Dartmouth College Department of Mathematics

Math 81/111 Abstract Algebra
Winter 2020
Problem Set \# 5 (due in class on Friday 14 February Q)
Notation: Let K and L be subfields of a field M. The compositum of K and L, denoted $K L$, is defined to be the smallest subfield of M containing both K and L, equivalently, the intersection of all subfields of M containing K and L. If additionally K and L are both extensions of a field F, we say that the extensions K / F and L / F are linearly disjoint if any F-linearly independent subset of K is L-linearly independent in $K L$ and if any F-linearly independent subset of L is K-linearly independent in $K L$.

Problems:

1. Let F be a field and K / F and L / F be subextensions of a field extension M / F.
(a) Prove that if $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $L=F\left(\beta_{1}, \ldots, \beta_{m}\right)$ are finitely generated, then $K L=F\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$.
(b) Prove that if K / F and L / F are finite then $K L / F$ is finite and $[K L: F] \leq[K: F][L: F]$ with equality if and only if K / F and L / F are linearly disjoint.
Hint. Prove that if x_{1}, \ldots, x_{n} is an F-basis for K and y_{1}, \ldots, y_{m} is an F-basis for L, then the products $x_{i} y_{j}$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ span $K L / F$ and are an F-basis if and only if K / F and L / F are linearly disjoint.
(c) Prove that finite extensions K / F and L / F of relatively prime degree are linearly disjoint.
(d) Prove that if K / F and L / F are linearly disjoint then $K \cap L=F$. Find an example showing that the converse is false.
(e) Prove that if K / F and L / F are linearly disjoint finite Galois extensions then $\operatorname{Gal}(K L / F) \cong$ $\operatorname{Gal}(K / F) \times \operatorname{Gal}(L / F)$.
2. Let K / F be a finite extension of fields and $f(x) \in F[x]$ an irreducible polynomial.
(a) Prove that if $\operatorname{deg}(f)$ does not divide $[K: F]$ then $f(x)$ has no roots in K.
(b) Prove that if $\operatorname{deg}(f)$ is relatively prime to $[K: F]$ then $f(x)$ is irreducible over K.
3. Let F be a field, $f(x)$ a polynomial over F with splitting field E / F.
(a) Let K / F be a subextension of E / F. Prove that E / K is a splitting field of $f(x)$ considered as a polynomial over K.
(b) Prove that if $\operatorname{deg}(f)=n$ then $[E: F]$ divides n !. (We only had $[E: F] \leq n$! before.) Hint. Use induction on n, and deal with cases of f reducible or irreducible separately. At some point you'll need the fact that $a!b!$ divides $(a+b)!$, which you should also prove.
4. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine the \mathbb{Q}-automorphism group Aut $\mathbb{Q}_{\mathbb{Q}} K$ by writing down all the elements as automorphisms and also by describing the isomorphism class of the group.
