Yale University Department of Mathematics
Math 235 Reflection Groups
Spring 2016
Problem Set \# 5 (due at the beginning of class on Thursday 3 March)
Remark. Let G be a group. The subgroup generated by the empty set $\varnothing \subset G$ is the trivial subgroup $\{1\}$. Also, the trivial group is not a Coxeter group.

Reading: GB 4.1.

Problems:

1. Who is generated by reflections?
(a) Describe the subgroup generated by all reflections in (a group of type) $\left(C_{3}^{3}\right)^{*}$. Conclude that $\left(C_{3}^{3}\right)^{*}$ is not a Coxeter group. Is the subgroup generated by reflections in $\left(C_{3}^{3}\right)^{*}$ a Coxeter group?
(b) Describe the subgroup generated by all reflections in (a group of type) $\left(H_{3}^{3}\right)^{*}$. Conclude that $\left(H_{3}^{3}\right)^{*}$ is not a Coxeter group. Is the subgroup generated by reflections in $\left(H_{3}^{3}\right)^{*}$ a Coxeter group?
(c) Is $\left.H_{3}^{3}\right] C_{3}^{3}$ generated by its reflections? Is it a Coxeter group? Why or why not?
2. Conjugacy classes of permutations.
(a) Use your results from the last problem set to show that two permutations in S_{n} are conjugate if and only if they have the same cycle type.
(b) Conclude that the number of conjugacy classes in S_{n} is equal to the number of partitions of n.
(c) How many conjugacy classes are there in S_{6} ?
(d) Count the number of elements in each conjugacy class of S_{6} ? (The sum of these numbers should be 6!.) Explain how you do the counting.
3. Consider the action of S_{4} on the Euclidean space \mathbb{R}^{4} by permutations of an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$.
(a) Show that this gives an injective map $S_{4} \rightarrow O\left(\mathbb{R}^{4}\right)$, identifying a subgroup of $O\left(\mathbb{R}^{4}\right)$ isomorphic to S_{4}.
(b) Show that the vectors $\left\{r_{i}=e_{i}-e_{i+1}\right\}_{i=1}^{3}$ form a basis of a 3-dimensional subspace $V \subset \mathbb{R}^{4}$ that is invariant with respect to this action.
(c) Then S_{4} acts on V. Verify that this gives an injective map $S_{4} \rightarrow O(V)$, identifying a subgroup of $O(V)$ isomorphic to S_{4}.
(d) Identify this subgroup with one of the groups in the classification of the finite groups of orthogonal transformations in 3-dimensions.
(e) What is the root system of this group? How many roots does it contain? Give expressions for all roots as linear combinations of $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$.
(f) Find the angles between the roots.
