YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 235 Reflection Groups Spring 2016

Problem Set # 4 (due at the beginning of class on Thursday 25 February)

Reading: GB 2.3–2.6.

Problems:

1. What does that star actually do?

- (a) Show that the group $(C_3^n)^*$ is isomorphic to C_3^{2n} if and only if n is odd.
- (b) Show that $(C_3^n)^*$ and C_3^{2n} are not geometrically equivalent for any $n \ge 1$.
- 2. Describe geometrically the action of each elements of the following groups:
 - (a) $(H_3^3)^*$
 - (b) $H_3^4 C_3^4$

3. For each of the following lattices in \mathbb{R}^3 , check if they are invariant under the action of the groups $(H_3^3)^*$ and $H_3^4]C_3^4$.

(a) All integer linear combinations of the vectors

$$(1,0,0), \quad (-\frac{1}{2},\frac{\sqrt{3}}{2},0), \quad (0,0,1)$$

(b) All integer linear combinations of the vectors

$$(1,0,0), \quad (\frac{1}{2},\frac{\sqrt{3}}{2},0), \quad (0,0,3)$$

(c) All points with integer coordinates.

All coordinates are given in the standard orthonormal basis in \mathbb{R}^3 .

4. Generators for the symmetric group.

- (a) Prove the following generalization of a statement from class. If $\sigma \in S_n$ is any permutation and $\alpha = (a_1 a_2 \dots a_k) \in S_n$ is a k-cycle, then $\sigma \alpha \sigma^{-1} = (\sigma(a_1) \sigma(a_2) \dots \sigma(a_k))$.
- (b) Prove that the *n*-cycle $(1 \ 2 \ \dots \ n)$ and the transposition $(1 \ 2)$ generate S_n .

5. Let G be a finite rotation group in \mathbb{R}^3 and $H \subset G$ a subgroup of index 2. Show that $G|H \cong G$ as abstract groups.

6. Let G be a group and $H \subset G$ a subgroup of index 2. Show that H is a normal subgroup of G.