DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 81/111 Abstract Algebra Winter 2020

Problem Set # 4 (due in class on Friday 7 February)

Problems:

1. Let F be a field and $f(x) \in F[x]$ a monic polynomial of degree n. Let E be a spitting field of f over F, so that $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$ over E.

- (a) Prove that $\prod_{1 \le i < j \le n} (\alpha_i \alpha_j)^2 \in F$. This is called the **discriminant** $\Delta(f)$ of f. **Hint.** Remember the Vandermonde and the elementary symmetric polynomials?
- (b) Prove that $\Delta(f) = 0$ if and only if f(x) has a repeated root in E.
- (c) Prove that if Δ is not a square in F then [E:F] is even. Hint. The tower law.

2. Let F be a field and let $g(x) = x^2 + bx + c \in F[x]$. Let $K = F(\alpha)$, where α is a root of g(x), so that $g(x) = (x - \alpha)(x - \beta)$ over K.

- (a) Prove that $\Delta(g) = (\alpha \beta)^2 = b^2 4c \in F$. **Hint.** Use elementary symmetric polynomials.
- (b) Assume that the characteristic of F is not 2. Prove that $K = F(\sqrt{\Delta(g)})$. Deduce that g(x) is irreducible over F if and only if $\Delta(g)$ is not a square in F. Also, prove that g(x) is a square in F[x] if and only if $\Delta(g) = 0$. **Hint.** Use the quadratic formula.
- (c) Now let $F = \mathbb{F}_2(t)$ be the rational function field over \mathbb{F}_2 . Let $g(x) = x^2 t \in F[x]$. Prove that g(x) is irreducible over F, though it satisfies $\Delta(g) = 0$. Recall, from lecture, that $K \cong F(\sqrt{t})$ is an example of an inseparable extension (though in lecture we didn't prove the irreducibility of g(x)). **Hint.** Proving irreducibility can either go like proving $\sqrt{2}$ is irrational, or using Eisenstein for the ring $\mathbb{F}_2[t]$.

Weird stuff can happen with quadratic polynomials in characteristic 2!

3. Let F be a field and let $f(x) = x^3 + px + q \in F[x]$. Let L be the spitting field of f, so that $f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$ over L, for elements $\alpha_1, \alpha_2, \alpha_3 \in L$.

- (a) Prove that $\Delta(f) = \prod_{1 \le i < j \le 3} (\alpha_i \alpha_j)^2 = -4p^3 27q^2 \in F.$
- (b) Let $\alpha \in L$ be one of the roots of f(x). Factor $f(x) = (x \alpha)g(x)$ over $F(\alpha)$, where $g(x) \in F(\alpha)[x]$ is quadratic. Prove that $\Delta(f) = g(\alpha)^2 \Delta(g)$.
- (c) Assume that the characteristic of F is not 2 and let α be a root of f(x). Prove that $L = F(\alpha, \sqrt{\Delta(f)})$. Deduce that if $\Delta(f)$ is a square in F then L has degree at most 3 over F, in particular, if f(x) is reducible over F, then $L = F(\sqrt{\Delta(f)})$.
- (d) Write down a monic irreducible cubic polynomial over $\mathbb{F}_3(t)$ whose discriminant is 0, and factor it over its splitting field. **Hint.** Think inseparable.
- (e) Now let $F = \mathbb{F}_2(t)$ and let $f(x) = x^3 + tx + t$. Prove that f(x) is irreducible over F, has nonzero square discriminant, yet its splitting field L has degree 6 over F. **Hint.** You may find it useful to use Gauss's Lemma for the ring F[t], see Dummit and Foote, §9.3.

Weird stuff can happen with cubic polynomials in characteristics 2 and 3!

4. Let p and q be distinct prime numbers. Prove that $\mathbb{Q}(\sqrt{p} + \sqrt{q}) = \mathbb{Q}(\sqrt{p}, \sqrt{q})$ and find the minimal polynomial of $\sqrt{p} + \sqrt{q}$ over \mathbb{Q} .

- **5.** Let *F* be a field of characteristic $\neq 2$.
 - (a) Let $a_1, \ldots, a_n \in F$ be distinct elements such that no product $a_{i_1} \cdots a_{i_r}$, with distinct indices i_j , is a square in F. Prove that $K = F(\sqrt{a_1}, \ldots, \sqrt{a_n})$ has degree 2^n over F.
 - (b) Prove that the field $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \dots)$ gotten by adjoining the square roots of all prime numbers to \mathbb{Q} , is an infinite degree algebraic extension of \mathbb{Q} .

Dartmouth College, Department of Mathematics, 6188 Kemeny Hall, Hanover, N.H. 03755 E-mail address: asher.auel@dartmouth.edu