Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2015
Problem Set \# 4 (due Thursday 19 February)
Notation: Let F be a field. For $A \in M_{n \times n}(F)$ a square matrix, define the $\operatorname{trace} \operatorname{tr}(A) \in F$ to be the sum of the diagonal entries of A, i.e., if $A=\left(a_{i j}\right)$ then $\operatorname{tr}(A)=a_{11}+\cdots+a_{n n}$. You can check that $\operatorname{tr}: M_{n \times n}(F) \rightarrow F$ is actually a linear map of F-vector spaces.

Let V be an F-vector space, $T: V \rightarrow V$ a linear map, and $W \subset V$ a subspace. Denote by $\left.T\right|_{W}: W \rightarrow V$ the restriction of T to W, i.e., $\left.T\right|_{W}(w)=T(w)$ for every $w \in W$. Then W is called T-invariant if $R\left(\left.T\right|_{W}\right) \subset W$, i.e., T takes vectors from W to vectors in W. For example, $\{0\} \subset V$ and $V \subset V$ are always T-invariant subspaces for any linear map $T: V \rightarrow V$. As another example, the x-axis is T-invariant for the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+y, y)$.

Let W_{1} and W_{2} be F-vector spaces. Define the cartesian product $W_{1} \times W_{2}$ to be the set of ordered pairs $\left(w_{1}, w_{2}\right)$ of vectors $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. In fact, $W_{1} \times W_{2}$ is an F-vector space under component-wise addition and scalar multiplication. For example, $F^{2}=F \times F$.

Reading: FIS 2.2, 2.3

Problems:

1. FIS 2.2 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2bce, 4, 5acdfg, 8, 9, 11 (Hint: Use §1.6 Corollary 2 part c), 13.
2. FIS 2.3 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 4acd, $9,11,12$ (If true, prove it, it false then provide a counterexample).
3. Let $W_{1} \subset V$ and $W_{2} \subset V$ be subspaces of an F-vector space V. Consider the map

$$
\Sigma: W_{1} \times W_{2} \rightarrow W_{1}+W_{2}
$$

defined by $\Sigma(v, w)=v+w$. Verify that Σ is a linear map and is onto. Prove that $W_{1}+W_{2}=W_{1} \oplus W_{2}$ if and only if Σ is injective. In that case, remark that $\Sigma: W_{1} \times W_{2} \rightarrow W_{1} \oplus W_{2}$ is bijective (i.e., injective and surjective), so you can think of the subspace $W_{1} \oplus W_{2}$ "internal" to V as an object $W_{1} \times W_{2}$ "external" to V.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(x, y)=(-y, x)$. Find all T-invariant subspaces of \mathbb{R}^{2}.

[^0]E-mail address: asher.auel@yale.edu

[^0]: Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511

