Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2015
Problem Set \# 10 (due in class Thursday April 23rd)
Notation: Let V be an inner product space and $S \subset V$ a nonempty subset. Define the orthogonal complement $S^{\perp}=\{x \in V:\langle x, y\rangle=0$ for all $y \in S\}$ to be the set of all vectors in V orthogonal to every vector in S. It's immediate from the properties of an inner product that $\{0\}^{\perp}=V$ and $V^{\perp}=\{0\}$.

An important result (which is a consequence of Theorem 6.6 that you will prove below) is that if $W \subset V$ is a finite dimensional subspace, then $V=W \oplus W^{\perp}$. Furthermore, if $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal basis of W, then the linear map $T: V \rightarrow W$ defined by $T(y)=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}$ is called the orthogonal projection to W.

Reading: FIS 6.2, 6.3, 6.4.
Problems:

1. FIS 6.2 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2hi (in part h, use the Frobenius inner product), 11, 13, 15 (in part b, recall that $\phi_{\beta}: V \rightarrow F^{n}$ is the map $\left.\phi_{\beta}(x)=[x]_{\beta}\right), 18$.
Think about, but do not hand in: $7,8,19,20,21$.
2. FIS 6.3 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2a, 11, 12.

Think about, but do not hand in: $2,3,8,10,14,15$.
3. FIS 6.4 Exercises 2abdf, 9 .

Think about, but do not hand in: 4, 6, 11, 13, 17, 20.

