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Problem Set # 1 (due in class on Friday 17 January)

Reading: DF 9.1–9.4, FT 1, pp. 6–12.

Problems:

1. For f(x) = x4−1 and g(x) = 3x2 +3x find: the quotient and remainder after dividing f by g;
the gcd of f and g; and the expression of this gcd in the form af + bg for some a, b ∈ Q[x]. For
the last two, you’ll need to learn about the Euclidean Algorithm and the Bezout Identity.

2. Decide whether each of the following polynomials is irreducible, and if not, then find the
factorization into monic irreducibles.

(a) x4 + 1 ∈ R[x]

(b) x4 + 1 ∈ Q[x]

(c) x7 + 11x3 − 33x+ 22 ∈ Q[x]

(d) x4 + x3 + x2 + x+ 1 ∈ Q[x]

(e) x3 − 7x2 + 3x+ 3 ∈ Q[x]

3. Irreducible polynomials over finite fields. Let F3 be the field with three elements.

(a) Determine all the monic irreducible polynomials of degree ≤ 3 in F3[x].

(b) Determine the number of monic irreducible polynomials of degree 4 in F3[x].

4. Prove that two polynomials f, g ∈ Z[x] are relatively prime in Q[x] (i.e., they share no common
nonconstant factor) if and only if the ideal (f, g) ⊂ Z[x] contains a nonzero integer.

5. Let F be a field and x1, . . . , xn be variables. Consider the Vandermonde matrix

V =


1 x1 x21 · · · xn−1

1

1 x2 x22 · · · xn−1
2

...
...

...
...

1 xn x2n · · · xn−1
n


(a) Prove that det(V ) =

∏
1≤i<j≤n(xj − xi). You can do row and column reduction and use

the multilinear properties of the determinant in order to set up a proof by induction.

(b) Assume that n < |F |, in particular, any n is allowed if F is infinite. Prove that if a
polynomial f(x) ∈ F [x] of degree n satisfies f(a) = 0 for all a ∈ F , then f(x) is the
zero polynomial. In conclusion, show that if F is infinite, the evaluation homomorphism
F [x]→ Map(F, F ), defined by f 7→ (a 7→ f(a)), is injective.

(c) Show that if F = Fp, then f(x) = xp − x has every field element as a root. In this case,
prove that xp − x generates the whole kernel of the evaluation homomorphism.



6. Symmetric polynomials. Let R be a commutative ring with 1 and R[x1, . . . , xn] the ring of
polynomials in the variables x1, . . . , xn with coefficients in R. Consider the symmetric group Sn
acting on the set {x1, . . . , xn} by permutations. Extend this action linearly to R[x1, x2, . . . , xn];
for example, if σ = (123) ∈ S3, then

σ · (x1x2 − 2x23 + 3x2x
2
3) = x2x3 − 2x21 + 3x3x

2
1.

Then this action satisfies σ · (f + g) = σ · f + σ · g and σ · (fg) = (σ · f)(σ · g) for all σ ∈ Sn and
all f, g ∈ R[x1, . . . , xn].

(a) Let S ⊂ R[x1, . . . , xn] be the subset fixed under the action of Sn. Prove that S is a
subring with 1. This is called the ring of symmetric polynomials.

(b) For each n ≥ 0, define polynomials ei ∈ R[x1, . . . , xn] by e0 = 1 and

e1 = x1 + · · ·+ xn, e2 =
∑

1≤i<j≤n

xixj , . . . , en = x1 · · ·xn

and ek = 0 for k > n. In words, ek is the sum of all distinct products of subsets of k
distinct variables. Prove that each ek is a symmetric polynomial. These are called the
elementary symmetric polynomials.

(c) The generic polynomial of degree n is the polynomial

f(x) = (x− x1)(x− x2) · · · (x− xn)

in the ring R[x1, . . . , xn][x] of polynomials in x with coefficients in R[x1, . . . , xn]. Prove
(by induction) that

f(x) = (x−x1)(x−x2) · · · (x−xn) = xn−e1xn−1+e2x
n−2+ · · ·+(−1)nen =

n∑
j=0

(−1)n−jen−jx
j .

(d) For each k ≥ 1, define the power sums pk = xk1 + · · ·+ xkn in R[x1, . . . , xn]. Clearly, the
power sums are symmetric. Verify the following identities by hand:

p1 = e1, p2 = e1p1 − 2e2, p3 = e1p2 − e2p1 + 3e3

In general Newton’s identities in R[x1, . . . , xn] are (recall that ek = 0 for k > n):

pk − e1pk−1 + e2pk−2 − · · ·+ (−1)k−1ek−1p1 + (−1)kkek = 0.

Prove Newton’s identities whenever k ≥ n.
Hint. For each i, consider the equation in part (c) for f(xi) and sum all these equations
together. This gives Newton’s identity for k = n. Set extra variables to zero to get the
identities for k > n from this. (Fun. Can you come up with a proof when 1 ≤ k ≤ n?)

7. Use the force, my Newton!

(a) If x, y, z are complex numbers satisfying

x+ y + z = 1, x2 + y2 + z2 = 2, x3 + y3 + z3 = 3,

then prove that xn + yn + zn is rational for any positive integer n.

(b) Calculate x4 + y4 + z4.

(c) Prove that each of x, y, z are not rational numbers.
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