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Section I

1. Determine whether the following statements are always true (T), sometimes true/sometimes false (T/F),
or always false (F). You do not need to justify your answer.

a) T
b) T
c) F
d) T/F
e) T/F
f) F
g) T

2. Let P = (1, 2, 3), Q = (3, 5, 7), and R = (2, 5, 3).

• A normal vector at P through the plane through P , Q, and R is
−−→
PQ×

−→
PR = −12~ı + 4~ + 3~k. So an

equation for the plane is −12x+ 4y + 3z = 5.

• A unit normal vector to this plane: 12
13~ı−

4
13~−

3
13
~k.

• The angle between
−−→
PQ and

−→
PR: cos−1

(
11√
290

)
.

• The area of the triangle with vertices P , Q, and R: 13
2 .

• The shortest distance from R to the line through P and Q: 13√
29

, hint use the fact that you already

know the area of the triangle, this distance is the “height” if the base is along the line from P to Q.

3. Finding tangent planes.

a) Let S = {x2 − y2 = 3} ⊂ R2 and P = (2, 1).
• A normal vector to the curve S at the point P : 4~ı− 2~.
• A parameterization of the tangent line to S at P : (A fact about vectors in the plane: the

vector −b~ı + a~ is perpendicular to the vector a~ı + b~.) So 2~ı + 4~ is a vector perpendicular to
4~ı− 2~, so 2~ı + 4~ is tangent to the curve at (2, 1), then we can parameterize the tangent line as
γ(t) = (2 + 2t, 1 + 4t).

b) Let S = {z2 − 2xyz = x2 + y2} and P = (1, 2,−1).

• A normal vector to the surface S at the point P : 2~ı− 2~− 6~k.
• An equation of the tangent plane to S at P : 2x− 2y − 6z = 4.

4. Let f(x, y) = x−y
x2+1

and P = (1, 1, 0).

• A normal vector to the graph of f at P : 1
2~ı−

1
2~− ~k.

• An equation of the tangent plane of the graph of f at P : x− y − 2z = 0.

• A tangent vector to the graph of f at P pointing in the direction of steepest ascent: 1
2~ı−

1
2~ + 1

2
~k.

Section II

5. Determine whether the following statements are always true, sometimes true/sometimes false, or always
false. You do not need to justify your answer.

a) F
b) F



c) T/F
d) F
e) T/F

6. Compute the following line integrals
∫
γ
~F .

a) 98
3

b) 14
3

c) 0
d) 1

2

7. For each vector field ~F find (and sketch) the region of definition, determine if the region is simply

connected, and determine if ~F is path-independent.

a) Region: y 6= 0, i.e. off the x-axis, is simply connected. Path-independent by scalar curl test.
b) Region: x2 + y2 > 1, i.e. off the disk of radius 1 centered at the origin, not simply connected. Path-

independent, this fails all tests, you need to search for the potential function directly!
c) x2 > 1 and y2 > 1, i.e. |x| > 1 and |y| > 1, i.e. off the square of side length 2 centered at the origin,

not simply connected. Not path-independent by scalar curl test.
d) y ≤ 1− x2, i.e. underneath a downward facing parabola, simply connected. Not path-independent by

scalar curl test.

8. Change the order of integration of
∫ 1
z=0

∫ z2
y=0

∫ 2
x=y f(x, y, z) dxdydz in all the other 5 possible ways. You

have to draw 5 pictures! You change two adjacent integrals at a time, pretending that the other one is
invisible, and working the the appropriate plane.

• Changing the y and z integrals means drawing a picture in the y-z-plane of the limits on the y and z
integrals, pretending that the x integral isn’t there. Doing this we get∫ 1

y=0

∫ 1

z=
√
y

∫ 2

x=y
f(x, y, z) dxdzdy.

• From here, changing x and z, we see that the limits of both the x and z integrals only depend on
constants and y, which because it is a constant at this point (but to be integrated at the end, to be
sure), the limits are just constant with respect to x and y, so we’re integrating over a “box.” By
Fubini’s theorem, ∫ 1

y=0

∫ 2

x=y

∫ 1

z=
√
y
f(x, y, z) dzdxdy.

• From here, changing x and y, we see that we have to break the region into two pieces∫ 1

x=0

∫ x

y=0

∫ 1

z=
√
y
f(x, y, z) dzdydx+

∫ 2

x=1

∫ 1

y=0

∫ 1

z=
√
y
f(x, y, z) dzdydx.

• Now going back to the original integral and changing the x and y integrals, we see that for fixed z
between 0 and 1, the picture of 0 ≤ y ≤ z2, y ≤ x ≤ 2 has two pieces when x is independent. So
changing x and y breaks the integral into two pieces∫ 1

z=0

∫ z2

x=0

∫ x

y=0
f(x, y, z) dydxdz +

∫ 1

z=0

∫ 2

x=z2

∫ z2

y=0
f(x, y, z) dydxdz.

• Finally, only the “dydzdx” integral remains, which we get from changing the x and z integrals from
above. For each integral, remembering that z is a constant with respect to the x and y integrals, draw
a picture: the first is the triangle and the second is a square. Changing finally gives:∫ 1

z=0

∫ z2

y=0

∫ z2

x=y
f(x, y, z) dxdydz +

∫ 1

z=0

∫ z2

y=0

∫ 2

x=z2
f(x, y, z) dxdydz.



9. Computing volumes of general solids.

a) Let a, b, c be positive numbers. Find the volume of the region between the coordinate planes and the
plane ax+ by + cz = 1.

Here’s one method: find above what part of the x-y-plane does the given plane lay then integrate
z = 1

c (1 − ax − by). Note that if any of a, b, or c is zero, then this plane is parallel to one axis, so
the volume in question is infinite. This region in the x-y-plane is bounded by the x-axis, the y-axis,
and where the plane intersects the x-y-plane, i.e. by setting z = 0, this gives ax+ by = 1. This line in
the x-y-plane intersects the x-axis at x = 1

a , so the region on the x-axis can be given by 0 ≤ x ≤ 1
a ,

0 ≤ y ≤ 1
b (1− ax). Finally the integral is

∫ 1
a

x=0

∫ 1
b
(1−ax)

y=0

1

c
(1− ax− by) dydx =

1

6abc

b) Find the volume of the solid formed by drilling out a cylindrical hole of radius a through the center
of a sphere of radius R. Of course, we assume that 0 ≤ a ≤ R.

We’ll use cylindrical coordinates and put the sphere with center at the origin and hole being drilled
out along the z-axis. The radius r can go from the radius of the cylinder a to the radius of the sphere
R while the height z goes from the bottom of the sphere to the top. This gets set up as:

∫ 2π

θ=0

∫ R

r=a

∫ −√R2−r2

z=−
√
R2−r2

r drdzdθ =
4π

3
(R2 − a2)3/2.

Or in the other direction, the radius R forms a right triangle with the height of the shape (from the

x-y-axis) as one side and the hole radius a as one side, so this height is
√
R2 − a2. Then the integral

that needs to be set up is:

∫ 2π

θ=0

∫ √R2−a2

z=−
√
R2−a2

∫ √R2−z2

r=a
r drdzdθ =

4π

3
(R2 − a2)3/2.

Do which ever you like better!

Section III

10. Determine whether the following statements are always true, sometimes true/sometimes false, or always
false. You do not need to justify your answer.

a) T/F. If f is purely a function of x and g is purely a function of y, then this statement is true. If both
f and g depend on both x and y, then this statement need not be true.

b) T. Both integrals represent the integral of f over the region below the plane x+ y + z = 1 and above
the x-y-axis.

c) T/F. This is true for the function f(x, y) = 1/2, but in general, using the change of variables theorem
with x = u, y = 2v, we see that the box 0 ≤ u ≤ 2, 0 ≤ v ≤ 1 in the u-v-plane is mapped to the box
0 ≤ x ≤ 2, 0 ≤ y ≤ 2 in the x-y-plane. You should check that the change of variables theorem does
not take one integrand to the other under this mapping! So probably it isn’t true in general. Check

with a simple example:
∫ 1

0

∫ 2
0 y dxdy = 1 yet

∫ 2
0

∫ 2
0 2y dxdy = 4 6= 2.

d) T. For example, if R is a region in the x-y-plane, and f(x, y) is a nonnegative function, then
∫
R f is

the volume of the region below the graph of f and above R.
e) T. The flux of each face will cancel with the flux of the opposite face.
f) T. You can use the divergence theorem.



11. Let Ra be the upper hemisphere of the solid sphere of some radius a > 0 centered at the origin. In
spherical coordinates, we have∫

Ra

z dxdydz =

∫ 2π

θ=0

∫ π/4

φ=0

∫ a

ρ=0
ρ cos(φ) ρ2 sin(φ) dρdφdθ

= 2π

∫ π/4

φ=0

a4

4
cos(φ) sin(φ) dφ =

πa4

2

1

2
sin2(φ)

∣∣∣π/4
φ=0

=
πa4

4
.

Side note for physics people: this says that the z-coordinate of the center of mass of Ra (thought of with

constant density) is 3
2πa3

πa4

4 . So the center of mass is at the point (0, 0, 3a
8 ). Makes sense!

12. Let R be the polyhedral region with vertices (0, 0), (2, 5), (1, 2), and (3, 7). To calculate
∫
R xy

2 dxdy,

we use the change of coordinates Φ(s, t) =
(

1 2
2 5

)(
s
t

)
= (s + 2t, 2s + 5t) = (x(s, t), y(s, t)). So this makes

x(s, t) = s+ 2t and y(s, t) = 2s+ 5t. This transforms the unit square into R. So now you’re integrating the
function (s+ 2t)(2s+ 5t)2 over the unit square in the s-t-plane. You can calculate this integral, which turns
out to be 29.

13. Let S be the region contained in the closed curve x2 − xy + y2 = 1. Compute
∫
S xy dxdy by using the

change of coordinates x = s− 1√
3
t, y = s+ 1√

3
t. Notice that substituting in the change of variables yields:

1 =

(
s− 1√

3
t

)2

−
(
s− 1√

3
t

)(
s+

1√
3
t

)
+

(
s+

1√
3
t

)2

= s2 + t2

so that the unit disk R in the s-t-plane maps under Φ(s, t) = (s − 1√
3
t, s + 1√

3
t) to the region S in the

x-y-plane. Now to compute the jacobian matrix and its determinant

J(s,t)Φ =

(
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

)
=

(
1 − 1√

3

1 1√
3

)
, det J(s,t)Φ =

2√
3
.

Finally, the integral is, using the change of variables theorem:∫
Φ(R)

xy dxdy =

∫
R

(s− 1√
3
t)(s+

1√
3
t)

2√
3
dsdt =

2√
3

∫
R

(s2 − 1

3
t2) dsdt =

π

3
√

3
,

by integrating over the unit circle (at this point you probably want to switch to polar coordinates)!

14. Let S be the surface given by the cyclinder x2 + y2 = 1 above the x-y-plane of height 4.

a) A parameterization for S, including limits: ϕ(t, s) = (cos(t), sin(t), s) where 0 ≤ t ≤ 2π and 0 ≤ s ≤ 4.
(See CM chapter 17.5 for more information on parameterizing surfaces!)

b) First, we can calculate ∂ϕ
∂s and ∂ϕ

∂t :

∂ϕ

∂s
=
∂ϕ1

∂s
~ı +

∂ϕ2

∂s
~ +

∂ϕ3

∂s
~k = ~k

∂ϕ

∂t
=
∂ϕ1

∂t
~ı +

∂ϕ2

∂t
~ +

∂ϕ3

∂t
~k = − sin(t)~ı + cos(t)~.

Then we have

∂ϕ

∂s
× ∂ϕ

∂t
= cos(t)~ı + sin(t)~.



Then the flux integral of ~F (x, y, z) = x~ı + y~ along S is∫
S

~F =

∫ 2π

t=0

∫ 4

s=0

~F (cos(t), sin(t), s) ·
(
∂ϕ

∂s
× ∂ϕ

∂t

)
dsdt

=

∫ 2π

t=0

∫ 4

s=0
(cos(t)~ı + sin(t)~) · (cos(t)~ı + sin(t)~) dsdt

=

∫ 2π

t=0

∫ 4

s=0
dsdt = 8π.
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