
UNIVERSITY OF PENNSYLVANIA DEPARTMENT OF MATHEMATICS
Math 370 Algebra Fall Semester 2006
Prof. Gerstenhaber, T.A. Asher Auel

Homework #2 Solutions (due 9/19/06)
Chapter 2 Groups

2.1 Let M =
(

1 1
−1 0

)
∈ GL2(R), then

M2 =
(

1 1
−1 0

) (
1 1
−1 0

)
=

(
0 1
−1 −1

)
, M3 =

(
1 1
−1 0

) (
0 1
−1 −1

)
=

(
−1 0
0 −1

)
.

So we already see that M3 = −I where I is the identity matrix, so we know M6 = (M3)2 =
(−I)2 = I . So we know M has order dividing 6. Let’s compute some more

M4 = M3M = (−I)M = −M =
(
−1 −1
1 0

)
, M5 = M3M2 = −M2 =

(
0 −1
1 1

)
.

So in fact, M has order 6 and the cyclic subgroup of GL2(R) generated by M is

< M > = {I,M, M2,M3,M4,M5}

=
{(

1 0
0 1

)
,

(
1 1
−1 0

)
,

(
0 1
−1 −1

)
,

(
−1 0
0 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 1

)}
.

2.2 Let G be a group and a, b ∈ G such that a has order 5. Then

a3b = ba3 ⇒ a3(a3b) = a3(ba3) ⇒ (a3a3)b = (a3b)a3

⇒ ab = (ba3)a3 = ba,

noting that we’ve used our hypotheses a6 = a5a = a and a3b = ba3 in the final implication.

2.3 Which are subgroups?

a) Note that the product of real matrices is again real since it only involves multiplications and
additions of real numbers (i.e. GLm(R) is closed), and the identity matrix of GLn(C) is the
same as for GLn(R). Thus GLn(R) ⊂ GLn(C) is a subgroup.

b) Note that 1 ∈ R× is the identity, and (−1)2 = 1 so {±1} ⊂ R× is a subgroup.
c) The set of positive integers under addition contains neither an identity not inverses, so is not

a subgroup of Z.
d) The set R×

>0 of positive reals contains the identity 1 ∈ R×, and is closed since the product of
positive numbers is again positive. Thus R×

>0 ⊂ R× is a subgroup.
e) The set

R =
{(

a 0
0 0

)
: a ∈ R×

}
is not even a subset of GL2(R) since all matrices of R have zero determinant, so are not
invertible, so in particular, it cannot be a subgroup of GL2(R). Note however that under
matrix multiplication the set R forms a group isomorphic to R×.
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3.7 Let A =
(

1 1
0 1

)
, B =

(
1 0
1 1

)
∈ GL2(R). We’ll show they are conjugate in GL2(R) but

not in SL2(R). To this, note that P =
(

a b
c d

)
∈ GL2(R) satisfies A = PBP−1 iff AP = PB iff(

a + c b + d
c d

)
=

(
1 1
0 1

) (
a b
c d

)
=

(
a b
c d

) (
1 0
1 1

)
=

(
a + b b
c + d d

)
.

Equating the entries of these two matrices, we have in particular

a + c = a + b ⇒ c = b, b + d = b ⇒ d = 0.

Thus any such matrix P must be of the form P =
(

a b
b 0

)
for a, b ∈ R such that det P = −b2 6= 0,

i.e. such that b 6= 0. Taking for example, a = 0 and b = 1, we have that
(

0 1
1 0

)
conjugates B to

A in GL2(R). As already noted, any such conjugating matrix P has det P = −b2 < 0 so can never
be an element of SL2(R).

4.16 Claim: Let ϕ : G → G′ be a homomorphism of groups and x ∈ G have finite order. Then
ϕ(x) ∈ G′ has finite order and

ord(ϕ(x)) | ord(x).
Recall that for n, m ∈ Z we write n|m to to mean that n divides m, i.e. that there exists ` ∈ Z such
that m = `n.

Proof. First, I’d like to clearly state an important fact.

Lemma: Let G be a group and x ∈ G have finite order. Then if xm = eG for some m ∈ Z then
ord(x) |m.

Proof. Let r = ord(x). Then r is the order of the finite cyclic subgroup < x >= {eG, x, x2, . . . , xr−1}
of G generated by x, i.e. (and this is how your should remember it) either x = eG in which case
ord(x) = 1 or

ord(x) = r > 1 iff xr = eG and xk 6= eG for all 1 ≤ k < r .

Now suppose xm = eG and write m = r · ` + k for some ` ∈ Z and where 0 ≤ k < r is the
remainder when dividing m by r (note that this is an important trick.) Then we have

eG = xm = xrl+k = (xr)lxk = el
Gxk = xk,

which is impossible by the above boxed definition of order, unless k = 0. But now k = 0 means that
m = r`, i.e. that r = ord(x) |m. �

Now back to the proof. Note that for x ∈ G, by the homomorphism criterion and by induction on
n, that

ϕ(xn) = ϕ(x)n,

so that if ord(x) = r, in particular, xr = eG, then

ϕ(x)r = ϕ(xr) = ϕ(eG) = eG′ ,

since homomorphisms always carry the identity to the identity. Thus ϕ(x) ∈ G′ has finite order and
by the lemma ord(ϕ(x)) | r. �


