YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 235 Reflection Groups Spring 2016

Problem Set # 2 (due at the beginning of class on Thursday 11 February)

Permutations. A permutation of *n* elements is a bijection $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$. The set of all permutations of *n* elements, together with the operation of composition, forms a group called the **symmetic group** S_n . Note that $|S_n| = n!$.

Reading: GB 2.1–2.5.

Problems:

1. Consider the dihedral group H_2^3 generated by the reflections in \mathbb{R}^2 given by the matrices

$$S = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \quad T = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

- (a) Show that this group is isomorphic to the symmetric group S_3 . First write a multiplication table for S_3 . Try to match up S and T with generators for S_3 so that the relations amongst these generators match up.
- (b) Give a geometric interpretation of this isomorphism. **Hint.** Consider an equilateral triangle in \mathbb{R}^2 centered at the origin.
- **2.** Find the smallest subgroup of $O(\mathbb{R}^2)$ that contains
 - (a) A rotation by $2\pi/5$ and a rotation by $\pi/2$.
 - (b) The same two rotations and a reflection with respect to the line y = x.

3. The symmetric group S_3 acts on the set \mathcal{P} of all nonempty subsets of $\{1, 2, 3\}$, e.g., the permutation cycling $1 \mapsto 2 \mapsto 3 \mapsto 1$ takes the subset $\{1, 3\}$ to $\{1, 2\}$. Find all orbits of this action; for each element of \mathcal{P} , find the stabilizer subgroup.

4. Let X be a set with n elements and order the elements $X = \{x_1, \ldots, x_n\}$. Given an action of a group G on X define a map $\rho: G \to S_n$ by the relation $g \cdot x_i = x_{\rho(g)(i)}$. Prove that ρ is a homomorphism, called the permutation representation of the action.

5. Consider the dihedral group H_2^4 acting as the group of symmetries of a square in \mathbb{R}^2 centered at the origin. Then each element of H_2^4 acts on the set of vertices by permutations. This defines a permutation representation

$$\rho: H_2^4 \to S_4.$$

Prove that ρ is injective and find the image of ρ in S_4 .

6. Show that the set B of all matrices of the form

$$\left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array}\right), \quad a, b \in \mathbb{R}, \ a \neq 0$$

is a group with respect to the matrix multiplication. Consider the following subsets in B:

$$D = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) \right\}_{a \neq 0} \quad U = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \right\}_{b \in \mathbb{R}} \quad K = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right) \right\}_{a > 0, b \ge 0}$$

Which of D, U, K are subgroups of B? Which of them are normal?