YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 604 Introduction to Quadratic Forms Fall 2016

Final Exam (due 5:30 pm December 21)

- **1.** Quadratic forms over finite fields. Let q be an odd prime power.
 - (a) Show that $\mathbb{F}_q^{\times}/\mathbb{F}_q^{\times 2}$ has order 2.
 - (b) Show than any element of \mathbb{F}_q is a sum of two squares.
 - (c) Show that every binary quadratic form over \mathbb{F}_q represents every nonzero element.
 - (d) Show that if $q \equiv 1 \pmod{4}$ then $W(\mathbb{F}_q)$ is isomorphic to the ring $\mathbb{Z}/2\mathbb{Z}[\mathbb{F}_q^{\times}/\mathbb{F}_q^{\times 2}]$
 - (e) Show that if $q \equiv 3 \pmod{4}$ then $W(\mathbb{F}_q)$ is isomorphic to the ring $\mathbb{Z}/4\mathbb{Z}$.
 - (f) Show that the isomorphic type of $GW(\mathbb{F}_q)$ as a ring does not depend on q.

2. Characteristic 2, scary! Let F be a field of characteristic 2 and $a, b \in F$. A quadratic form $q: V \to F$ is **nondegenerate** if its associated bilinear form $b_q: V \times V \to F$ defined by $b_q(v, w) = q(v + w) - q(v) - q(w)$ has a radical of dimension at most 1. Define the quadratic form [a, b] on F^2 by $(x, y) \mapsto ax^2 + xy + by^2$. Let \mathbb{H} be the hyperbolic form on F^2 defined by $(x, y) \mapsto xy$.

- (a) Prove that $\langle a \rangle$ is nondegenerate for any $a \in F^{\times}$ but that $\langle a, b \rangle$ is always degenerate.
- (b) Prove that [a, b] is nondegenerate for any $a, b \in F$.
- (c) Prove that any nondegenerate quadratic form of dimension 2 over F is isometric to a binary quadratic form [a, b] for some $a, b \in F$.
- (d) Prove that $\mathbb{H} \cong [0,0] \cong [0,a]$ for any $a \in F$.
- (e) Let $\wp : F \to F$ be the Artin–Schreier map $x \mapsto x^2 + x$. For $a \in F$ prove that [1, a] is isotropic if and only if $a \in \wp(F)$. The group $F/\wp(F)$ plays the role of the group of square classes.
- (f) Prove that a nondegenerate quadratic form of dimension 2 over F is isometric to \mathbb{H} if and only if it is isotropic.
- (g) Let q be a nondegenerate quadratic form over F. Prove that q is isotropic if and only if $q \cong \mathbb{H} \perp q'$.
- (h) Prove that any nondegenerate quadratic form over F can be written as an orthogonal sum

$$\prod_{i=1}^{m} [a_i, b_i] \quad \text{or} \quad \langle c \rangle \perp \prod_{i=1}^{m} [a_i, b_i]$$

depending on whether the dimension is even or odd. This is "diagonalization" in characteristic 2.

3. Prime ideals in the Witt ring. Let F be a field of characteristic not 2 and P a prime ideal of the Witt ring W(F). Prove the following.

- (a) If W(F)/P has characteristic zero, then $W(F)/P \cong \mathbb{Z}$.
- (b) If W(F)/P has characteristic p > 0, then $W(F)/P \cong \mathbb{Z}/p\mathbb{Z}$.
- (c) If W(F)/P has characteristic 2, then P = I is the fundamental ideal.
- (d) If P is not the fundamental ideal, then $\{a \in F \mid \langle a \rangle \equiv 1 \pmod{P}\}$ is the set of positive elements of an ordering on F.

Hint. For any $a \in F^{\times}$, prove the relation $(\langle a \rangle + 1)(\langle a \rangle - 1) = 0$ in W(F).