YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 225 Linear Algebra and Matrix Theory Spring 2015

Problem Set # 10 (due in class Thursday April 23rd)

Notation: Let V be an inner product space and $S \subset V$ a nonempty subset. Define the **orthogonal** complement $S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \text{ for all } y \in S\}$ to be the set of all vectors in V orthogonal to every vector in S. It's immediate from the properties of an inner product that $\{0\}^{\perp} = V$ and $V^{\perp} = \{0\}$.

An important result (which is a consequence of Theorem 6.6 that you will prove below) is that if $W \subset V$ is a finite dimensional subspace, then $V = W \oplus W^{\perp}$. Furthermore, if $\{v_1, \ldots, v_k\}$ is an orthonormal basis of W, then the linear map $T: V \to W$ defined by $T(y) = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$ is called the **orthogonal projection** to W.

Reading: FIS 6.2, 6.3, 6.4.

Problems:

1. FIS 6.2 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2hi (in part h, use the Frobenius inner product), 11, 13, 15 (in part b, recall that $\phi_{\beta}: V \to F^n$ is the map $\phi_{\beta}(x) = [x]_{\beta}$, 18.

Think about, but do not hand in: 7, 8, 19, 20, 21.

2. FIS 6.3 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2a, 11, 12.

Think about, but do not hand in: 2, 3, 8, 10, 14, 15.

3. FIS 6.4 Exercises 2abdf, 9.

Think about, but do not hand in: 4, 6, 11, 13, 17, 20.