Yale University Department of Mathematics

Math 604 Introduction to Quadratic Forms
Fall 2016
Final Exam (due 5:30 pm December 21)

1. Quadratic forms over finite fields. Let q be an odd prime power.
(a) Show that $\mathbb{F}_{q}^{\times} / \mathbb{F}_{q}^{\times 2}$ has order 2.
(b) Show than any element of \mathbb{F}_{q} is a sum of two squares.
(c) Show that every binary quadratic form over \mathbb{F}_{q} represents every nonzero element.
(d) Show that if $q \equiv 1(\bmod 4)$ then $W\left(\mathbb{F}_{q}\right)$ is isomorphic to the ring $\mathbb{Z} / 2 \mathbb{Z}\left[\mathbb{F}_{q}^{\times} / \mathbb{F}_{q}^{\times 2}\right]$
(e) Show that if $q \equiv 3(\bmod 4)$ then $W\left(\mathbb{F}_{q}\right)$ is isomorphic to the ring $\mathbb{Z} / 4 \mathbb{Z}$.
(f) Show that the isomorphic type of $G W\left(\mathbb{F}_{q}\right)$ as a ring does not depend on q.
2. Characteristic 2, scary! Let F be a field of characteristic 2 and $a, b \in F$. A quadratic form $q: V \rightarrow F$ is nondegenerate if its associated bilinear form $b_{q}: V \times V \rightarrow F$ defined by $b_{q}(v, w)=q(v+w)-q(v)-q(w)$ has a radical of dimension at most 1 . Define the quadratic form $[a, b]$ on F^{2} by $(x, y) \mapsto a x^{2}+x y+b y^{2}$. Let \mathbb{H} be the hyperbolic form on F^{2} defined by $(x, y) \mapsto x y$.
(a) Prove that $\langle a\rangle$ is nondegenerate for any $a \in F^{\times}$but that $\langle a, b\rangle$ is always degenerate.
(b) Prove that $[a, b]$ is nondegenerate for any $a, b \in F$.
(c) Prove that any nondegenerate quadratic form of dimension 2 over F is isometric to a binary quadratic form $[a, b]$ for some $a, b \in F$.
(d) Prove that $\mathbb{H} \cong[0,0] \cong[0, a]$ for any $a \in F$.
(e) Let $\wp: F \rightarrow F$ be the Artin-Schreier map $x \mapsto x^{2}+x$. For $a \in F$ prove that $[1, a]$ is isotropic if and only if $a \in \wp(F)$. The group $F / \wp(F)$ plays the role of the group of square classes.
(f) Prove that a nondegenerate quadratic form of dimension 2 over F is isometric to \mathbb{H} if and only if it is isotropic.
(g) Let q be a nondegenerate quadratic form over F. Prove that q is isotropic if and only if $q \cong \mathbb{H} \perp q^{\prime}$.
(h) Prove that any nondegenerate quadratic form over F can be written as an orthogonal sum

$$
\frac{L_{i=1}^{m}}{m}\left[a_{i}, b_{i}\right] \quad \text { or } \quad\langle c\rangle \perp{\underset{i}{i=1}}_{m}^{m}\left[a_{i}, b_{i}\right]
$$

depending on whether the dimension is even or odd. This is "diagonalization" in characteristic 2.
3. Prime ideals in the Witt ring. Let F be a field of characteristic not 2 and P a prime ideal of the Witt ring $W(F)$. Prove the following.
(a) If $W(F) / P$ has characteristic zero, then $W(F) / P \cong \mathbb{Z}$.
(b) If $W(F) / P$ has characteristic $p>0$, then $W(F) / P \cong \mathbb{Z} / p \mathbb{Z}$.
(c) If $W(F) / P$ has characteristic 2 , then $P=I$ is the fundamental ideal.
(d) If P is not the fundamental ideal, then $\{a \in F \mid\langle a\rangle \equiv 1(\bmod P)\}$ is the set of positive elements of an ordering on F.
Hint. For any $a \in F^{\times}$, prove the relation $(\langle a\rangle+1)(\langle a\rangle-1)=0$ in $W(F)$.

