
PRACTICE MIDTERM #1

Exercise 1

(1), (2) S1, S2 are the null spaces of the maps T : V → R given by T (f) = f(a) where a = 0, 1
respectively. As the rank of this map is 1 (the constant polynomials map onto R, for
example), and the dimension of V is 4, by the Rank-Nullity Theorem, the dimension
of S1 and S2 is three.

(3) S3 is not a subspace as it does not contain 0, for example.

(4) S4 is a subspace, being the intersection of the subspaces S1 and S2. It is of dimension
two: {x(x− 1), x2(x− 1)} is a basis.

(5) S5 is not a subspace, since it is the union of two subspaces (S5 = S1 ∪ S2) and neither
contains the other (to refer to an exercise many of you have seen in recitation). Directly,
we have x ∈ S5 and x − 1 ∈ S5 but f(x) = x + (x − 1) = 2x − 1 /∈ S5, as f(0) = −1
and f(1) = 1.

(6) S6 is a subspace, as it is the null space of the linear map T : V → V given by
T (f) = f(0) + f(1) (you should check that this is a linear map).

(7) S7 is a subspace, since the equation p(0)2 + p(1)2 = 0 is equivalent to p(0) = 0 and
p(1) = 0 (so in fact, S7 = S4). Since p(0) and p(1) are real numbers, their squares are
nonnegative, and hence the sum of their squares can only be zero when both are zero.

Exercise 2

(1) The subset {(0, 1, 3), (1, 2, 3), (2, 3, 1)} = {v1, v2, v3} is a basis. To prove this, first notice
by inspection that v1 and v2 are not scalar multiples of each other, and are nonzero, so
{v1, v2} is a linearly independent set. Now, in order to show that we may add v3 to this
set without losing linear independence, it is sufficient to show that v3 /∈ span({v1, v2}).
Suppose by contradiction that we have v3 = av1 + bv2, i.e. v3 ∈ span({v1, v2}). Then
equating coordinates, we have 2 = b, 3 = a + 2b, and 1 = 3a + 3b. Substituting b = 2
in the second equation yields 3 = a+ 4⇒ a = −1, and plugging both of these into the
third equation yields 1 = 3(−1)+3(2) = 3, a contradiction in the field R. Therefore the
set {v1, v2, v3} is linearly independent. As it has size three, and we know the dimension
of R3 is 3, it is a basis.

To express (3, 3, 3) in terms of this basis, we solve the equations a(0, 1, 3)+b(1, 2, 3)+
c(2, 3, 1) = (3, 3, 3), i.e. b + 2c = 3, a + 2b + 3c = 3, 3a + 3b + c = 3. Subtracting the
second from the first, we get a+ b+ c = 0. Subtracting three times this from the third
equation, we find −2c = 3, so c = −3/2. The original first equation b + 2c = 3 now
gives b = 6, and the equation a+ b+ c = 0 gives a = −9/2.

(2) To extend this linearly independent set to a basis, it suffices to add any vector outside
of span(S2). Notice that the first two coordinates of each element in S2 are equal. Thus
any linear combination of elements in S2 will have the first two coordinates equal. So,
the vector (1, 0, 0), for example, does not lie in span(S2), and so extends S2 to a basis.
By inspection, (3, 3, 5) = (1, 1, 1) + 2(1, 1, 2).
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Exercise 3

N(T ) = {f ∈ P2(R) : (x − 1)f = 0} = {0}, as the degree of (x − 1)f(x) is at least one
unless f(x) = 0. Therefore T is one-to-one and has nullity(T ) = 0 and rank(T ) = 3. This
implies that the images of vectors forming a basis for P2(R) will be a basis for the range (they
will generate, and there are the correct number of them). Therefore {T (1), T (x), T (x2)} =
{(x− 1), (x− 1)x, (x− 1)x2} is a basis for the range of T .

Exercise 4

(1) If ex and xex were linearly dependent, there would exist some scalar c ∈ R\{0} such
that cxex = ex. As the right-hand side is always positive, and the left-hand side can
be negative regardless of the value of c, this is impossible.

(2) Let f(x) = aex + bxex be an element of V . Then f(x) ∈ N
(
d
dx

)
if and only if

df

dx
= aex + bex + bxex = 0 = (a+ b)ex + bxex = 0.

Since ex and xex are linearly independent, we see that f(x) ∈ N
(
d
dx

)
if and only if

a + b = 0 and b = 0. As the only solutions are a = b = 0, we have that N
(
d
dx

)
= 0.

Once again, d
dx : V → V is one-to-one, has nullity 0, rank 2, and a basis for the range

is given by the images of the basis vectors of the domain, i.e. {ex, ex +xex}. But since
span({ex, ex + xex})=span({ex, xex}) = V , we see that this map is also onto.

(3) As we have d
dxe

x = ex and d
dxxe

x = ex + xex, the matrix is

(
1 1
0 1

)
.

Exercise 5

Let ε = {e1, e2, e3, e4, e5} be the standard ordered basis of R5 and let γ = {γ1, · · · , γ5} =
{e2, e4, e5, e1, e3} be a different ordered basis, just given by a permutation of the basis vectors.
Then Q is the change of basis matrix [I5]

ε
γ , and so Q−1AQ will simply be [A]γ (see Theorem

2.23 and its Corollary).
So we need to compute the matrix representation [A]γ . For simplicity of notation, let v =

e1+e2+e3+e4+e5 (represented by the vector of all 1’s). Then A(γ1) = A(e2) = v−e3 = v−γ5,

so the first column of [A]γ is


1
1
1
1
0

. Similarly we compute [A]γ =


1 1 1 0 1
1 1 1 1 0
1 0 1 1 1
1 1 1 1 1
0 1 1 1 1

.


