Yale University Department of Mathematics
Math 235 Reflection Groups
Spring 2016
Problem Set \# 4 (due at the beginning of class on Thursday 25 February)
Reading: GB 2.3-2.6.

Problems:

1. What does that star actually do?
(a) Show that the group $\left(C_{3}^{n}\right)^{*}$ is isomorphic to $C_{3}^{2 n}$ if and only if n is odd.
(b) Show that $\left(C_{3}^{n}\right)^{*}$ and $C_{3}^{2 n}$ are not geometrically equivalent for any $n \geq 1$.
2. Describe geometrically the action of each elements of the following groups:
(a) $\left(H_{3}^{3}\right)^{*}$
(b) $\left.H_{3}^{4}\right] C_{3}^{4}$
3. For each of the following lattices in \mathbb{R}^{3}, check if they are invariant under the action of the groups $\left(H_{3}^{3}\right)^{*}$ and $\left.H_{3}^{4}\right] C_{3}^{4}$.
(a) All integer linear combinations of the vectors

$$
(1,0,0), \quad\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \quad(0,0,1)
$$

(b) All integer linear combinations of the vectors

$$
(1,0,0), \quad\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \quad(0,0,3)
$$

(c) All points with integer coordinates.

All coordinates are given in the standard orthonormal basis in \mathbb{R}^{3}.
4. Generators for the symmetric group.
(a) Prove the following generalization of a statement from class. If $\sigma \in S_{n}$ is any permutation and $\alpha=\left(a_{1} a_{2} \ldots a_{k}\right) \in S_{n}$ is a k-cycle, then $\sigma \alpha \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \ldots \sigma\left(a_{k}\right)\right)$.
(b) Prove that the n-cycle $(12 \ldots n)$ and the transposition (12) generate S_{n}.
5. Let G be a finite rotation group in \mathbb{R}^{3} and $H \subset G$ a subgroup of index 2 . Show that $\left.G\right] H \cong G$ as abstract groups.
6. Let G be a group and $H \subset G$ a subgroup of index 2 . Show that H is a normal subgroup of G.

