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Chapter 2 Groups
1 1
21 LetM = ( 10 ) € GL2(R), then
9 1 1 1 1Y\ 0 1 3 1 1 0 1 (-1 0
M_<—10 —10_—1—1’M_—10 -1 -1/ L0 -1)°
So we already see that M3 = —TI where I is the identity matrix, so we know M% = (M?3)? =

(—I)? = I. So we know M has order dividing 6. Let’s compute some more

M4:M3M=(—I)M:—M:<_11 _01>, M5:M3M2:—M2:<(1) _11>

So in fact, M has order 6 and the cyclic subgroup of GL2(IR) generated by M is

<M > = {I,M,M* M3 M* M°}
GG G0 )

2.2 Let G be a group and a, b € G such that a has order 5. Then

a®b=ba® = a*(a®b) = a®(ba®) = (a3a®)b = (a®b)d®
= ab= (ba)a® = ba,
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noting that we’ve used our hypotheses a® = a®a = a and a®b = ba? in the final implication.

2.3 Which are subgroups?

a) Note that the product of real matrices is again real since it only involves multiplications and
additions of real numbers (i.e. GL;,(R) is closed), and the identity matrix of GL, (C) is the
same as for GL,,(R). Thus GL,,(R) € GL,(C) is a subgroup.

b) Note that 1 € R* is the identity, and (—1)? = 1 so {41} C R* is a subgroup.

c) The set of positive integers under addition contains neither an identity not inverses, so is not
a subgroup of Z.

d) The set RZ, of positive reals contains the identity 1 € R*, and is closed since the product of
positive numbers is again positive. Thus R, C R* is a subgroup.

e) The set
_ a 0 %
R{(O 0>.GER}

is not even a subset of GL2(R) since all matrices of R have zero determinant, so are not
invertible, so in particular, it cannot be a subgroup of GL2(R). Note however that under
matrix multiplication the set R forms a group isomorphic to R*.
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37 Let A= ( (1) 1 ) ,B = < 1 > € GLa(R). We’ll show they are conjugate in G L2(R) but

d

at+c b+d\ (11 a b\ (a b 1 0\ [a+b b
c d SN0 1 c d)] \c d 1 1) \c+d d )
Equating the entries of these two matrices, we have in particular

a+c=a+b=c=b, b+d=b = d=0.

0
1
not in SLa(R). To this, note that P = < Z b > € GLo(R) satisfies A = PBP~Liff AP = PBiff

Thus any such matrix P must be of the form P = < Z 8 ) fora,b € R such that det P = —b? # 0,

i.e. such that b # 0. Taking for example, a« = 0 and b = 1, we have that ( (1) (1) ) conjugates B to

A'in GLa(R). As already noted, any such conjugating matrix P has det P = —b? < 0 so can never
be an element of SLa(R).

4.16 Claim: Let ¢ : G — G’ be a homomorphism of groups and = € G have finite order. Then
¢(x) € G’ has finite order and

ord(¢(x)) | ord(x).
Recall that for n, m € Z we write n|m to to mean that n divides m, i.e. that there exists ¢ € Z such
that m = /n.

Proof. First, I'd like to clearly state an important fact.
Lemma: Let G be a group and z € G have finite order. Then if " = eg for some m € Z then
ord(z) | m.

Proof. Letr = ord(z). Then r is the order of the finite cyclic subgroup < z >= {eg, z,22,..., 2" '}
of GG generated by x, i.e. (and this is how your should remember it) either x = eg in which case
ord(z) =1or

ord(z) =r > liff 2" = eg and 2¥ # eg forall 1 < k < r|

Now suppose =™ = eq and write m = r - ¢ 4+ k for some ¢ € Z and where 0 < k < r is the
remainder when dividing m by r (note that this is an important trick.) Then we have

k(g = oLt = ok

eg=a"=x ¥ =eqx" =",

which is impossible by the above boxed definition of order, unless k£ = 0. But now £ = 0 means that
m = r{, i.e. that r = ord(x) | m. O

Now back to the proof. Note that for € G, by the homomorphism criterion and by induction on
n, that

p(a") = p(2)",
so that if ord(z) = r, in particular, " = eg, then
p(r)" = (") = pleq) = eqr,
since homomorphisms always carry the identity to the identity. Thus ¢(x) € G’ has finite order and
by the lemma ord(¢(x)) | r. O



