YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 235 Reflection Groups Spring 2016

Problem Set # 7 (due at the beginning of class on Tuesday 12 April)

Reading: GB 5.1–5.2.

Problems:

1. Let A be a real symmetric positive definite $n \times n$ matrix, and let P be a real $n \times k$ matrix, where $1 \le k \le n$. Suppose that P has rank k. Show that

$$B = P^t A P$$

is a real symmetric positive definite $k \times k$ matrix.

2. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with *n* distinct real eigenvalues. Suppose that $S : \mathbb{R}^n \to \mathbb{R}^n$ is another linear transformation that commutes with *T*, in the sense that TS = ST. Prove that *S* is diagonalizable.

3. The purpose of this exercise is to show that the Coxeter graphs

are positive definite.

(a) Show that the complex number $x = \cos(2\pi/5) + i\sin(2\pi/5)$ satisfies the equation

$$x^4 + x^3 + x^2 + x + 1 = 0$$

and hence

$$x^{2} + x + 1 + \frac{1}{x} + \frac{1}{x^{2}} = 0.$$

Hint. Draw x and its powers on the complex plane.

- (b) Make the substitution y = x + 1/x in the last equation and solve for y.
- (c) Express $\cos(2\pi/5)$ and $\cos(\pi/5)$ in terms of y and obtain their numerical values in radicals.
- (d) Show that the Coxeter graphs I_3 and I_4 are positive definite. **Hint.** Use the following recursive formula to be proved in class: Letting G be a Coxter graph with vertex a_1 connected with only one other vertex a_2 by an edge marked p, and letting $G_1 = G \setminus \{a_1\}$ and $G_2 = G \setminus \{a_1, a_2\}$, then

$$\det G = \det G_1 - \cos^2\left(\pi/p\right) \, \det G_2.$$

4. Use the recursive formula above to show that the determinant of the following graph is zero:

$$Z_4 \quad \bullet \quad q \quad \bullet \quad where \ \cos(\pi/q) = 3/4.$$

Also (using the values from 3c) show that the determinant of the following graph is negative:

 Y'_5 • • • • •

Deduce that if a graph contains a subgraph of type H_2^5 , then it must be H_2^m with $m \ge 5$, I_3 , or I_4 .