Yale University Department of Mathematics
Math 235 Reflection Groups
Spring 2016
Problem Set \# 7 (due at the beginning of class on Tuesday 12 April)
Reading: GB 5.1-5.2.

Problems:

1. Let A be a real symmetric positive definite $n \times n$ matrix, and let P be a real $n \times k$ matrix, where $1 \leq k \leq n$. Suppose that P has rank k. Show that

$$
B=P^{t} A P
$$

is a real symmetric positive definite $k \times k$ matrix.
2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with n distinct real eigenvalues. Suppose that $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is another linear transformation that commutes with T, in the sense that $T S=S T$. Prove that S is diagonalizable.
3. The purpose of this exercise is to show that the Coxeter graphs

are positive definite.
(a) Show that the complex number $x=\cos (2 \pi / 5)+i \sin (2 \pi / 5)$ satisfies the equation

$$
x^{4}+x^{3}+x^{2}+x+1=0
$$

and hence

$$
x^{2}+x+1+1 / x+1 / x^{2}=0
$$

Hint. Draw x and its powers on the complex plane.
(b) Make the substitution $y=x+1 / x$ in the last equation and solve for y.
(c) Express $\cos (2 \pi / 5)$ and $\cos (\pi / 5)$ in terms of y and obtain their numerical values in radicals.
(d) Show that the Coxeter graphs I_{3} and I_{4} are positive definite.

Hint. Use the following recursive formula to be proved in class: Letting G be a Coxter graph with vertex a_{1} connected with only one other vertex a_{2} by an edge marked p, and letting $G_{1}=G \backslash\left\{a_{1}\right\}$ and $G_{2}=G \backslash\left\{a_{1}, a_{2}\right\}$, then

$$
\operatorname{det} G=\operatorname{det} G_{1}-\cos ^{2}(\pi / p) \operatorname{det} G_{2}
$$

4. Use the recursive formula above to show that the determinant of the following graph is zero:

$$
Z_{4} \bullet \bullet q \quad \bullet \quad \text { where } \cos (\pi / q)=3 / 4
$$

Also (using the values from 3 c) show that the determinant of the following graph is negative:

Deduce that if a graph contains a subgraph of type H_{2}^{5}, then it must be H_{2}^{m} with $m \geq 5, I_{3}$, or I_{4}.

