Yale University Department of Mathematics
Math 235 Reflection Groups
Spring 2016
Problem Set \# 2 (due at the beginning of class on Thursday 11 February)
Permutations. A permutation of n elements is a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. The set of all permutations of n elements, together with the operation of composition, forms a group called the symmetic group S_{n}. Note that $\left|S_{n}\right|=n!$.

Reading: GB 2.1-2.5.

Problems:

1. Consider the dihedral group H_{2}^{3} generated by the reflections in \mathbb{R}^{2} given by the matrices

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad T=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

(a) Show that this group is isomorphic to the symmetric group S_{3}. First write a multiplication table for S_{3}. Try to match up S and T with generators for S_{3} so that the relations amongst these generators match up.
(b) Give a geometric interpretation of this isomorphism. Hint. Consider an equilateral triangle in \mathbb{R}^{2} centered at the origin.
2. Find the smallest subgroup of $O\left(\mathbb{R}^{2}\right)$ that contains
(a) A rotation by $2 \pi / 5$ and a rotation by $\pi / 2$.
(b) The same two rotations and a reflection with respect to the line $y=x$.
3. The symmetric group S_{3} acts on the set \mathcal{P} of all nonempty subsets of $\{1,2,3\}$, e.g., the permutation cycling $1 \mapsto 2 \mapsto 3 \mapsto 1$ takes the subset $\{1,3\}$ to $\{1,2\}$. Find all orbits of this action; for each element of \mathcal{P}, find the stabilizer subgroup.
4. Let X be a set with n elements and order the elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Given an action of a group G on X define a map $\rho: G \rightarrow S_{n}$ by the relation $g \cdot x_{i}=x_{\rho(g)(i)}$. Prove that ρ is a homomorphism, called the permutation representation of the action.
5. Consider the dihedral group H_{2}^{4} acting as the group of symmetries of a square in \mathbb{R}^{2} centered at the origin. Then each element of H_{2}^{4} acts on the set of vertices by permutations. This defines a permutation representation

$$
\rho: H_{2}^{4} \rightarrow S_{4}
$$

Prove that ρ is injective and find the image of ρ in S_{4}.
6. Show that the set B of all matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right), \quad a, b \in \mathbb{R}, \quad a \neq 0
$$

is a group with respect to the matrix multiplication.
Consider the following subsets in B :

$$
D=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\right\}_{a \neq 0} \quad U=\left\{\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\right\}_{b \in \mathbb{R}} \quad K=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\right\}_{a>0, b \geq 0}
$$

Which of D, U, K are subgroups of B ? Which of them are normal?

