FAILURE OF THE LOCAL-GLOBAL PRINCIPLE FOR ISOTROPY OF QUADRATIC FORMS OVER RATIONAL FUNCTION FIELDS

ASHER AUEL AND V. SURESH

ABSTRACT. We prove the failure of the local-global principle, with respect to all discrete valuations, for isotropy of quadratic forms of dimension 2^n over a rational function field of transcendence degree n over \mathbb{C} . Our construction involves the generalized Kummer varieties considered by Borcea [6] and Cynk and Hulek [11].

INTRODUCTION

The Hasse-Minkowski theorem states that if a quadratic form q over a number field is isotropic over every completion, then q is isotropic. This is the first, and most famous, instance of the *local-global principle* for isotropy of quadratic forms. Already for a rational function field in one variable over a number field, Witt [20] found examples of the failure of the local-global principle for isotropy of quadratic forms in dimension 3 (and also 4). Lind [17] and Reichardt [18], and later Cassels [7], found examples of failure of the local-global principle for isotropy of pairs of quadratic forms of dimension 4 over \mathbb{Q} (see [1] for a detailed account), giving examples of quadratic forms over $\mathbb{Q}(t)$ by an application of the Amer-Brumer theorem [2], [13, Thm. 17.14]. Cassels, Ellison, and Pfister [8] found examples of dimension 4 over a rational function field in two variables over the real numbers.

Here, we are interested in the failure of the local-global principle for isotropy of quadratic forms over function fields of higher transcendence degree over algebraically closed fields. All our fields will be assumed to be of characteristic $\neq 2$ and all our quadratic forms nondegenerate. Recall that a quadratic form is isotropic if it admits a nontrivial zero. If K is a field and v is a discrete valuation on K, we denote by K_v the fraction field of the completion (with respect to the v-adic topology) of the valuation ring of v. When we speak of the local-global principle for isotropy of quadratic forms, sometimes referred to as the Strong Hasse Principle, in a given dimension d over a given field K, we mean the following statement:

If q is a quadratic form in d variables over K and q is isotropic over K_v

for every discrete valuation v on K, then q is isotropic over K.

Our main result is the following.

Theorem 1. Fix any $n \ge 2$. The local-global principle for isotropy of quadratic forms fails to hold in dimension 2^n over the rational function field $\mathbb{C}(x_1, \ldots, x_n)$.

Previously, only the case of n = 2 was known, with the first known explicit examples appearing in [15], and later in [5] and [14]. For a construction, using algebraic geometry, over any transcendence degree 2 function field over an algebraically closed field of characteristic 0, see [3], [4, §6]. This later result motivates the following.

Date: September 12, 2017.

Conjecture 2. Let K be a finitely generated field of transcendence degree $n \ge 2$ over an algebraically closed field k of characteristic $\ne 2$. Then the local-global principle for isotropy of quadratic forms fails to hold in dimension 2^n over K.

We recall that by Tsen-Lang theory [16, Theorem 6], such a function field is a C_n -field, hence has *u*-invariant 2^n , and thus all quadratic forms of dimension $> 2^n$ are already isotropic. An approach to Conjecture 2, along the lines of the proof in the n = 2 case given in [4, Cor. 6.5], is outlined in Section 4.

Finally, we point out that in the n = 1 case, with K = k(X) for a smooth projective curve X over an algebraically closed field k, the local-global principle for isotropy of binary quadratic forms (equivalent to the "global square theorem") holds when X has genus 0 and fails for X of positive genus.

We would like to thank the organizers of the summer school ALGAR: Quadratic forms and local-global principles, at the University of Antwerp, Belgium, July 3–7, 2017, where the authors obtained this result. We would also like to thank Jean-Louis Colliot-Thélène, David Leep, and Parimala for helpful discussions. The first author received partial support from NSA Young Investigator grant H98230-16-1-0321; the second author from National Science Foundation grant DMS-1463882.

1. Hyperbolicity over a quadratic extension

Let K be a field of characteristic $\neq 2$. We will need the following result about isotropy of quadratic forms, generalizing a well-known result in the dimension 4 case, see [19, Ch. 2, Lemma 14.2].

Proposition 1.1. Let n > 0 be divisible by four, q a quadratic form of dimension n and discriminant d defined over K, and $L = K(\sqrt{d})$. If q is hyperbolic over L then q is isotropic over K.

Proof. If $d \in K^{\times 2}$, then $K = K(\sqrt{d})$ and hence q is hyperbolic over K. Suppose $d \notin K^{\times 2}$ and q is anisotropic. Since q_L is hyperbolic, $q \simeq < 1, -d > \otimes q_1$ for some quadratic form q_1 over K, see [19, Ch. 2, Theorem 5.3]. Since the dimension of q is divisible by four, the dimension of q_1 is divisible by two, and a computation of the discriminant shows that $d \in K^{\times 2}$, which is a contradiction.

For $n \geq 1$ and $a_1, \ldots, a_n \in K^{\times}$, recall the *n*-fold Pfister form

$$\ll a_1, \ldots, a_n \gg = <1, -a_1 > \otimes \cdots \otimes <1, -a_n >$$

and the associated symbol $(a_1) \cdots (a_n)$ in the Galois cohomology group $H^n(K, \mu_2^{\otimes n})$. Then $\ll a_1, \ldots, a_n \gg$ is hyperbolic if and only if $\ll a_1, \ldots, a_n \gg$ is isotropic if and only if $(a_1) \cdots (a_n)$ is trivial.

For $d \in K^{\times}$ and $n \geq 2$, we will consider quadratic forms of discriminant d related to n-fold Pfister forms, as follows. Write $\ll a_1, \ldots, a_n \gg as q_0 \perp < (-1)^n a_1 \ldots a_n >$, then define $\ll a_1, \ldots, a_n; d \gg = q_0 \perp < (-1)^n a_1 \ldots a_n d >$. For example:

$$\begin{aligned} \ll a,b;d \gg &= <1,-a,-b,abd > \\ \ll a,b,c;d \gg &= <1,-a,-b,-c,ab,ac,bc,-abcd > \end{aligned}$$

for n = 2 and n = 3, respectively. We remark that every quadratic form of dimension 4 is similar to one of this type. If $q = \ll a_1, \ldots, a_n; d \gg$, we note that, in view of Proposition 1.1 and the fact that q_L is a Pfister form over $L = K(\sqrt{d})$, we have that q is isotropic if and only if q_L is isotropic, generalizing a well-known result about quadratic forms of dimension 4, see [19, Ch. 2, Lemma 14.2].

2. Generalized Kummer varieties

In this section, we review a construction, considered in the context of modular Calabi–Yau varieties [11, §2] and [12], of a generalized Kummer variety attached to a product of elliptic curves. This recovers, in dimension 2, the Kummer K3 surface associated to a decomposable abelian surface, and in dimension 3, a class of Calabi–Yau threefolds of CM type considered by Borcea [6, §3].

Let E_1, \ldots, E_n be elliptic curves over an algebraically closed field k of characteristic $\neq 2$ and let $Y = E_1 \times \cdots \times E_n$. Let σ_i denote the negation automorphism on E_i and $E_i \to \mathbb{P}^1$ the associated quotient branched double cover. We lift each σ_i to an automorphism of Y; the subgroup $G \subset \operatorname{Aut}(Y)$ they generate is an elementary abelian 2-group. Consider the exact sequence of abelian groups

$$1 \to H \to G \xrightarrow{\Pi} \mathbb{Z}/2 \to 0,$$

where Π is defined by sending each σ_i to 1. Then the product of the double covers $Y \to \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ is the quotient by G and we denote by $Y \to X$ the quotient by the subgroup H. Then the intermediate quotient $X \to \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ is a double cover, branched over a reducible divisor of type $(4, \ldots, 4)$.

We point out that X is a singular degeneration of smooth Calabi–Yau varieties that also admits a smooth Calabi–Yau model, see [11, Cor. 2.3]. For n = 2, the minimal resolution of X is isomorphic to the Kummer K3 surface Kum $(E_1 \times E_2)$.

Given nontrivial classes $\gamma_i \in H^1_{\text{ét}}(E_i, \mu_2)$, we consider the cup product

$$\gamma = \gamma_1 \cdots \gamma_n \in H^n_{\text{\'et}}(Y, \mu_2^{\otimes n})$$

and its restriction to the generic point of Y, which is a class in the unramified part $H^n_{\mathrm{nr}}(k(Y)/k, \mu_2^{\otimes n})$ of the Galois cohomology group $H^n(k(Y), \mu_2^{\otimes n})$ of the function field k(Y) of Y (see [9] for background on the unramified cohomology groups). These classes have been studied in [10]. We remark that γ is in the image of the restriction map $H^n(k(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1), \mu_2^{\otimes n}) \to H^n(k(Y), \mu_2^{\otimes n})$ in Galois cohomology since each γ_i is in the image of the restriction map $H^1(k(\mathbb{P}^1, \mu_2)) \to H^1(k(\mathbb{P}^1), \mu_2)$.

We make this more explicit as follows. For each double cover $E_i \to \mathbb{P}^1$, we choose a Weierstrass equation in Legendre form

(1)
$$y_i^2 = x_i(x_i - 1)(x_i - \lambda_i)$$

where x_i is a coordinate on \mathbb{P}^1 and $\lambda_i \in k \setminus \{0, 1\}$. Then the branched double cover $X \to \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ is birationally defined by the equation

(2)
$$y^{2} = \prod_{i=1}^{n} x_{i}(x_{i}-1)(x_{i}-\lambda_{i}) = f(x_{1},\dots,x_{n})$$

where $y = y_1 \cdots y_n$ in $\mathbb{C}(Y)$. Up to an automorphism, we can even choose the Legendre forms so that the image of γ_i under $H^1_{\text{ét}}(E, \mu_2) \to H^1(k(E), \mu_2)$ coincides with the square class (x_i) of the function x_i , which clearly comes from $k(\mathbb{P}^1)$.

The main result of this section is that the class γ considered above is already unramified over k(X). We prove a more general result.

Proposition 2.1. Let k be an algebraically closed field of characteristic $\neq 2$ and $K = k(x_1, \ldots, x_n)$ a rational function field over k. For $1 \leq i \leq n$, let $f_i(x_i) \in k[x_i]$ be polynomials of even degree satisfying $f_i(0) \neq 0$, and let $f = \prod_{i=1}^n x_i f(x_i)$. Then the restriction of the class $\xi = (x_1) \cdots (x_n) \in H^n(K, \mu_2^{\otimes n})$ to $H^n(K(\sqrt{f}), \mu_2^{\otimes n})$ is unramified with respect to all discrete valuations.

Proof. Let $L = K(\sqrt{f})$ and v a discrete valuation on L with valuation ring \mathcal{O}_v , maximal ideal \mathfrak{m}_v , and residue field k(v).

Suppose $v(x_i) < 0$ for some *i*. Let d_i be the degree of f_i and consider the reciprocal polynomial $f_i^*(x_i) = x_i^{d_i} f_i(\frac{1}{x_i})$, so that $x_i f_i(x_i) = x^{d_i+2} \cdot \frac{1}{x_i} f_i^*(\frac{1}{x_i})$. Since d_i is even, we have that the polynomials $x_i f_i(x_i)$ and $\frac{1}{x_i} f_i^*(\frac{1}{x_i})$ have the same class in $K^{\times}/K^{\times 2}$.

Thus, up to replacing, for all i with $v(x_i) < 0$, the polynomial f_i by f_i^* in the definition of f and replacing x_i by $\frac{1}{x_i}$, we can assume that $v(x_i) \ge 0$ for all i without changing the extension L/K. Hence $k[x_1, \ldots, x_n] \subset \mathcal{O}_v$.

Let $\mathfrak{p} = k[x_1, \ldots, x_n] \cap \mathfrak{m}_v$. Then \mathfrak{p} is a prime ideal of $k[x_1, \ldots, x_n]$ whose residue field is a subfield of k(v). Let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p} and L_v the completion of L at v. Then $K_{\mathfrak{p}}$ is a subfield of L_v .

If $v(x_i) = 0$ for all *i*, then ξ is unramified at *v*. Suppose that $v(x_i) \neq 0$ for some *i*. By reindexing x_1, \ldots, x_n , we assume that there exists $m \ge 1$ such that $v(x_i) > 0$ for $1 \le i \le m$ and $v(x_i) = 0$ for $m+1 \le i \le n$, i.e., $x_1, \ldots, x_m \in \mathfrak{p}$ and $x_{m+1}, \ldots, x_n \notin \mathfrak{p}$. In particular, the transcendence degree of $k(\mathfrak{p})$ over *k* is at most n-m.

First, suppose $f_i(x_i) \in \mathfrak{p}$ for some $m + 1 \leq i \leq n$. Since $f_i(x_i)$ is a product of linear factors in $k[x_i]$, we have that $x_i - a_i \in \mathfrak{p}$ for some $a_i \in k$, with $a_i \neq 0$ since $f_i(0) \neq 0$. Thus the image of x_i in $k(\mathfrak{p})$ is equal to a_i and hence a square in $K_{\mathfrak{p}}$. In particular, x_i is a square in L_v , thus ξ is trivial (hence unramified) at v.

Now, suppose that $f_i(x_i) \notin \mathfrak{p}$ for all $m+1 \leq i \leq n$. Then for each $1 \leq i \leq m$, we see that since $x_i \in \mathfrak{p}$ and $f_i(0) \neq 0$, we have $f_i(x_i) \notin \mathfrak{p}$. Consequently, we can assume that $f = x_1 \cdots x_m u$ for some $u \in k[x_1, \ldots, x_n] \setminus \mathfrak{p}$.

Computing with symbols, we have

$$(x_1)\cdots(x_m)=(x_1)\cdots(x_{m-1})\cdot(x_1\cdots x_m)\in H^m(K,\mu_2^{\otimes m}).$$

By definition, $f = x_1 \cdots x_m u$ is a square in L, and thus we have that

$$(x_1)\cdots(x_m) = (x_1)\cdots(x_{m-1})\cdot(u) \in H^m(L,\mu_2)$$

Thus it is enough to show that $(x_1) \cdots (x_{m-1}) \cdot (u) \cdot (x_{m+1}) \cdots (x_n)$ is unramified at v. Let $\partial_v : H^n(L, \mu_2^{\otimes n}) \to H^{n-1}(k(v), \mu_2^{\otimes n-1})$ be the residue homomorphism at v. Since x_i , for all $m+1 \leq i \leq n$, and u are units at v, we have

$$\partial_{v}((x_{1})\cdots(x_{m-1})\cdot(u)\cdot(x_{m+1})\cdots(x_{n})) = \alpha\cdot(\overline{u})\cdot(\overline{x}_{m+1})\cdots(\overline{x}_{n})$$

for some $\alpha \in H^{m-2}(k(v), \mu_2^{m-2})$, where for any $h \in k[x_1, \ldots, x_n]$, we write \overline{h} for the image of h in $k(\mathfrak{p})$. Since the transcendence degree of $\kappa(\mathfrak{p})$ over k is at most n-m and k is algebraically closed, we have that $H^{n-m+1}(\kappa(\mathfrak{p}), \mu_2^{\otimes n-m+1}) = 0$. Since $\overline{u}, \overline{x}_i \in \kappa(\mathfrak{p})$, we have $(\overline{u}) \cdot (\overline{x}_{m+1}) \cdots (\overline{x}_n) = 0$. In particular $\partial_v(\xi) = 0$. Finally, the class ξ is unramified at all discrete valuations on L.

As an immediate consequence, we have the following.

Proposition 2.2. Let E_1, \ldots, E_n be elliptic curves over an algebraically closed field k of characteristic $\neq 2$, given in the Legendre form (1), with $K = k(x_1, \ldots, x_n)$. Then the restriction of the class $\gamma = (x_1) \cdots (x_n)$ in $H^n(K, \mu_2^{\otimes n})$ to $H^n(k(X), \mu_2^{\otimes n})$ is unramified at all discrete valuations.

Finally, we will need the fact, proved in the appendix by Gabber to the article [10], that if $k = \mathbb{C}$ and the *j*-invariants $j(E_1), \ldots, j(E_n)$ are algebraically independent, then any cup product class $\gamma = \gamma_1 \cdots \gamma_n \in H^n(\mathbb{C}(Y), \mu_2^{\otimes n})$, with $\gamma_i \in H^1(\mathbb{C}(E_i), \mu_2)$ nontrivial as considered above, is itself nontrivial.

3. Failure of the local global principle

Given elliptic curves E_1, \ldots, E_n defined over \mathbb{C} with algebraically independent *j*-invariants, presented in Legendre form (1), and $X \to \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ the double cover defined by $y^2 = f(x_1, \ldots, x_n)$ in (2), we consider the quadratic form

$$q = \ll x_1, \dots, x_n; f \gg$$

over $\mathbb{C}(\mathbb{P}^1 \times \cdots \times \mathbb{P}^1) = \mathbb{C}(x_1, \ldots, x_n)$, as in Section 1.

Our main result is that q shows the failure of the local-global principle for isotropy, with respect to all discrete valuations, for quadratic forms of dimension 2^n over $\mathbb{C}(x_1, \ldots, x_n)$, thereby proving Theorem 1.

Theorem 3.1. The quadratic form $q = \ll x_1, \ldots, x_n$; $f \gg is$ anisotropic over $\mathbb{C}(x_1, \ldots, x_n)$ yet is isotropic over the completion at every discrete valuation.

Proof. Let $K = \mathbb{C}(x_1, \ldots, x_n)$ and $L = K(\sqrt{f}) = \mathbb{C}(X)$. Let v be a discrete valuation of K and w an extension to L, with completions K_v and L_w and residue fields $\kappa(v)$ and $\kappa(w)$, respectively. We note that $\kappa(v)$ and $\kappa(w)$ have transcendence degree $0 \le i \le n - 1$ over \mathbb{C} . By Proposition 1.1, we have that $q \otimes_K K_v$ is isotropic if and only if $q \otimes_K L_w$ is isotropic.

By Proposition 2.2, the restriction $(x_1) \cdots (x_n) \in H^n(L, \mu_2^{\otimes n})$ is unramified at w, hence $q \otimes_K L = \ll x_1, \ldots, x_n \gg$ is an *n*-fold Pfister form over L unramified at w. Thus the first residue form for $q \otimes_K L$, with respect to the valuation w, is isotropic since the residue field $\kappa(w)$ is a C_i -field and q has dimension $2^n > 2^i$. Consequently, by a theorem of Springer [19, Ch. 6, Cor. 2.6], $q \otimes_K L$, and thus q, is isotropic.

Finally, q is anisotropic since the symbol $(x_1) \cdots (x_n)$ is nontrivial when restricted to $\mathbb{C}(Y)$ by [10, Appendice], hence is nontrivial when restricted to $\mathbb{C}(X)$.

To give an explicit example, let $\lambda, \kappa, \nu \in \mathbb{C} \setminus \{0, 1\}$ be algebraically independent complex numbers. Then over the function field $K = \mathbb{C}(x, y, z)$, the quadratic form

$$q = <1, x, y, z, xy, xz, yz, (x-1)(y-1)(z-1)(x-\lambda)(y-\kappa)(z-\nu) >$$

is isotropic over every completion K_v associated to a discrete valuation v of K, and yet q is anisotropic over K.

4. Over general function fields

We have exhibited locally isotropic but globally anisotropic quadratic forms of dimension 2^n over the rational function field $\mathbb{C}(x_1, \ldots, x_n)$. In [4, Cor. 6.5], we proved that locally isotropic but anisotropic quadratic forms of dimension 4 exist over any function field of transcendence degree 2 over an algebraically closed field of characteristic zero. Taking these as motivation, we recall Conjecture 2, that over any function field of transcendence degree $n \ge 2$ over an algebraically closed field of characteristic $\neq 2$, there exist locally isotropic but anisotropic but anisotropic quadratic forms of dimension 2^n . In this section, we provide a possible approach to Conjecture 2, motivated by the geometric realization result in [4, Proposition 6.4].

Proposition 4.1. Let K = k(X) be the function field of a smooth projective variety X of dimension $n \ge 2$ over an algebraically closed field k of characteristic $\ne 2$. If either $H_{nr}^n(K/k, \mu_2^{\otimes n}) \ne 0$ or $H_{nr}^n(L/k, \mu_2^{\otimes n}) \ne 0$ for some separable quadratic extension L/K, then there exists an anisotropic quadratic form of dimension 2^n over K that is isotropic over the completion at every discrete valuation.

Proof. First, by a standard application of the Milnor conjectures, every element in $H^n(K, \mu_2^{\otimes n})$ is a symbol since K is a C_n -field. If $H^n_{nr}(K/k, \mu_2^{\otimes n}) \neq 0$, then taking a nontrivial element $(a_1) \cdots (a_n)$, the n-fold Pfister form $\ll a_1, \ldots, a_n \gg$ is locally isotropic (by the same argument as in the proof of Theorem 3.1) but is anisotropic, giving an example. So we can assume that $H^n_{nr}(K/k, \mu_2^{\otimes n}) = 0$.

Now assume that $H_{\mathrm{nr}}^n(L/k,\mu_2^{\otimes n}) \neq 0$ for some separable quadratic extension $L = K(\sqrt{d})$ of K. Then taking a nontrivial element $(a_1)\cdots(a_n)$, the corestriction map $H_{\mathrm{nr}}^n(L/k,\mu_2^{\otimes n}) \to H_{\mathrm{nr}}^n(K/k,\mu_2^{\otimes n}) = 0$ is trivial, so by the restriction-corestriction sequence for Galois cohomology, we have that $(a_1)\cdots(a_n)$ is in the image of the restriction map $H_{\mathrm{nr}}^n(K/k,\mu_2^{\otimes n}) \to H_{\mathrm{nr}}^n(L/k,\mu_2^{\otimes n}) = 0$, in which case we can assume that $a_1,\ldots,a_n \in K^{\times}$. Then the quadratic form $\ll a_1,\ldots,a_n; d \gg$ is locally isotropic over K (by the same argument as in the proof of Theorem 3.1) but globally anisotropic.

Hence we are naturally led to the following geometric realization conjecture for unramified cohomology classes.

Conjecture 4.2. Let K be a finitely generated field of transcendence degree n over an algebraically closed field k of characteristic $\neq 2$. Then either $H^n_{nr}(K/k, \mu_2^{\otimes n}) \neq 0$ or their exists a quadratic extension L/K such that $H^n_{nr}(L/k, \mu_2^{\otimes n}) \neq 0$.

Proposition 4.1 says that the geometric realization Conjecture 4.2 implies Conjecture 2 on the failure of the local-global principle for isotropy of quadratic forms. Proposition 2.2 establishes the conjecture in the case when K is purely transcendental over k; in [4, Proposition 6.4], we established the conjecture in dimension 2 and characteristic 0, specifically, that given any smooth projective surface S over an algebraically closed field of characteristic zero, there exists a double cover $T \to S$ with T smooth and $H^2_{nr}(k(T)/k, \mu_2^{\otimes 2}) = Br(T)[2] \neq 0$. In this latter case, Proposition 4.1 gives a different proof, than the one presented in [4, §6], that there exist locally isotropic but anisotropic quadratic forms of dimension 4 over K = k(S).

References

- W. Aitken and F. Lemmermeyer, Counterexamples to the Hasse principle, Amer. Math. Monthly 118 (2011), no. 7, 610–628.
- [2] D. Leep, The Amer-Brumer theorem over arbitrary fields, preprint, 2007. 1
- [3] A. Auel, Failure of the local-global principle for isotropy of quadratic forms over surfaces, Oberwolfach Reports 10 (2013), issue 2, report 31, 1823–1825.
- [4] A. Auel, R. Parimala, and V. Suresh, Quadric surface bundles over surfaces, Doc. Math., Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday (2015), 31–70. 1, 2, 5, 6
- [5] A. Bevelacqua, Four dimensional quadratic forms over F(X) where $I_t F(X) = 0$ and a failure of the strong Hasse principle, Commun. Algebra **32** (2004), no. 3, 855–877. 1
- [6] C. Borcea, Calabi-Yau threefolds and complex multiplication, Essays on Mirror Manifolds, Int. Press, Hong Kong, 1992, 489–502 1, 3
- [7] J. W. S. Cassels, Arithmetic on Curves of Genus 1 (V). Two Counter-Examples, J. London Math. Soc. 38 (1963), 244–248. 1
- [8] J. W. S. Cassels, W. J. Ellison, and A. Pfister, On sums of squares and on elliptic curves over function fields, J. Number Theory 3 (1971), 125–149. 1
- [9] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Amer. Math. Soc., Proc. Sympos. Pure Math. 58 (1995), 1–64. 3
- [10] J.-L. Colliot-Thélène, Exposant et indice d'algèbres simples centrales non ramifiées, with an appendix by O. Gabber, Enseign. Math. (2) 48 (2002), no. 1–2, 127–146. 3, 4, 5

- S. Cynk and K. Hulek, *Higher-dimensional modular CalabiYau manifolds*, Canad. Math. Bull. 50 (2007), no. 4, 486–503. 1, 3
- [12] S. Cynk and M. Schütt, Generalised Kummer constructions and Weil restrictions, J. Number Theor. 129 (2009), no. 8, 1965–1975. 3
- [13] R. Elman, N. Karpenko, and A. Merkurjev, *The algebraic and geometric theory of quadratic forms*, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008. 1
- [14] P. Jaworski, On the strong Hasse principle for fields of quotients of power series rings in two variables, Math. Z. 236 (2001), no. 3, 531–566. 1
- [15] K. H. Kim and W. Roush, Quadratic forms over $\mathbb{C}[t_1, t_2]$, J. Algebra **140** (1991), no. 1, 65–82. 1
- [16] S. Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373–390. 2
- [17] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Dissertation, University Uppsala, 1940. 1
- [18] H. Reichardt, Einige im Kleinen überall lösbare, im Großen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12–18. 1
- [19] W. Scharlau, Quadratic and Hermitian forms, Spring-Verlag, Berlin, 1985. 2, 5
- [20] E. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Zeitsch. 39 (1934), 462–467. 1

 $\label{eq:Asher Auel, Department of Mathematics, Yale University, New Haven, Connecticut \\ E-mail \ address: \verb"asher.auel@yale.edu" \\ \end{tabular}$

V. SURESH, DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE, EMORY UNIVERSITY, ATLANTA, GEORGIA *E-mail address:* suresh.venapally@emory.edu