarized K3 surface (S, H) has a lattice-polarization with
respect to one of the lattices on Table 1. ]

Remark 1.9. Every smooth curve C of genus 8 contains a finite number of g2 divisors.
If v(C) = 3 and C lies on a K3 surface S with a primitive degree 14 polarization H,
then it could happen that none of the gé divisors are the restriction of a line bundle
from S (e.g., the corresponding Lazarsfeld-Mukai bundles are simple). However, if a
g3 is the restriction of a line bundle on S, then arguing as in the proof of Theorem 1.7,
one can verify that the Picard lattice of S admits a primitive sublattice generated
by H and E, where F is an elliptic pencil such that H.E =5 and FE|¢ is the g%.

2. LATTICE POLARIZED CUBIC FOURFOLDS

Let X be a smooth cubic fourfold and let A(X) denote the lattice of codimension
2 algebraic cycles CH?(X) with its usual intersection form. Then via the cycle class
map, A(X) is isomorphic to H*(X, Z)NH??(X) by the validity of the integral Hodge
conjecture for cubic fourfolds proved by Voisin [51].

Given a positive definite lattice A containing a distinguished element h? of norm
3, a A-polarized cubic fourfold is a cubic fourfold X together with the data of a
primitive isometric embedding A < A(X) preserving h?. The main results of Looi-
jenga [37] and Laza [33] on the description of the period map for cubic fourfolds
imply that smooth A-polarized cubic fourfolds exist if and only if A admits a prim-
itive embedding into H%(X,Z) = (1)¥?! @ (—1)®2 and A contains no short roots
(i.e., elements v € A with norm 2) nor long roots (i.e., elements v € A with norm 6
such that v.h? = 0 and v.(h?)* C 3Z). We call any such lattice A a cubic fourfold
lattice.

For a cubic fourfold lattice A of rank p, an adaptation of the argument of Has-
sett [19, Thm. 3.1.2] (see also [20, §2.3]) proves that the moduli space Cp of A-
polarized cubic fourfolds is a quasi-projective variety of dimension 21 — p. There is
a forgetful map Cy — C, whose image we denote by Cj,j. In other words, Cjp) C C is
the locus of cubic fourfolds X such that A(X) admits a primitive isometric embed-
ding of A preserving h?. We remark that the forgetful map Cy — Cla] is generically
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finite to one, and whose degree depends on the number of automorphisms of A fixing
h2.

The possible rank 2 cubic fourfold lattices were classified by Hassett [19]; such
a lattice K4 is uniquely determined by its discriminant, which can be any number
d > 6 such that d = 0,2 (mod 6). Then Cg, coincides with the moduli space C}**"
of marked special cubic fourfolds of discriminant d considered by Hassett [19, §5.2]
and Cg,) coincides with the Noether-Lefschetz divisor Cq C C. For cubic fourfold
lattices A of rank 3, the loci Cjy) were considered in [1], [3], [6], [14], [48], [49].

Given a primitive embedding A < A’ of cubic fourfold lattices preserving h?,
there is an induced morphism Cyr — €, and an inclusion of subvarieties Cjy; C Clp)-
In particular, we have that Cjz; C Cq whenever A admits a primitive embedding
of K4 preserving h?.

When A = II is the lattice with Gram matrix

e T P h2 P P

h? L R*[3 1 1

1) T | 4 - Pl1 3 0
P Pl1 0 3

with the isomorphism defined by 7' = 2h? — P — P’, then Ciyj is one of the most
well-studied codimension 2 loci in the moduli space of cubic fourfolds, cf. [11], [48],
[50, §3, App.].

Proposition 2.1. The subvariety Cryp C C is an irreducible component of Cs N C14
and coincides with the locus of cubic fourfolds that contain disjoint planes.

Proof. The proof of the first statement is in [3, Thm. 4], cf. [11], [48]. The existence
of two disjoint planes follows from the proof given in Voisin [50, §3, App., Prop.]
and the refinement due to Hassett [19, §3]. O

Fix an admissible discriminant d > 6, i.e., such that d = 0,2 mod 6 and such
that 4 1 d, 91d, and p { d for any odd prime p = 2 mod 3. Hassett [19, §5] proves
that for any cubic fourfold X with a marking of discriminant d, the orthogonal
complement K of Ky inside H*(X,Z) is Hodge isometric to a twist Pic(S)o(—1)
of the primitive cohomology lattice of a polarized K3 surface (S, H) of degree d,
and that such a Hodge-theoretic association gives rise to a choice of open immersion
Ck, = CI* — K4 of moduli spaces (cf. [19, Corollary 5.2.4]). The choice of such an
open immersion is determined by an isomorphism between the discriminant forms
of the abstract lattices K7 and Pic(S)o(—1), modulo scaling by {£1}; there are
271 such choices, where r is the number of distinct odd primes dividing d, see [19,
Corollary 5.2.4], [20, Proposition 26].

Now, given a cubic fourfold lattice A and a fixed primitive embedding Kg <— A
preserving h?, we are interested in generalizing this open immersion to A-polarized
cubic fourfolds. We can do this explicitly in the case of interest to us, namely when
d = 14 and the rank of A is 3, due to the following lemma.

Lemma 2.2. Let A be a rank 3 cubic fourfold lattice with a fixed primitive embedding
K14 < A preserving h®. Then, up to isometry, there is a unique rank 2 even
indefinite lattice o(A) with discriminant —d(A), a distinguished class H of norm d,
and such that the orthogonal complement of K14 in A is isometric (up to twist) with
the orthogonal complement of H in o(A).
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Proof. As the sublattice K14 = (h?,T) C A is primitive, there exists a class J € A
and integers a, b, ¢ such that

K T J
R2[3 4 a
T|4 10 b
Jla b ¢

By translating J to J — a(T — h?), we can assume that a = 0. Directly computing
the determinant of this Gram matrix, we then find that d(A) = —3b% + 14c = (5b)?
is a square modulo 14. Let 0 < a < 7 be such that o? = d(A) modulo 14. Then we
can write d(A) = a? — 143 for some integer 3. Now we argue that 3 is even. Since
J is orthogonal to h? and (h%)* is an even lattice, we have that J2 = ¢ must be
even. Thus d(A) = 0,1 (mod 4). From the equation d(A) = o — 1483 we see that
d(A) and « have the same parity, and by looking modulo 4, we finally find that g
must be even.
We now define o(A) to be the rank 2 lattice (H, L) with Gram matrix

H L
H|14 «
L|la p

Then d(o(A)) = 148 —a? = —d(A) and hence o(A) is an indefinite even lattice since
d(A) > 0 and S is even.

We now directly calculate that the orthogonal complement of K14 in A is gener-
ated by (4bh? — 3bT + 14.J)/ged(b,14) and that the orthogonal complement of H
in o(A) is generated by (aH — 14L)/ged(a, 14). Computing the self-intersections
of these generators yields 14d(A)/ged(b, 14)? and —14d(o(A))/ged(ar, 14)?, respec-
tively. Noting that e = +5b modulo 14, we have that ged(b, 14) = ged(«, 14), which
proves the claim about the isometry of orthogonal complements.

Finally, we remark that o(A) is unique up to isometry with these properties.
Indeed, given any rank 2 even indefinite lattice with Gram matrix as above, after
a translation and a possible reflection, we can always choose 0 < o < 7. But then
a, (8 are uniquely determined by the equation 148 — a? = —d(A). So o(A) is unique
up to isometry. ]

The proof of Lemma 2.2 provides an algorithm, given the Gram matrix of A,
to calculate a Gram matrix of o(A). As an example, we calculate that the Gram
matrix of o(II) is

H E
(2) H[1d 7
E|7 2

where II is the lattice in (1), with fixed primitive embedding K14 = (h?,T) — II.
Now, for any rank 3 cubic fourfold lattice A with a fixed choice of primitive
embedding K14 — A as in Lemma 2.2, consider the moduli space Ky () of o(A)-
polarized K3 surfaces and the forgetful morphism K,x) — K14, whose image is a
divisor Ki;(a)) C Ki4. For any A-polarized cubic fourfold X, the fixed primitive
embedding K14 < A determines a discriminant 14 marking of X, which induces
an associated polarized K3 surface (S, H) of discriminant 14 admitting a o(A)-
polarization by Lemma 2.2. We recall that for discriminant 14, there is a unique
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choice of open immersion Cg,, < K4, see [19, §6]. Then following Hassett [19,
§5.2], we have the following.

Proposition 2.3. Let A be a rank 3 cubic fourfold lattice with a fized primitive
embedding K14 — A preserving h>. Then there exists an open immersion Cp —
Koy of moduli spaces and a commutative diagram

CK14Cﬁ IC14

f !

CA—— Ko (a)

where the vertical arrows are the forgetful maps and the top horizontal arrow is the
(unique choice of ) open immersion constructed by Hassett.

3. CUBIC FOURFOLD LATTICE NORMAL FORMS

This section is devoted to establishing normal forms for cubic fourfold lattices
of rank 3 with a discriminant 14 marking and their associated K3 surface Picard
lattices.

Proposition 3.1. Let A be a rank 3 cubic fourfold lattice with a fized primitive
embedding of K14 preserving h?. Then there exists a basis h?, T, J of A with respect
to which A has Gra