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Abstract. We construct new examples of exceptional collections of line bundles on
the variety of Borel subgroups of a split semisimple linear algebraic group G of rank

2 over a field. We exhibit exceptional collections of the expected length for types A2

and B2 = C2 and prove that no such collection exists for type G2. This settles the
question of the existence of full exceptional collections of line bundles on projective

homogeneous G-varieties for split linear algebraic groups G of rank at most 2.
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Introduction

The existence question for full exceptional collections in the bounded derived category
of coherent sheaves Db(X) of a smooth projective variety X goes back to the foundational
results of Bĕılinson [Bĕı78], [Bĕı84] and Bernštĕın–Gelfand–Gelfand [BGG78] for X = Pn.
The works of Kapranov [Kap83], [Kap84], [Kap86], [Kap88] suggested that the structure
of projective homogeneous variety on X should imply the existence of full exceptional
collections.

Conjecture. Let X be a projective homogeneous variety of a split semisimple linear al-
gebraic group G over a field of characteristic zero. Then there exists a full exceptional
collection of vector bundles in Db(X).
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This conjecture remains largely unsolved; see [KP11, §1.1] for a recent survey of known
results. The bounded derived category Db(X) has come to be understood as a homological
replacement for the varietyX; exceptional collections provide a way to break up Db(X) into
simple components. Such decompositions of the derived category can be seen as analogous
to decompositions of the motive of X, a relationship that has been put into a conjectural
framework by Orlov [Orl05]. As an example, the existence of a full exceptional collection
implies a splitting of the Chow motive M(X)Q into tensor powers of Lefschetz motives
(see [MM12]); this motivic decomposition is already known for projective homogeneous
varieties of split linear algebraic groups (see [Köc91]).

Let X be a variety over a field k. An object E of Db(X) is called exceptional if
Ext∗(E,E) = k, cf. [GR87, Def. 1.1], [Bon89, §2]. Let W be a finite set and let P be a
partial order on W . An ordered set (with respect to P) of exceptional objects {Ew}w∈W
in Db(X) is called a P-exceptional collection if

Ext∗(Ew, Ew′) = 0 for all w <P w
′.

If P is a total order, then a P-exceptional collection is simply called an exceptional col-
lection. A P-exceptional collection {Ew}w∈W is called full if the smallest triangulated
category containing {Ew}w∈W is Db(X) itself. Finally, a P-exceptional collection of vec-
tor bundles {Ew}w∈W is said to be of the expected length if the classes {[Ew]}w∈W form a
generating set of K0(X) of minimal cardinality. If K0(X) is a free abelian group (which
is the case for all projective homogeneous varieties), then an exceptional collection is of
the expected length if and only if its cardinality is the rank of K0(X). Note that any full
P-exceptional collection of vector bundles is of the expected length. It is expected that
the converse holds [Kuz09, Conj. 9.1] for exceptional collections.

In the present paper we address the following closely related question:

Question. Let X be the variety of Borel subgroups of a split semisimple linear algebraic
group G and fix a partial order P on the Weyl group W of G. Does Db(X) have a P-
exceptional collection of the expected length consisting of line bundles?

We remark that the conjecture is resolved for the varieties of Borel subgroups of split
groups of classical type (see [Sam07]) and type G2. On the one hand, the question strength-
ens the conjecture by requiring the collection to consist of line bundles. On the other hand,
it weakens the conjecture by allowing partial orders (such as the weak or strong Bruhat
orders) instead of a total order and allowing the collection to merely generate K0(X).
Partially ordered exceptional collections of vector bundles are considered in [Böh06]; also
see [Kan09] for an alternate approach using Frobenius splitting in finite characteristic.

So far, a natural way to propagate known exceptional collections of line bundles is to use
the result of Orlov [Orl93, Cor. 2.7], that Db(X) has a full exceptional collection of line bun-
dles if there exists a (Zariski locally trivial) projective bundle X → Y such that Db(Y ) has
a full exceptional collection of line bundles. More generally, Db(X) has a full exceptional
collection of line bundles if X is the total space of a smooth Zariski locally trivial fibration,
whose fiber and base both have derived categories with full exceptional collections of line
bundles (see [CRM11]). We remark that the result of Orlov on semiorthogonal decom-
positions of projective bundles (hence that of Bĕılinson and Bernštĕın–Gelfand–Gelfand
on Pn) holds over an arbitrary noetherian base scheme, see Walter [Wal03, §11]. Using
such techniques, one immediately answers the question positively for all projective homo-
geneous varieties X for split semisimple groups of rank 2, except in the following cases:
type B2 = C2 and X a 3-dimensional quadric; and type G2 and all X. These exceptions
can be viewed as key motivating examples for this paper.
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It is not necessarily expected that a full P-exceptional collection of line bundles of the
expected length exists for every projective homogeneous variety. For instance, certain
Grassmannians of type An have full exceptional collections of vector bundles, but not of
line bundles. This distinction is highlighted in [CRM11, Problem 1.2] and [Sam07, Rem. 1].
The nonexistence of full exceptional collections of line bundles has also been considered
in the context of providing counterexamples to King’s conjecture, see [HP06], [HP11].
Observe that if K0(X) is not generated by line bundles, then Db(X) cannot possess a P-
exceptional collection of the expected length consisting of line bundles for obvious reasons.
For certain minimal projective homogeneous varieties, we prove such nongeneration by line
bundles results for K0 in Propositions 4.2 and 4.4. For Borel varieties X = G/B, however,
this observation does not help, as K0(X) is always generated by line bundles. Finally,
P-exceptional collections may exist, while exceptional collections may not.

We will now outline our main results. The paper consists of two parts. In Part I,
using K0 techniques, we introduce a new purely combinatorial algorithm for constructing
P-exceptional collections of line bundles based on a different description of the Steinberg
basis [Ste75] obtained in [Ana12]. We apply it to show the following:

A. Theorem. Let X be the variety of Borel subgroups of a split semisimple linear algebraic
group G of rank 2 over a field of characteristic zero. Then Db(X) has a P-exceptional
collection of the expected length consisting of line bundles, for P a partial order isomorphic
to the left weak Bruhat order on the Weyl group of G.

For example, Db(X) possesses such a P-exceptional collection of line bundles for the
variety X of Borel subgroups of split groups of type B2 = C2 and G2.

In §4, using combinatorial and geometric arguments we settle the question of the exis-
tence of full exceptional collections of line bundles on projective homogeneous G-varieties
for every split semisimple G of rank ≤ 2 over an arbitrary field. The crux case here is that
of type G2, to which the entirety of Part II is devoted:

B. Theorem. None of the three non-trivial projective homogeneous varieties of a simple
algebraic group of type G2 have an exceptional collection of the expected length consisting
of line bundles.
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Part I. Preliminaries and existence results

1. Weights and line bundles

In the present section we recall several basic facts concerning root systems, weights,
associated line bundles, and the Grothendieck group K0; see [Bou05], [Dem74], [FH91],
[Pan94].

1.1. Let G be a split simple simply connected linear algebraic group of rank n over a field
k. We fix a split maximal torus T and a Borel subgroup B such that T ⊂ B ⊂ G.
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Let Λ be the weight lattice of the root system Φ of G. Observe that Λ is the group of
characters of T . Let Π = {α1, . . . , αn} be a set of simple roots and let {ω1, . . . , ωn} be the
respective set of fundamental weights (a basis of Λ), i.e., α∨i (ωj) = δij . Let Φ+ denote the
set of all positive roots and let Λ+ denote the cone of dominant weights.

1.2. Consider the integral group ring Z[Λ]; its elements are finite linear combinations∑
i aie

λi , λi ∈ Λ, ai ∈ Z. Observe that Z[Λ] can be identified with the representation
ring of T . Let X = G/B denote the variety of Borel subgroups of G, i.e., the variety of
subgroups conjugate to B.

Consider the characteristic map for K0,

c : Z[Λ]→ K0(X)

defined by sending eλ to the class of the associated homogeneous line bundle L (λ) over
X; see [Dem74, §2.8]. It is a surjective ring homomorphism with kernel generated by aug-
mented invariants. More precisely, if Z[Λ]W denotes the subring of W -invariant elements
and ε : Z[Λ] → Z, eλ 7→ 1 is the augmentation map, then ker c is generated by elements
x ∈ Z[Λ]W such that ε(x) = 0. In particular, the Picard group Pic(X) coincides with the
set of homogeneous line bundles {L (λ)}λ∈Λ.

1.3. The Weyl group W acts linearly on Λ via simple reflections si as

si(λ) = λ− α∨i (λ)αi, λ ∈ Λ.

Let ρ denote the half-sum of all positive roots; it is also the sum of the fundamental weights
[Bou02, VI.1.10, Prop. 29].

Following [Ana12], for each w ∈W consider the cones Λ+ and w−1Λ+. Let Hα denote
the hyperplane orthogonal to a positive root α ∈ Φ+. We say that Hα separates Λ+ and
w−1Λ+ if

Λ+ ⊂ {λ ∈ Λ | α∨(λ) ≥ 0} and w−1Λ+ ⊂ {λ ∈ Λ |α∨(λ) ≤ 0}.
or, equivalently, if α∨(w−1ρ) < 0. Let Hw denote the union of all such hyperplanes, i.e.,

Hw =
⋃

α∨(w−1ρ)<0

Hα.

Consider the set Aw = w−1Λ+ \Hw consisting of weights λ ∈ w−1Λ+ separated from Λ+

by the same set of hyperplanes as w−1ρ. By [Ana12, Lem. 6] there is a unique element
λw ∈ Aw such that for each µ ∈ Aw we have µ− λw ∈ w−1Λ+. In fact, the set Aw can be
viewed as a cone w−1Λ+ shifted to the vertex λw.

1.4. Example. In particular, for the identity 1 ∈ W we have λ1 = 0. Let w = sj be a
simple reflection, then

w−1Λ+ = N0sj(ωj)⊕
⊕
i 6=j

N0ωi = N0(ωj − αj)⊕
⊕
i6=j

N0ωi

and Aw = (ωj − αj) + w−1Λ+. Hence, in this case we have λw = ωj − αj .
For the longest element w0 ∈W we have λw0

= −ρ.

1.5. By [Ana12, Thm. 2], the integral group ring Z[Λ] is a free Z[Λ]W -module with the
basis {eλw}w∈W . As there is an isomorphism

Z[Λ]⊗Z[Λ]W Z = Z[Λ]/ ker c ' K0(X),

the classes of the associated homogeneous line bundles c(eλw) = [L (λw)], for w ∈ W ,
form a generating set of K0(X) of minimal cardinality.
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2. P-exceptional collections and scalar extension

In this section, we assemble some results concerning the interaction between flat base
change and semiorthogonal decompositions in order to reduce questions concerning excep-
tional collections on smooth projective varieties over k to over the algebraic closure k. If
X is a variety over k, write X for the base change X ×k k, and similarly for complexes of
sheaves on X.

Let W be an finite set and P be a partial order on W .

2.1. Proposition. Let X be a smooth projective variety over a field k and let {Ew}w∈W be
a P-ordered set of line bundles on X. Then {Ew} is a P-exceptional collection of Db(X)
if and only if {Ew} is a P-exceptional collection of Db(X). Moreover, {Ew} is full if and
only if {Ew} is full.

Proof. For any coherent sheaves E and F on X, we have Ext∗(E,F ) ⊗k k ∼= Ext∗(E,F )
by flat base change. In particular, E is an exceptional object of Db(X) if and only if E is
an exceptional object of Db(X). Also, for each w <P w

′, we have that Ext∗(Ew, Ew′) = 0
if and only if Ext∗(Ew, Ew′) = 0. Thus {Ew} is a P-exceptional collection of Db(X) if and
only if {Ew} is a P-exceptional collection of Db(X).

Suppose that {Ew} is a full P-exceptional collection of Db(X). As X is smooth, Db(X)
is equivalent to the derived category Dperf(X) of perfect complexes on X, and similarly
for X. As {Ew} are line bundles, they are perfect complexes and {Ew} is a P-exceptional
collection of Dperf(X). The main results of [Kuz11] imply that {Ew} is a full P-exceptional
collection of Dperf(X) = Db(X). Indeed, Spec k → Spec k is faithful and the proof in
[Kuz11, Prop. 5.1] immediately generalizes to the P-exceptional setting, showing that
{Ew} is a full P-exceptional collection.

Now, suppose that {Ew} is a full P-exceptional collection of Db(X). Let E be the
triangulated subcategory of Db(X) generated by the P-exceptional collection {Ew} and J
be the orthogonal complement of E, i.e., there is a semiorthogonal decomposition Db(X) =
〈E, J〉. By [Kuz08, Prop. 2.5], the projection functor Db(X) = Dperf(X) → J has finite
cohomological amplitude, hence by [Kuz11, Thm. 7.1], is isomorphic to a Fourier–Mukai
transform for some object K in Db(X×kX). However, J = 0 by assumption, hence K = 0.
This implies that K = 0, otherwise, K would have a nonzero homology group, which would
remain nonzero over k by flat base change. Thus J = 0 and so {Ew} generates Db(X). �

In this paper, we are concerned with the case where X is a projective homogeneous
variety under a linear algebraic group G that is split semisimple or has type G2. Under
this hypothesis, the pull back homomorphism K0(X)→ K0(X) is an isomorphism [Pan94].
Together with Proposition 2.1, this reduces the question of (non)existence of an exceptional
collection of expected length on X to the same question on X.

3. P-exceptional collections on Borel varieties

Consider the variety X of Borel subgroups of a split semisimple simply connected linear
algebraic group G over a field k. Let L (λ) be the homogeneous line bundle over X
associated to the weight λ. Recall that λ is singular if α∨(λ) = 0 for some root α.

3.1. Proposition. Let W be a finite set endowed with a partial order P and let {λw}w∈W
be a set of weights indexed by W . The statements:

(1) {L (λw)}w∈W is a P-exceptional collection of line bundles on the Borel variety X.
(2) λw′ − λw + ρ is a singular weight for every w<Pw

′.

are equivalent if char k = 0. If char k > 0, then (1) implies (2).
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Proof. Since X is smooth, proper, and irreducible, we have Hom(L ,L ) = k for any line
bundle L over X. Furthermore, for any weights λ, λ′, we have

(3.2) Exti(L (λ),L (λ′)) = Hi(X,L (λ)∨ ⊗L (λ′)) = Hi(X,L (λ′ − λ)).

In particular, since 0 is a dominant weight, Kempf’s vanishing theorem [Jan03, Prop. II.4.5]
implies that L (λ) is an exceptional object for every weight λ.

Equation (3.2) says that (1) is equivalent to: H∗(X,L (λw′ − λw)) = 0 for all w<Pw
′.

If char k = 0, this is equivalent to (2) by the Borel–Weil–Bott Theorem as in [FH91, p.392]
or [Jan03, II.5.5]. If char k = p > 0, then X and every line bundle L (µ) is defined over
the field Fp and can be lifted to a line bundle over Q, via a smooth projective model X →
SpecZ defined in terms of the corresponding Chevalley group schemes. Semicontinuity
of cohomology shows that Hi(X ×Z Fp,L (λw′ − λw)) = 0 implies the vanishing of the
analogous cohomology group over Q, which implies (2) by the characteristic zero case. �

In the statement of Proposition 3.1, (2) need not imply (1) if char k > 0. For example,
it fails for G = SL3 over every field of finite characteristic, see [Gri80, Cor. 5.1].

3.3. Definition. A collection of weights {λw}w∈W is called P-exceptional (resp. of the
expected length) if the corresponding collection of line bundles {L (λw)}w∈W is thus.

The proof of Theorem A consists of two steps. First, we find a maximal P-exceptional
subcollection of weights among the weights λw constructed in §1.3. This is done by direct
computations using Proposition 3.1(2). Then we modify the remaining weights to fit in
the collection, i.e., to satisfy Proposition 3.1(2) and to remain a basis. This last point is
guaranteed, since we modify the weights according to the following fact.

3.4. Lemma. Let B be a basis of Z[Λ] over Z[Λ]W and let eλ ∈ B be such that for some
W -invariant set {λ1, λ2, ..., λk} we have eλ+λi ∈ B for all i < k and eλ+λk 6∈ B. Then the
set (

B ∪ {eλ+λk}
)
r {eλ+λ1}

is also a basis of Z[Λ] over Z[Λ]W .

Proof. Indeed, there is a decomposition

eλ+λk = (eλ1 + eλ2 + · · ·+ eλk)eλ − eλ+λ1 − eλ+λ2 − · · · − eλ+λk−1

with the coefficients from Z[Λ]W and an invertible coefficient at eλ+λ1 . �

We can give a geometric description of this fact. For instance, in type B2, the rule
says that if we have a square (shifted orbit of a fundamental weight) where the center
and three vertices are the basis weights, then replacing one of these basis weights by the
missing vertex gives a basis; see Figure 1. For G2 we use a hexagon (shifted orbit of a
fundamental weight) instead of the square, where the center and all but one vertex are
the basis weights.

Proof of Theorem A. We use the following notation: a product of simple reflections w =
si1si2 · · · sik is denoted by [i1, i2, . . . , ik]; the identity is denoted by []. Given a presentation
λ = a1ω1 + · · ·+ anωn in terms of fundamental weights, we denote λ by (a1, . . . , an). We
write P for the left weak Bruhat order on the Weyl group W and remark that (at least in
rank 2) this partial order is isomorphic to its dual partial order.
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Figure 1. Example of the substitution described in §3.4 in the B2 weight
lattice. The thick points represent the basis, and the solid lines are the
walls of Weyl chambers.

Type A2: The Weyl group W of type A2 consists of the following elements:

W = {[], [1], [2], [2, 1], [1, 2], [1, 2, 1]}.

The respective basis weights {λw}w∈W of §1.3 are given by (here the i-th weight is indexed
by the i-th element of the Weyl group):

(3.5) {(0, 0), (−1, 1), (1,−1), (−1, 0), (0,−1), (−1,−1)}.

Direct computations using Proposition 3.1(2) show that {λw}w∈W is a P-exceptional col-
lection; it is of the expected length by construction.

Using Lemma 3.4, we can modify the weights {λw} to obtain the following exceptional
collection of weights (there are no Ext’s from left to the right):

(3.6) {(0, 0), (−1, 0), (−2, 0), (1,−1), (0,−1), (−1,−1)}.

Type A1 × A1: The Weyl group of type A1 × A1 is the Klein four-group; the root sys-
tem has orthogonal simple roots α1, α2 which may be taken to have square-length 2 and
equal the fundamental weights. The procedure from §1.3 gives the list of basis weights
0,−α1,−α2,−α1 − α2, which is a full exceptional collection.

Type B2 or C2: The Weyl group W consists of the following elements:

W = {[], [1], [2], [2, 1], [1, 2], [1, 2, 1], [2, 1, 2], [1, 2, 1, 2]}.

The respective basis weights {λw}w∈W of §1.3 are given by:

{(0, 0), (−1, 1), (2,−1), (−2, 1), (1,−1), (−1, 0), (0,−1), (−1,−1)}

(here ω1 = (e1 + e2)/2 and ω2 = e2). Direct computations show that {λw}w∈W is a
P-exceptional collection, except for the weight λ[2,1] = (−2, 1): indeed, the property in
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Proposition 3.1(2) fails only for the weights 0 and (−2, 1), i.e., λ[2,1] + ρ is regular or,
equivalently, [1] ∗ λ[2,1] = 0 is dominant.

We modify the basis weights using Lemma 3.4: The element e(−2,0) has the following
representation with respect to the initial basis:

e(−2,0) = (e(1,0) + e(1,−1) + e(−1,1) + e(−1,0))e(−1,0) − e(0,0) − e(−2,1) − e(0,−1)

where (e(1,0) + e(1,−1) + e(−1,1) + e(−1,0)) ∈ Z[Λ]W . Hence, we can substitute e(−2,1)

by e(−2,0). Figure 1 illustrates our arguments. Finally, after reindexing, we obtain a
P-exceptional collection of the expected length

(3.7) {(0, 0), (−1, 1), (2,−1), (−1, 0), (1,−1), (−2, 0), (0,−1), (−1,−1)}.

Repeating Lemma 3.4 we obtain the following exceptional collection of weights

(3.8) {(1, 0), (0, 0), (−1, 0), (−2, 0), (2,−1), (1,−1), (0,−1), (−1,−1)}.

Type G2: The Weyl group W of type G2 consists of the following 12 elements:

W = {[], [1], [2], [2, 1], [1, 2], [1, 2, 1], [2, 1, 2], [2, 1, 2, 1], [1, 2, 1, 2],

[1, 2, 1, 2, 1], [2, 1, 2, 1, 2], [1, 2, 1, 2, 1, 2]}.

The respective basis weights {λw}w∈W of §1.3 are given by:

{(0, 0), (−1, 1), (3,−1), (−3, 2), (2,−1), (−2, 1), (3,−2),

(−3, 1), (1,−1), (−1, 0), (0,−1), (−1,−1)}.

Using Lemma 3.4, we obtain the following P-exceptional collection of the expected length

{(0, 0), (−1, 1), (3,−1), (−3, 1), (2,−1), (−1, 0), (1,−1),(3.9)

(−2, 0), (0,−1), (−3, 0), (2,−2), (−1,−1)}.

Indeed, the difference between the initial basis and the modified one consists in the sub-
stitution of e(−3,2), e(−2,1), e(3,−2) by e(−3,0), e(−2,0), e(2,−2). We proceed in several steps
using the same reasoning as in the B2-case. Denote by

A = e(1,0) + e(2,−1) + e(1,−1) + e(−1,0) + e(−2,1) + e(−1,1),

B = e(0,1) + e(3,−1) + e(3,−2) + e(0,−1) + e(−3,1) + e(−3,2),

the sums of the elements corresponding to the orbits of the fundamental weights. Note
that A,B ∈ Z[Λ]W . We have the following decompositions with respect to the initial basis
(coefficients belong to Z[Λ]W ):

e(2,−2) = Ae(1,−1) − e(0,0) − e(2,−1) − e(3,−2) − e(0,−1) − e(−1,0),

e(−4,2) = Ae(−2,1) − e(0,0) − e(−1,0) − e(−3,1) − e(−3,2) − e(−1,1).

Hence we can substitute e(2,−2) for e(3,−2) and e(−4,2) for e(−3,2). Using the decomposition

e(−2,0) = Ae(−1,0) − e(0,0) − e(1,−1) − e(−1,0) − e(−3,1) − e(−2,1)

we substitute e(−2,0) for e(−2,1). Then, using

e(−4,1) = Be(−1,0) − e(−4,2) − e(−1,1) − e(2,−1) − e(2,−2) − e(−1,−1)

substitute e(−4,1) for e(−4,2). At last, using

e(−3,0) = Ae(−2,0) − e(−1,0) − e(0,−1) − e(−1,−1) − e(−4,1) − e(−3,1)

we substitute e(−3,0) for e(−4,1), obtaining the required basis. �
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4. Full exceptional collections of line bundles in rank ≤ 2

Let X be a projective homogeneous variety for a split semisimple linear algebraic group
G of rank ≤ 2. In this section, we provide the answer to the question:

(4.1) Does X have a full exceptional collection of line bundles?

If G has rank 2, we write X1 = G/P1 and X2 = G/P2 for the minimal projective homoge-
neous varieties corresponding to the two maximal parabolics and X = G/B for the Borel
variety. In type B2 = C2, we assume that the base field has characteristic 6= 2.

Types A1 and A2. In this case, G is isogenous to SL2 or SL3. In type A1, the only
projective homogeneous variety is P1; in type A2, both X1 and X2 are P2. In these cases,
the answer to (4.1) is “yes” by Bĕılinson [Bĕı78] and Bernštĕın–Gelfand–Gelfand [BGG78]
(which holds over any field, cf. [Wal03, §11]). In type A2, the Borel variety X is a P1-
bundle over P2 and the answer is “yes” by [Orl93, Cor. 2.7] (which similarly holds over
any field).

Type A1 ×A1. In this case, G is isogenous to SL2×SL2 and so both X1 and X2 are P1,
while X is P1 × P1. The answer to (4.1) is “yes” since we know the answers for projective
space and products of projective spaces, as in the previous paragraph.

Type G2. In this case, the answer is always “no” by Theorem B (which holds over any
field).

Type B2 = C2. In this case, G is isogenous to SO3 and to Sp4. We know that X2 is P3 and
X is a P1-bundle over P3. In these cases, the answer is “yes” as in the type A2 case. The
variety X1 is a 3-dimensional quadric, for which the answer is “no” in characteristic 6= 2
by the following (recall that a full exceptional collection generates K0):

4.2. Proposition. Let X be a smooth projective (2n − 1)-dimensional quadric (n ≥ 2)
defined over a field of characteristic 6= 2. Then K0(X) is not generated by line bundles.

Proof. We may assume that G is simply connected of type Bn; we write Ḡ for the adjoint
group. Put P for a standard parabolic subgroup of G so that X ' G/P . We use the
identification

Z⊗Z[Λ]W Z[Λ]WP = K0(X)

where Λ is the weight lattice, WP is the Weyl of the Levi part of P and Z[Λ]WP and Z[Λ]W

are the representation rings of P and G respectively.
For sake of contradiction, suppose K0(X) is generated by line bundles. Since Pic(X) =

Z is generated by L (ω1), where ω1 is the first fundamental weight (numbered as in
[Bou02]), all such bundles are powers of L (ω1), i.e., are of the form L (mω1) for some
m ∈ Z.

There is a surjective homomorphism π : K0(X) → K0(Ḡ) induced by Λ → Λ/Λr =
Z/2Z = 〈σ〉, where Λr is the root lattice. According to [Zai, Example 3.6], K0(Ḡ) =
Z[y]/(y2 − 2y, 2ny), where y = 1− eσ.

Now take the vector bundle E corresponding to the WP -orbit of the last fundamental
weight ωn that can be identified with the orbit of the Weyl group of type Bn−1 of the
respective last fundamental weight. Observe that π(L (mω1)) = 1 and π(E) = 2n−1(1−y).
As π(E) cannot be a multiple of 1, this is a contradiction. �

We now provide the answer to the related question:

(4.3)
Does X have a P-exceptional collection of the expected
length consisting of line bundles (for some choice of P)?
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Clearly, a positive answer to Question 4.1 implies a positive answer to Question 4.3.
On the other hand, for a Borel variety of type G2, the answer to Question 4.3 is “yes”
(Theorem A) and the answer to Question 4.1 is “no” (Theorem B). Apart from this one
case, the answers to Questions 4.1 and 4.3 agree for projective homogeneous varieties for a
split semisimple group of rank ≤ 2; the only remaining case to be considered, the minimal
projective homogeneous varieties of type G2, is settled by the following:

4.4. Proposition. Let X be a minimal projective homogeneous variety of type G2 over a
field of characteristic 6= 2. Then K0(X) is not generated by line bundles.

Proof. Write X = G/P for a maximal parabolic P of G. The derived group of the Levi
subgroup L of P is isomorphic to SL2. Put µ2 for its center and consider the variety
Y = G/µ2. We use the identification

K0(Y ) = Z⊗Z[Λ]W Z[t]/(t2 − 1),

where Z[t]/(t2 − 1) and Z[Λ]W are the representation rings of µ2 and G respectively.
Computing the right-hand side obtain

K0(Y ) ∼= Z[t]/(t2 − 1, 4t− 4).

There is a natural quotient morphism π : Y → X induced by the inclusion µ2 ⊂ P . Thus
we have a homomorphism π∗ : K0(X)→ K0(Y ).

For sake of contradiction, suppose that K0(X) is generated by line bundles. Recall that
Pic(X) = Z and is generated by L (ω), where ω is the fundamental weight corresponding
to the maximal parabolic P . Take the rank two vector bundle E corresponding to the
WP -orbit of any weight in the W -orbit of ω, except ±ω. Observe that π∗L (nω) = 1 for
all n ∈ Z and that π∗E = 2t. As π∗E cannot be a multiple of 1, this is a contradiction. �

Part II. Exceptional collection of line bundles on G2-varieties

In this part, we study exceptional collections of line bundles on the Borel variety X of
a group G of type G2 over an arbitrary field.

4.5. Example. Suppose that G is split and char k = 0. One of the projective homogeneous
G-varieties is a 5-dimensional quadric Y and X → Y is a P1-bundle. An exceptional
collection of vector bundles on Y described in [Kap86] and [Kap88] includes 5 line bundles.
These yield an exceptional collection of line bundles on X of length 10 by [Orl93, Cor. 2.7].

As K0(X) is a free module of rank 12 (the order of the Weyl group), the collection
provided in the preceding example is not of expected length. Nonetheless, we prove that
it is “best possible”:

4.6. Theorem. Every exceptional collection of line bundles on the Borel variety of a group
of type G2 has length ≤ 10.

A little experimentation shows that the exceptional collections on this variety are var-
ied and numerous. For example, in characteristic zero, a computer search finds 160,017
maximal exceptional collections of the form 0, λ2, . . . , λn with all the weights lying in a
disc of radius about 47 centered at −ρ. The proof of Theorem 4.6 will occupy the rest of
the paper. For now, we note that the theorem is sufficient to prove Theorem B.

Proof of Theorem B. By Proposition 2.1, we may assume that the group G of type G2

is split. For X the variety of Borel subgroups of G, K0(X) is isomorphic to Z12 and
Theorem 4.6 implies that there does not exist an exceptional collection of the expected
length consisting of line bundles.
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Any other projective homogeneous variety Y for G can be displayed as the base of a P1-
bundle X → Y and K0(Y ) is a free Z-module of rank 6. Hence any exceptional collection
of the expected length consisting of line bundles on Y lifts to an exceptional collection of
the expected length consisting of line bundles on X by [Orl93, Cor. 2.7] (which holds over
any field, cf. [Wal03, §11]). Alternatively, if char k 6= 2, one can apply Proposition 4.4. �

The group K0(X) depends neither on the base field nor on the particular group G
of type G2 under consideration. Combining this with Proposition 2.1, in order to prove
Theorem 4.6 we may assume that the base field is algebraically closed and hence that
G is split. Proposition 3.1 then reduces the proof to computations involving condition
3.1(2) applied to totally ordered lists of weights (which we write in ascending order). In
fact, throughout this part, the hypothesis that a list of weights is exceptional can be
strengthened to simply satisfying condition 3.1(2), though this distinction only matters in
finite characteristic. We will use without much comment the fact that, for any exceptional
collection λ1, . . . , λn and any weight µ, the lists

(4.7) λ1 − µ, λ2 − µ, . . . , λn − µ and −λn,−λn−1, . . . ,−λ1

are also exceptional collections. Thus, given an exceptional collection, we obtain another
exceptional collection of the same length but with first entry λ1 = 0. Note also the trivial
fact that λi 6= λj for all i 6= j, since Ext∗(L (λi),L (λi)) = k for every weight λi as in the
proof of Proposition 3.1.

5. A dichotomy

The crab is the collection of weights λ of G2 such that λ + ρ is singular. The crab
consists of weights lying on 6 crab lines. Any pair of lines meets only at −ρ, and −ρ lies
on all 6 crab lines. The weight zero is not on any crab line. See Figure 2 for a picture of
the crab.

5.1. Definition. In Figure 2, we find 20 weights on the intersection of the crab lines and
the singular lines, i.e., there are 20 weights λ such that λ and λ+ ρ are both singular. We
call them the 20 weights.

We note for future reference that for each of the 20 weights λ, we have ||λ|| ≤ 3
√

3 and

‖λ+ ρ‖ ≤ 3
√

3.

5.2. Lemma. Suppose 0, b, c is an exceptional collection.

(1) If b and c lie on the same crab line, then c − b is one of the 20 weights and it is
on the singular line parallel to that crab line.

(2) If c − b and c lie on the same crab line, then b is one of the 20 weights and it is
on the singular line parallel to that crab line.

Proof. We prove (2) first. The weight b is in the crab because 0, b is exceptional. Further,
c− b = tc+ (1− t)(−ρ) for some t ∈ R, hence b = (1− t)(c+ ρ), which is singular because
0, c is exceptional, so b is one of the 20. If x is a nonzero vector orthogonal to c + ρ and
(c− b) + ρ, then it is also orthogonal to their difference, b, which proves (2). Then (1) is
deduced from (2) via (4.7). �

5.3. Corollary. In any exceptional collection 0, λ2, . . . , λn, the distance between any pair
of weights on the same crab line is at most 3

√
3.

Proof. Fix a crab line of interest and let 0, λ2, λ3, . . . , λn be an exceptional collection.
By restricting to a sub-list, we may assume that all of the weights λ2, . . . , λn lie on that
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Α1

Α2

Figure 2. The crab lines (solid), the weights of the crab (circles), the
singular lines (dashed lines), and the 20 weights (disks). All singular lines
meet at 0 and all crab lines meet at −ρ. The simple roots are α1 = (1, 0)

and α2 = (−3/2,
√

3/2).

crab line. By Lemma 5.2(1), λj − λ2 is one of the 20 weights for j = 3, . . . , n, hence

||λj − λ2|| ≤ 3
√

3, as claimed. �

5.4. Lemma (Trigonometry). If two weights on crab lines are each ≥ R from −ρ and are

closer than 2(2−
√

3)R apart, then they are on the same crab line.

Proof. For sake of contradiction, suppose that the two weights are on different crab lines.
The distance between the two weights is at least the length of the shortest line segment
joining the two crab lines and meeting them at least R from −ρ. This segment is the third
side of an isosceles triangle with two sides of length R and internal angle 2θ, hence it has
length 2R tan θ, where 2θ is the angle between the two crab lines. As 15◦ ≤ θ ≤ 75◦, the
minimum is achieved at tan 15◦ = 2−

√
3. �

The following proposition says that a close-in weight early in the exceptional collection
controls the distribution of far weights on crab lines coming later in the collection.

5.5. Proposition (Dichotomy). Let 0, µ, λ3, . . . , λn be an exceptional collection. Then
exactly one of the following holds:

(1) µ is one of the 20 weights, and all the λj such that ||λj +ρ|| > 6
√

3 lie on the crab
line parallel to the singular line containing µ.

(2) µ is not one of the 20 weights and ||λj + ρ|| < 3||µ|| for all j = 3, . . . , n.

Proof. First suppose that µ is not one of the 20 weights. As 0, λj −µ, λj is an exceptional
collection, λj −µ is on a crab line; by Lemma 5.2(2) it is a different crab line from λj . By
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the Trigonometry Lemma,

1.9‖µ‖ ≥ ‖λj − (λj − µ)‖
2(2−

√
3)

≥ min{‖λj + ρ‖, ‖λj − µ+ ρ‖}.

If ‖λj −µ+ρ‖ is the minimum, then ‖λj +ρ‖ ≤ ‖λj −µ+ρ‖+ ‖µ‖ ≤ 2.9‖µ‖. This proves
(2).

Suppose that 0, µ, λ is an exceptional collection such that µ is one of the 20 weights
and λ does not lie on the crab line parallel to the µ singular line. Translating 0, µ, λ by
−µ gives the exceptional collection 0, λ − µ so λ − µ also belongs to the crab, i.e., λ lies
in the intersection of the crab and the crab shifted by µ. We will show that this implies
||λ+ ρ|| ≤ 6

√
3, even ignoring questions of belonging to the weight lattice.

Figure 3. The intersection of the crab and the crab shifted by a µ on a
singular line. The solid line has length ‖µ‖.

Indeed, the crab and the crab shifted by µ give a picture as in Figure 3. For each weight
on the intersection of two dashed lines, we find a triangle where a side of length ||µ|| is
bracketed by angles α, β that are multiples of 30◦ and α + β ≤ 150◦. Using the Law of
Sines, we find that the length of the longest of the other two sides of such a triangle is

sin(max{α, β})
sin(180◦ − α− β)

||µ||.

Plugging in all possibilities for α and β, we find that the fraction has a maximum of 2.
The length of µ is at most 3

√
3, whence the claim. �

6. Three weights on two crab lines

We now examine the possibilities for exceptional collections 0, λ2, λ3, λ4 such that two
of the λj lie on one crab line and the third lies on a different crab line; there are three
possible such permutations, which we label BAA, AAB, and ABA.

6.1. Definition. A weight a is near if ||a+ ρ|| ≤ 42. It is far if ‖a+ ρ‖ > 42 + 3
√

3.

6.2. Lemma (BAA). Suppose that 0, b, a1, a2 is an exceptional collection such that a1, a2

are on the same crab line and b is neither on that crab line nor on the parallel singular
line. Then b, a1, a2 are all near weights (and in fact are within 21.1 of −ρ).
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Proof. Translating the exceptional collection, we find the collection 0, a1 − b, a2 − b, so
a1− b and a2− b belong to the crab. Now, a1, a2 are on a crab line (call it A) and b is not
on the parallel singular line (i.e., b is not parallel to a2 − a1), therefore a1 − b and a2 − b
are not on the A crab line. Furthermore, because the direction a2−a1 = (a2−b)− (a1−b)
characterizes the A line, we conclude that a1 − b and a2 − b lie on different crab lines.

However,

||(a2 − b)− (a1 − b)|| = ||a2 − a1|| ≤ 3
√

3

by Corollary 5.3, hence

||aj − b+ ρ|| ≤ 3
√

3

2(2−
√

3)

by the Trigonometry Lemma 5.4. By the triangle inequality

||aj − b|| ≤ ||aj − b+ ρ||+ || − ρ|| ≤ 3
√

3

2(2−
√

3)
+
√

7 < 12.4.

As aj and b are on different crab lines, the argument in the Trigonometry Lemma 5.4 gives
that ||aj + ρ|| and ||b+ ρ|| are at most

3
√

3
2(2−

√
3)

+
√

7

2(2−
√

3)
< 21.04. �

Here are two corollaries from the Trigonometry Lemma 5.4.

6.3. Corollary. If λ and λ+ ρ are on crab lines and ||λ+ ρ|| > 7.7, then λ and λ+ ρ are
on the same crab line.

Proof. We use the triangle inequality to bound the distance of λ+ ρ from −ρ:

||λ+ 2ρ|| ≥ ||λ+ ρ|| − ||−ρ|| > 7.7−
√

7 > 5.05.

The distance between λ and λ + ρ is ||ρ|| =
√

7 < 2(2 −
√

3)5.05, so taking R = 5.05 in
the Trigonometry Lemma 5.4 gives the claim. �

6.4. Corollary. If a and b − a both lie on some crab line A, then so does b + ρ. If
furthermore ||b+ ρ|| > 7.7, then b also lies on A.

Proof. Let x be a nonzero vector orthogonal to a+ρ and b−a+ρ. Then x is also orthogonal
to (b− a+ ρ) + a+ ρ = (b+ ρ) + ρ; this proves the first claim. For the second claim, we
apply Corollary 6.3. �

6.5. Lemma (AAB). If 0, a1, a2, b is an exceptional collection where a1, a2 are on one crab
line and b is on a different crab line, then at least one of a1, a2, b is near.

Proof. For sake of contradiction, suppose all three nonzero weights are at least 42 from
−ρ. Translating, we find an exceptional collection 0, a2 − a1, b− a1, where for j = 1, 2 we
have ||b− aj || > 2(2−

√
3)42. Further,

||b− aj + ρ|| ≥ ||b− aj || − ||−ρ|| > 2(2−
√

3)42−
√

7 > 19.8.

Now
||(b− a2)− (b− a1)|| = ||a1 − a2|| ≤ 3

√
3 < 2(2−

√
3)19.8,

so by the Trigonometry Lemma 5.4 b− a2 and b− a1 lie on the same crab line.
As a1, a2 also lie on one crab line, we can find nonzero vectors x, y such that x is

orthogonal to b− aj + ρ and y is orthogonal to aj + ρ for j = 2, 3. It follows that

a1 − a2 = (a1 + ρ)− (a2 + ρ) = (b− a2 + ρ)− (b− a1 + ρ)
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is orthogonal to both x and y. As a1 − a2 6= 0, it follows that the four weights aj , b − aj
for j = 2, 3 all lie on one crab line. Corollary 6.4 gives that b+ ρ lies on this same line. As
b is also on a crab line and b is at least 42 from −ρ, Corollary 6.3 gives that b and b + ρ
are on the same crab line. This contradicts the hypothesis that a1, b are on different crab
lines. �

We now prepare for ABA, the most complicated of the three configurations.

6.6. Definition. The mirror 20 weights consist of the intersection of the crab with the
crab shifted to −ρ. A weight µ is one of the mirror 20 weights if both µ and µ + ρ are
in the crab. The lines through −2ρ parallel to the crab lines will be called the mirror
singular lines.

Now we need a “mirror” version of Proposition 5.5(2).

6.7. Proposition. If 0, λ, µ is an exceptional collection with ‖λ‖ ≥ 2.9‖µ+ ρ‖+ 7.6, then
µ is one of the mirror 20 weights on the mirror singular line parallel to λ. In particular,
in this case ‖µ+ ρ‖ ≤ 3

√
3.

Proof. As λ is in the crab, λ+ρ is singular, thus −2ρ−λ+ρ = −ρ−λ = −(λ+ρ) is singular,
hence −2ρ−λ is in the crab. Also µ−λ is in the crab by exceptionality. We will show that
µ− λ and −2ρ− λ are on the same crab line, hence that (µ− λ)− (−2ρ− λ+ ρ) = µ+ ρ
is also on the crab and thus µ is one of the mirror 20 weights.

We have

‖(µ− λ)− (−2ρ− λ)‖ = ‖µ+ 2ρ‖ ≤ ‖µ+ ρ‖+
√

7

by the triangle inequality. By the Trigonometry Lemma 5.4, µ will then be one of the
mirror 20 weights as long as µ− λ and −2ρ− λ are a distance

‖µ+ ρ‖+
√

7

2(2−
√

3)
< 1.87‖µ+ ρ‖+ 4.94

from −ρ. But indeed, by hypothesis, we have

‖µ− λ+ ρ‖ ≥ ‖λ‖ − ‖µ+ ρ‖ ≥ 1.9‖µ+ ρ‖+ 7.6

and

‖−2ρ− λ+ ρ‖ ≥ ‖λ‖ − ‖ρ‖ ≥ 2.9‖µ+ ρ‖+ 7.6−
√

7 > 2.9‖µ+ ρ‖+ 4.96.

The final claims are apparent. �

6.8. Lemma (ABA). Suppose that 0, a1, b, a2 is an exceptional collection of far weights
such that a1, a2 are on the same crab line and b is on a different crab line. Then the
collection 0, a1, b, a2 is maximal.

By maximal we mean that there is no exceptional collection 0, λ2, λ3, λ4, λ5 that contains
0, a1, b, a2 as a sub-collection.

Proof. We have a number of cases, each of which we will deal with by contradiction.

Case 1: Consider extending the collection as 0, µ, a1, b, a2. If µ is on the same crab
line as a1, a2, then the AAB Lemma 6.5 applied to the exceptional collection 0, µ, a1, b,
together with the fact that a1, b are far, implies that µ is near. But this is impossible
since µ and a1 can be at most 3

√
3 apart. If µ is on a different crab line than a1, a2,

then 0, µ, a1, a2 is exceptional, which contradicts the BAA Lemma 6.2 (since a1, a2 are
far) unless µ is on the singular line parallel to the crab line containing a1, a2. But 0, µ, b is
exceptional, µ is one of the 20 weights, and b is far, hence b is on the crab line parallel to
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the singular line containing µ. This is impossible since b and a1, a2 are on different crab
lines.

Case 2: Similarly, consider extending the collection as 0, a1, b, a2, µ. If µ is on the same
crab line as a1, a2, then the exceptionality of 0, b, a2, µ contradicts the BAA Lemma 6.2
since b, a2 are far (b cannot be on the singular line parallel to the crab line containing a2, µ
because it is far). If µ is on a different crab line than a1, a2, then by the AAB Lemma 6.5
and the fact that a1, a2 are far, we have that µ is near. By Proposition 6.7 applied to
0, a1, µ and 0, b, µ, we have that µ is one of the mirror 20 weights on the mirror singular line
parallel to the crab lines containing a1 and b, hence µ = −2ρ, contradicting the hypothesis
that µ is in the crab.

Case 3: Now consider extending the collection as 0, a1, µ, b, a2. If µ is on the same crab
line as a1, a2, then the AAB Lemma 6.5 applied to the exceptional collection 0, a1, µ, b,
together with the fact that a1, b are far, implies that µ is near. But this is impossible since
µ and a1 can be at most 3

√
3 apart. Similarly, if µ is on the same crab line as b, then

the AAB Lemma 6.5 applied to the exceptional collection 0, µ, b, a2, together with the fact
that b, a2 are far, implies that µ is near. But this is impossible since µ and b can be at
most 3

√
3 apart.

Thus µ is not on the crab line containing any of a1, b, a2. As in (4.7), the collection

0, a2 − b, a2 − µ, a2 − a1, a2

is exceptional. By Lemma 5.2, a2−a1 is one of the 20 weights, in particular ‖a2−a1 +ρ‖ ≤
3
√

3. Since b, a2 are far and on different crab lines, ‖b + ρ‖, ‖a2 + ρ‖ ≥ 42 + 3
√

3, hence
by the Trigonometry Lemma 5.4, we have

‖a2 − b‖ ≥ 2(2−
√

3)(42 + 3
√

3) > 2.9 · 3
√

3 + 7.6.

Applying Proposition 6.7 to the exceptional collection 0, a2 − b, a2 − a1, we have that
a2 − a1 is one of the mirror 20 weights on the mirror singular line parallel to the crab line
containing a2 − b. In particular, ‖a2 − a1 + ρ‖ ≤

√
3.

The first option of the Dichotomy Proposition 5.5 applied to the exceptional collection
0, µ, b, a2 is impossible since b, a2 are far and on different crab lines. Hence by Dichotomy,
‖µ‖ > 1

3 (42 + 3
√

3) > 15. In particular ‖µ + ρ‖ > 15 −
√

7, so by the Trigonometry

Lemma 5.4 (using that a2 is far), we have ‖a2 − µ‖ > 2(2−
√

3)(15−
√

7) > 7 > 3
√

3, in
particular a2 − µ is not one of the 20 weights.

It follows that the second option in Dichotomy holds for 0, a2 − µ, a2 and 42 + 3
√

3 <
‖a2 + ρ‖ < 3‖a2 − µ‖. But then we have

‖a2 − µ‖ >
1

3
(42 + 3

√
3) > 15 > 2.9 ·

√
3 + 7.6

so that we can apply Proposition 6.7 to the exceptional collection 0, a2 − µ, a2 − a1. We
conclude that a2 − a1 is one of the mirror 20 weights on the mirror singular line parallel
to the crab line containing a2 − µ.

Since b is far and µ is on a different crab line, the Trigonometry Lemma 5.4 says that

‖µ− b‖ > 15−
√

7

2(2−
√

3)
> 3
√

3,

so a2−µ and a2− b cannot lie on the same crab line. But then it is impossible for a2− a1

to be on the mirror singular lines parallel to the crab lines of both a2 − µ and a2 − b.
Therefore no such µ can exist.

Case 4: Finally, consider extending the collection as 0, a1, b, µ, a2. If µ is far, then by
interchanging the roles of µ and b, we can use the previous argument. Hence we can
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assume µ is not far. If µ is on the same crab line as a1, a2, then the exceptionality of
0, b, µ, a2 contradicts the BAA Lemma 6.2 since b, a2 are far (in particular, b cannot be
on the singular line parallel to the crab line containing a2, µ). Similarly, if µ is on the
same crab line as b, then the exceptionality of 0, a1, b, µ contradicts BAA Lemma 6.2.
Thus µ is not on the crab line containing any of a1, b, a2. If µ is one of the 20 weights,
then we can apply Proposition 6.7 to the exceptional collections 0, a1, µ and 0, b, µ (since

42+3
√

3 ≥ 2.9·3
√

3+7.6), concluding that µ is also one of the mirror 20 weights contained
on the mirror singular lines parallel to crab lines containing a1, b, which is impossible.
Hence as before, the Dichotomy Proposition 5.5 implies that ‖a2−µ‖ > 7. As in (4.7), the
collection 0, a2−µ, a2− b, a2−a1, a2 is exceptional and we can use the previous argument.

We have thus ruled out all possible exceptional extensions of 0, a1, b, a2. �

Combining the Lemmas 6.2, 6.5, and 6.8 gives the following:

6.9. Proposition. Suppose that a1, a2, b are far weights such that a1, a2 lie on the same
crab line and b lies on a different crab line. Then:

(1) Neither 0, b, a1, a2 nor 0, a1, a2, b are exceptional collections.
(2) If 0, a1, b, a2 is an exceptional collection, then it is maximal.

7. Computer calculations

Our proof of Theorem 4.6 makes use of the following concrete facts, which can be easily
verified by computer:

7.1. Fact. Every exceptional collection 0, λ2, . . . , λn with all λj non-far has n ≤ 10.

7.2. Fact. Let A be a crab line and S the set of weights on the union of the singular line
and the mirror singular line parallel to A. Then every exceptional collection 0, λ2, . . . , λn
of weights in S has n ≥ 5. (Note that as the λj ’s belong to the crab, they are all selected
from the union of the 20 weights and the mirror 20 weights.)

7.3. Fact. If 0, λ2, . . . , λn is an exceptional collection with n = 9 or 10, with all weights
non-far, with all crab lines containing at most 2 weights, and with one crab line containing
no weights, then ‖λj + ρ‖ ≤ 5 for all j = 2, . . . , n.

We used Mathematica to check these facts. We first wrote a function IsSingular that
returns True if a weight is singular and False otherwise. With the following code, and
lists of weights L1 and L2, the command FindCollections[L1, L2] will fill the global
variable collections with a list of all of the maximal exceptional collections that begin
with L1 and such that all weights following L1 come from L2. In the code, rho denotes
the highest root written in terms of the fundamental weights. We omit the sanity checks
that ensure that for the initial values of L1 and L2, appending each element of L2 to L1

results in an exceptional collection.

collections = {};

FindCollections[L1_, L2_] := Module[{tmpL1},

If[Length[L2] == 0, AppendTo[collections, L1],

Do[

tmpL1 = Append[L1, L2[[i]]];

FindCollections[tmpL1,

Select[Delete[L2, i], IsSingular[# - L2[[i]] + rho] &]],

{i, 1, Length[L2]}]]];
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For example, to check Fact 7.1, we constructed the list L2 consisting of all 445 non-far
weights in the crab and executed FindCollections[{{0, 0}}, L2] to obtain the list of
the 160,017 maximal exceptional collections 0, λ2, . . . , λn with all λj non-far. With this
list in hand, it is not difficult to select out collections meeting the criteria of Facts 7.2
and 7.3.

8. Bounding exceptional collections

This section will complete the proof of Theorem 4.6.

8.1. Lemma. In any exceptional collection 0, λ2, . . . , λn, at most 5 of the λj’s lie on any
given crab line.

Proof. Fix a crab line of interest and let 0, λ2, λ3, . . . , λn be an exceptional collection. By
restricting to a sub-list, we may assume that all of the weights λ2, . . . , λn lie on that crab
line. By Corollary 5.2, λj − λ2 is one of the 20 weights for j = 3, . . . , n, and Figure 2
shows that λ3, . . . , λn has length at most 5 corresponding to having 6 weights on the line
of interest, and that the proof is complete except in the case where the crab line makes a
120◦ angle with the horizontal.

For that line, we must argue that λ3−λ2, . . . , λn−λ2 cannot be the 5 weights of the 20
depicted in the figure. Indeed, if they were, one could translate by λ3 − λ2 to transform
this to an exceptional collections 0, λ4 − λ3, . . . , λ7 − λ3 and λj − λ3 must belong to the
crab for j ≥ 4. But we can see from the figure that this does not happen for any of the 5
choices for λ3 − λ2, hence the claim. �

8.2. Proposition. If 0, λ2, . . . , λn is an exceptional collection containing at least 3 weights
on some crab line A, then n ≤ 10 and all the weights off A are near.

Proof. In the exceptional collection 0, λ2, . . . , λn, let a1, a2, a3 be three weights on A. Then
every nonzero weight b in the collection and off A either precedes a2, a3 or follows a1, a2.

First suppose b precedes a2, a3. Then by the BAA Lemma 6.2, either b, a2, a3 are all
near or b is on the singular line parallel to A. In the latter case, b is one of the 20 weights
and so is near.

Suppose that b follows a1, a2, then shifting by −a1 gives an exceptional collection 0, a2−
a1, b − a1 where a2 − a1 is one of the 20 weights. By the Dichotomy Proposition 5.5, we
have two possibilities:

Case 1: We could have that ‖b− a1 + ρ‖ ≤ 6
√

3, but in that case we find that

‖b− a1‖ − ‖ρ‖ ≤ ‖b− a1 + ρ‖ ≤ 6
√

3,

hence ‖b−a1‖ ≤ 6
√

3+
√

7. But b and a1 lie on different crab lines, so by the Trigonometry

Lemma 5.4, we find that min{‖b+ ρ‖, ‖a1 + ρ‖} is at most (6
√

3 +
√

7)/(2(2−
√

3)) < 25.
If ‖a+ ρ‖ < 25, then

‖b+ ρ‖ ≤ ‖a1 + ρ‖+ ‖b− a1‖ < 25 + 6
√

3 +
√

7 < 42

and b is near. (Note that if a1 is non-near, then we would have ‖b+ ρ‖ < 25 and this case
is impossible.)

Case 2: Alternately, b− a1 could lie on A. In that case, as b is not on A, Corollary 6.4
gives that ‖b+ ρ‖ ≤ 7.7. Thus all weights in the exceptional collection off A are near.

It remains to argue that the collection has length ≤ 10. If the weights on A are non-far,
then all the weights in the collection are non-far and we are done by Fact 7.1. Therefore,
we may assume that some of the weights on A are far, hence all weights on A are non-near.
Let b be a nonzero weight in the collection that is off A. If it precedes a2, a3, then b is one
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of the 20 weights (because b, a2, a3 cannot all be near). Otherwise, b comes after a1, a2

and we are in Case 2 above, so 2.9‖b+ ρ‖+ 7.6 ≤ 29.93; by Proposition 6.7, b is one of the
mirror 20 weights and lies on the mirror singular line parallel to A. Fact 7.2 and Lemma
8.1 show that one cannot obtain an exceptional collection of length > 10. �

We can now conclude the proof of the main theorem.

Proof of Theorem 4.6. For sake of contradiction, we suppose we are given an exceptional
collection 0, λ2, . . . , λ11. By Proposition 8.2, no crab line contains more than 2 weights.

We claim that the number F of far weights in the collection is 1 or 2. Indeed, by Fact 7.1,
F is positive. Suppose that it is at least 3. Then by Proposition 6.9, all far weights lie on
different crab lines, leaving 6−F crab lines for the remaining 10−F nonzero weights; but
the remaining crab lines can only hold 12− 2F weights, which contradicts our hypothesis
that F ≥ 3; hence F = 1 or 2.

We will now pick a crab line A and a subset S of λ2, . . . , λ11 containing all the far
weights and all the weights on A, and such that |S| = 1 or 2.

Case F = 1: If F = 1, we take A to be the crab line containing the far weight and let
S be the set of λj ’s lying on A; by hypothesis |S| ≤ 2.

Case F = 2: If both of the far weights are on one crab line, then we take it to be A and
S to be the set of far weights.

Otherwise, the two far weights are on different crab liens. We claim that one of these
crab lines, call it A, contains exactly one weight from the exceptional collection. Indeed,
otherwise there would be two crab lines each containing two weights; as all of these are
non-near by Corollary 5.3, this contradicts Proposition 6.9, verifying the claim. We take
S to be the far weights in the exceptional collection.

We have found S as desired, and deleting it from the exceptional collection leaves one
as in Fact 7.3 and we conclude that ‖λj + ρ‖ ≤ 5 for all λj not in S. If such a λj precedes
one of the far weights, then it is one of the 20 weights by the Dichotomy Proposition 5.5; if
it follows one of the far weights then it is one of the mirror 20 weights by Proposition 6.7.
But deleting S from our exceptional collection leaves an exceptional collection starting
with 0 and containing at least 8 nonzero, non-far weights all lying off A, which contradicts
Fact 7.2. �
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[Bĕı84] , The derived category of coherent sheaves on Pn, Selecta Math. Soviet. 3 (1983/84),

no. 3, 233–237, Selected translations.
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