Dartmouth College Department of Mathematics

Math 81/111 Abstract Algebra
Winter 2020
Problem Set \# 1 (due in class on Friday 17 January)
Reading: DF 9.1-9.4, FT 1, pp. 6-12.

Problems:

1. For $f(x)=x^{4}-1$ and $g(x)=3 x^{2}+3 x$ find: the quotient and remainder after dividing f by g; the gcd of f and g; and the expression of this gcd in the form $a f+b g$ for some $a, b \in \mathbb{Q}[x]$. For the last two, you'll need to learn about the Euclidean Algorithm and the Bezout Identity.
2. Decide whether each of the following polynomials is irreducible, and if not, then find the factorization into monic irreducibles.
(a) $x^{4}+1 \in \mathbb{R}[x]$
(b) $x^{4}+1 \in \mathbb{Q}[x]$
(c) $x^{7}+11 x^{3}-33 x+22 \in \mathbb{Q}[x]$
(d) $x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$
(e) $x^{3}-7 x^{2}+3 x+3 \in \mathbb{Q}[x]$
3. Irreducible polynomials over finite fields. Let \mathbb{F}_{3} be the field with three elements.
(a) Determine all the monic irreducible polynomials of degree ≤ 3 in $\mathbb{F}_{3}[x]$.
(b) Determine the number of monic irreducible polynomials of degree 4 in $\mathbb{F}_{3}[x]$.
4. Prove that two polynomials $f, g \in \mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ (i.e., they share no common nonconstant factor) if and only if the ideal $(f, g) \subset \mathbb{Z}[x]$ contains a nonzero integer.
5. Let F be a field and x_{1}, \ldots, x_{n} be variables. Consider the Vandermonde matrix

$$
V=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

(a) Prove that $\operatorname{det}(V)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$. You can do row and column reduction and use the multilinear properties of the determinant in order to set up a proof by induction.
(b) Assume that $n<|F|$, in particular, any n is allowed if F is infinite. Prove that if a polynomial $f(x) \in F[x]$ of degree n satisfies $f(a)=0$ for all $a \in F$, then $f(x)$ is the zero polynomial. In conclusion, show that if F is infinite, the evaluation homomorphism $F[x] \rightarrow \operatorname{Map}(F, F)$, defined by $f \mapsto(a \mapsto f(a))$, is injective.
(c) Show that if $F=\mathbb{F}_{p}$, then $f(x)=x^{p}-x$ has every field element as a root. In this case, prove that $x^{p}-x$ generates the whole kernel of the evaluation homomorphism.
6. Symmetric polynomials. Let R be a commutative ring with 1 and $R\left[x_{1}, \ldots, x_{n}\right]$ the ring of polynomials in the variables x_{1}, \ldots, x_{n} with coefficients in R. Consider the symmetric group S_{n} acting on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ by permutations. Extend this action linearly to $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$; for example, if $\sigma=(123) \in S_{3}$, then

$$
\sigma \cdot\left(x_{1} x_{2}-2 x_{3}^{2}+3 x_{2} x_{3}^{2}\right)=x_{2} x_{3}-2 x_{1}^{2}+3 x_{3} x_{1}^{2} .
$$

Then this action satisfies $\sigma \cdot(f+g)=\sigma \cdot f+\sigma \cdot g$ and $\sigma \cdot(f g)=(\sigma \cdot f)(\sigma \cdot g)$ for all $\sigma \in S_{n}$ and all $f, g \in R\left[x_{1}, \ldots, x_{n}\right]$.
(a) Let $S \subset R\left[x_{1}, \ldots, x_{n}\right]$ be the subset fixed under the action of S_{n}. Prove that S is a subring with 1 . This is called the ring of symmetric polynomials.
(b) For each $n \geq 0$, define polynomials $e_{i} \in R\left[x_{1}, \ldots, x_{n}\right]$ by $e_{0}=1$ and

$$
e_{1}=x_{1}+\cdots+x_{n}, \quad e_{2}=\sum_{1 \leq i<j \leq n} x_{i} x_{j}, \quad \ldots, \quad e_{n}=x_{1} \cdots x_{n}
$$

and $e_{k}=0$ for $k>n$. In words, e_{k} is the sum of all distinct products of subsets of k distinct variables. Prove that each e_{k} is a symmetric polynomial. These are called the elementary symmetric polynomials.
(c) The generic polynomial of degree n is the polynomial

$$
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
$$

in the ring $R\left[x_{1}, \ldots, x_{n}\right][x]$ of polynomials in x with coefficients in $R\left[x_{1}, \ldots, x_{n}\right]$. Prove (by induction) that
$f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=x^{n}-e_{1} x^{n-1}+e_{2} x^{n-2}+\cdots+(-1)^{n} e_{n}=\sum_{j=0}^{n}(-1)^{n-j} e_{n-j} x^{j}$.
(d) For each $k \geq 1$, define the power sums $p_{k}=x_{1}^{k}+\cdots+x_{n}^{k}$ in $R\left[x_{1}, \ldots, x_{n}\right]$. Clearly, the power sums are symmetric. Verify the following identities by hand:

$$
p_{1}=e_{1}, \quad p_{2}=e_{1} p_{1}-2 e_{2}, \quad p_{3}=e_{1} p_{2}-e_{2} p_{1}+3 e_{3}
$$

In general Newton's identities in $R\left[x_{1}, \ldots, x_{n}\right]$ are (recall that $e_{k}=0$ for $k>n$):

$$
p_{k}-e_{1} p_{k-1}+e_{2} p_{k-2}-\cdots+(-1)^{k-1} e_{k-1} p_{1}+(-1)^{k} k e_{k}=0 .
$$

Prove Newton's identities whenever $k \geq n$.
Hint. For each i, consider the equation in part (c) for $f\left(x_{i}\right)$ and sum all these equations together. This gives Newton's identity for $k=n$. Set extra variables to zero to get the identities for $k>n$ from this. (Fun. Can you come up with a proof when $1 \leq k \leq n$?)
7. Use the force, my Newton!
(a) If x, y, z are complex numbers satisfying

$$
x+y+z=1, \quad x^{2}+y^{2}+z^{2}=2, \quad x^{3}+y^{3}+z^{3}=3,
$$

then prove that $x^{n}+y^{n}+z^{n}$ is rational for any positive integer n.
(b) Calculate $x^{4}+y^{4}+z^{4}$.
(c) Prove that each of x, y, z are not rational numbers.

