Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2015
Problem Set \# 3 (due in class Thursday 12 February)
Notation: (See page 22.) Let V be an F-vector space and let S_{1} and S_{2} be two nonempty subsets. Then the sum of S_{1} and S_{2}, denoted $S_{1}+S_{2}$, is the subset $\left\{x+y: x \in S_{1}\right.$ and $\left.y \in S_{1}\right\} \subset V$.

We say that V is a direct sum (or an internal direct sum in some texts) of W_{1} and W_{2} if:

- both W_{1} and W_{2} are subspaces of V
- $W_{1} \cap W_{2}=\{0\}$
- $W_{1}+W_{2}=V$
and in this case we write $V=W_{1} \oplus W_{2}$.
Reading: FIS 2.1 and also FIS 1.3 pages 22-23.

Problems:

1. FIS 2.1 Exercises 1 (If true, then either cite or prove it, it false then provide a counterexample), $3,5,9,11,12,16,17,18,21$.
2. FIS 1.3 Exercises 23, 24, 28 (Hint: Do the 2×2 and 3×3 cases, do you see a pattern?), 30 .
3. Let F be a field and $V=F^{3}$. Let $W \subseteq V$ be the subspace of vectors with zero component sum, i.e., vectors (a, b, c) such that $a+b+c=0$. Let $S=\{(1,1,0),(1,0,1),(0,1,1)\} \subseteq V$.
(1) Prove that if the characteristic of F is not 2 , then S is a basis for V.
(2) Prove that if the characteristic of F is 2 , then S generates W. Find a subset of S that is a basis for W.
4. Let F be a field and V be the F-vector space of all infinite sequences $\left\{a_{n}\right\}$ of elements of F (see $\S 1.2$, Example 5). For each integer $i \geq 1$, let e_{i} be the sequence with 1 in the i th place and 0 in all other places. Prove that the set $S=\left\{e_{i}\right\}$ is linearly independent but is not a basis.

We will not cover this, but the results in $\S 1.7$ show that any vector space has a basis. So the set S in this problem is not a basis, but you might wonder what a basis of V might look like!

