PRACTICE FINAL SOLUTIONS
 MATH 225 SPRING 2015

1. Do Exercise 1 in all sections!
2. The characteristic polynomial of A is

$$
\operatorname{det}(A-t I)=\operatorname{det}\left(\begin{array}{cc}
-\sqrt{3} / 2-t & -1 / 2 \\
1 / 2 & -\sqrt{3} / 2-t
\end{array}\right)=t^{2}+\sqrt{3} t+1
$$

(Handy formula: $t^{2}-\operatorname{Tr}(A) t+\operatorname{det}(A)$.) Since the discriminant $(\sqrt{3})^{2}-4 \cdot 1 \cdot 1=-1$ is negative, this polynomial doesn't have real roots. In particular, there are no real eigenvalues.

However, considering A as a complex matrix (in particular, computing A^{25} doesn't depend on whether you think of A as real or complex), it does have eigenvalues. The quadratic formula, gives the roots of the characteristic polynomial as $\frac{-\sqrt{3} \pm i}{2}$. Since A is a 2×2 matrix with two distinct eigenvalues, A is diagonalizable. Let's solve for the eigenvectors:

$$
A-\frac{-\sqrt{3}+i}{2} I=\left(\begin{array}{cc}
-i / 2 & -1 / 2 \\
1 / 2 & -i / 2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right) .
$$

This matrix has rank 1 (as it should), so the columns are scalar multiples of each other, and we can readily pick off a generator of the null space. For example, $v=\binom{i}{1}$ works, so this is also an eigenvector. Similarly, an eigenvector for the other eigenvalue $\frac{-\sqrt{3}-i}{2}$ is seen to be $w=\binom{i}{-1}$. So the basis $\gamma=\{v, w\}$ diagonalizes A. Letting

$$
Q=[I]_{\gamma}^{\varepsilon}=\left(\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right)
$$

we have

$$
Q^{-1} A Q=\left(\begin{array}{cc}
\frac{-\sqrt{3}+i}{2} & 0 \\
0 & \frac{-\sqrt{3}-i}{2}
\end{array}\right)=D .
$$

Finally, notice that

$$
\frac{-\sqrt{3}+i}{2}=\frac{-\sqrt{3}}{2}+\frac{1}{2} i=\cos (5 \pi / 6)+\sin (5 \pi / 6) i=e^{5 \pi i / 6}
$$

and similary $\frac{-\sqrt{3}+i}{2}=e^{7 \pi i / 6}$. In particular, $\left(\frac{-\sqrt{3} \pm i}{2}\right)^{12}=1$. Hence $D^{12}=I$ and so $D^{25}=D$. Therefore $A^{25}=\left(Q D Q^{-1}\right)^{25}=Q D^{25} Q^{-1}=Q D Q^{-1}=A$.
3. The characteristic polynomial of A is $t^{2}-2 t=t(t-2)$, which has distinct roots, hence A is diagonalizable. The eigenvalues are 0 and 2 . The null space of A and $A-2 I$ are generated by $(1,-1)$ and $(1,1)$, respectively, giving a basis of eigenvectors.

To compute the characteristic polynomial of B, we expand the $\operatorname{det}(B-t I)$ by cofactors along the middle column, yielding $(1-t)\left(t^{2}-t\right)=-t(t-1)^{2}$. Hence the eigenvalues are 0 (of multiplicity 1) and 1 (of multiplicity 2). This implies that B has nullity 1 (think about it!). A generator for the nullspace of B can be spotted $(1,-1,1)$ by looking for a linear dependence in the columns. To compute the 1-eigenspace, we see that the matrix

$$
B-I=\left(\begin{array}{ccc}
1 & 0 & -2 \\
-1 & 0 & 2 \\
1 & 0 & -2
\end{array}\right)
$$

has nullity 2 (the same as the multiplicity), with null space generated by $(0,1,0)$ and $(2,0,1)$. So B is actually diagonalizable and we've already found a basis of eigenvectors.

To compute the characteristic polynomial of C, we first expand the $\operatorname{det}(C-t I)$ by cofactors along the third row, eventually yielding $-t\left(-t(1-t)^{2}\right)=t^{2}(t-1)^{2}$. Hence the eigenvalues are 0 and 1 (both of multiplicity 2). The null space can be computed by spotting linear relations amongst the columns: $(1,0,0,-1)$ and $(0,1,1,-1)$. To compute the 1-eigenspace, we see that the matrix

$$
C-I=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 1 & -1
\end{array}\right)
$$

has rank 3 (for example, the first three columns are linearly independent). Hence it has nullity 1 . Hence the 1 -eigenspace is 1 -dimensional but the eigenvalue has multiplicity 2 . So C is not diagonalizable.
4. We see that the inner product of the first and fourth columns is $1 / \sqrt{6} \neq 0$, so the matrix cannot be orthogonal. (Remember, the columns of an orthogonal matrix are an orthonormal basis of \mathbb{R}^{n} with the standard dot product.) Normal means it commutes with its adjoint, i.e., its transpose (since it's a real matrix). Now use the handy formulas: the $i j$ th entry if $B B^{t}$ is $\left\langle R_{i}, R_{j}\right\rangle$, where R_{i} is the i th row of B; also the $i j$ th entry of $B^{t} B$ is $\left\langle C_{i}, C_{j}\right\rangle$, where C_{i} is the i th column of B. By inspection $13 / 12=\left\langle R_{1}, R_{1}\right\rangle \neq\left\langle C_{1}, C_{1}\right\rangle=1$, so B is not normal.
5. We apply Gram-Schmidt. Let the above vectors be v_{1}, v_{2}, v_{3} respectively. Let $u_{1}=v_{1}$. Then $u_{2}=v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(-1,4,4,-1)-6 / 4(1,1,1,1)=(-5 / 2,5 / 2,5 / 2,-5 / 2)$. Noting that multiplying by constants doesn't affect orthogonality, we can replace u_{2} with $(-1,1,1,-1)$. Now $u_{3}=v_{3}-\frac{\left\langle v_{3}, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1}-\frac{\left\langle v_{3}, u_{2}\right\rangle}{\left\|u_{2}\right\|^{2}} u_{2}=(4,-2,2,0)-\frac{4}{4}(1,1,1,1)-\frac{-4}{4}(-1,1,1,-1)=$ $(2,-2,2,-2)$. Normalizing these, we obtain an orthonormal basis $\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right\}=$ $\{(1 / 2,1 / 2,1 / 2,1 / 2),(-1 / 2,1 / 2,1 / 2,-1 / 2),(1 / 2,-1 / 2,1 / 2,-1 / 2)\}$.
6. The matrix, let's call it A, is symmetric and real, so is self-adjoint with respect to the standard dot product on \mathbb{R}^{3}. By the Spectral Theorem, we know there is an orthonormal basis of its eigenvectors. Already, we can see that $w_{1}=(1,1,1)$ is an eigenvector with eigenvalue -1 . In general, computing the characteristic polynomial

$$
(1-t)^{3}-1-1-3(1-t)=-t^{3}+3 t^{2}-4=-(t-2)^{2}(t+1)
$$

we see that the eigenvalues are -1 (with multiplicity 1) and 2 (with multiplicity 2). Trick: the fact that we already spotted an (-1)-eigenvector meant that we already knew that the characteristic polynomial was divisible by $(t+1)$. Since -1 has multiplicity 1 , and we've already found an eigenvector, it generates the whole eigenspace. To compute the 2 -eigenspace, we see that

$$
A-2 I=\left(\begin{array}{lll}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right)
$$

has nullity 2 (as it should), with null space generated by $w_{2}=(1,-1,0)$ and $w_{3}=(1,0,-1)$. So we've found a basis of eigenvectors. Now we need to make these orthonormal! Since A is normal, the eigenspaces for different eigenvalues are orthogonal, and indeed, we can see that $\left\langle w_{1}, w_{2}\right\rangle=\left\langle w_{1}, w_{3}\right\rangle=0$. However, inside the 2 -eigenspace, $\left\langle w_{2}, w_{3}\right\rangle=1$, so we need to find an orthogonal basis. We do Gram-Schmidt on $\left\{w_{2}, w_{3}\right\}$, modifying w_{3} to $v_{3}=$ $w_{3}-\frac{\left\langle w_{3}, w_{2}\right\rangle}{\left\|w_{2}\right\|^{2}} w_{2}=w_{3}-\frac{1}{2} w_{2}=\left(\frac{1}{2}, \frac{1}{2},-1\right)$. Now that $\left\{w_{1}, w_{2}, v_{3}\right\}$ is orthogonal, we normalize to get an orthonormal basis of eigenvectors $\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,-1,0), \frac{1}{2} \sqrt{\frac{3}{2}}(1,1,-2)\right\}$.
7. We eliminate the $x y$-term by orthogonally diagonalizing the matrix

$$
A=\left(\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right)
$$

since $4 x^{2}+2 x y+4 y^{2}=X^{t} A X$ where $X=\binom{x}{y}$. Remembering the handy formula, A has characteristic polynomial $t^{2}-8 t+15=(t-3)(t-5)$, so its eigenvalues are 3 and 5 . To find the eigenvectors, we see that

$$
A-3 I=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad A-5 I=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

each have rank 1 (as expected), and have null spaces generated by $w_{1}=(1,-1)$ and $w_{2}=(1,1)$, respectively. Now we find an orthonormal basis of eigenvectors. Since A is symmetric, it is normal, hence eigenspaces for different eigenvalues are orthogonal. Indeed, $\left\langle w_{1}, w_{2}\right\rangle=0$, so we just need to normalize. So $\left\{\frac{1}{\sqrt{2}}(1,-1), \frac{1}{\sqrt{2}}(1,1)\right\}$ is an orthonormal basis of eigenvectors. Hence the change of basis matrix $Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ to this new basis will orthogonally diagonalize A. Indeed, $Q^{t} A Q=D=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$, equivalently, $A=Q D Q^{t}$. Letting $X^{\prime}=\binom{x^{\prime}}{y^{\prime}}=Q^{t} X=\frac{1}{\sqrt{2}}\binom{x+y}{-x+y}$, then we have

$$
4 x^{2}+2 x y+4 y^{2}=X^{t} A X=X^{t}\left(Q D Q^{t}\right) X=\left(X^{t} Q\right) D\left(Q^{t} X\right)=X^{\prime t} D X^{\prime}=3 x^{\prime 2}+5 y^{\prime 2}
$$

So after this change of basis, we have $3 x^{\prime 2}+5 y^{\prime 2}=1$, which is a standard form for an ellipse (i.e., $\left(x^{\prime} / a\right)^{2}+\left(y^{\prime} / b\right)^{2}=1$ with $a=\frac{1}{\sqrt{3}}, b=\frac{1}{\sqrt{5}}$). We can even rewrite the equation

$$
4 x^{2}+2 x y+4 y^{2}=\left(\frac{x+y}{\sqrt{2 / 3}}\right)^{2}+\left(\frac{-x+y}{\sqrt{2 / 5}}\right)^{2}=1 .
$$

