Math 8 Show all your work!

1. (5 points) Does the integral

$$
\int_{0}^{\infty} x e^{-x^{2}} d x
$$

converge? If so, to what value does it converge?
2. (5 points each) Which of the following series converge or diverge? Justify your answers:
(a)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{4}}{e^{n}}
$$

(b)

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{(2 n+1)!}
$$

Math 8 Show all your work!
(c)

$$
\sum_{n=1}^{\infty} \frac{n^{2}+1}{n(n+1)^{2}}
$$

3. (10 points) Find a power series representation for

$$
f(x)=\arctan (3 x)
$$

around $x=0$ and determine its radius of convergence.

Math 8 Show all your work!
4. (25 points total) Let $f(x, y)=x \sin (y)$
(a) (5 points) Find $f_{x}, f_{y}, f_{x x}, f_{y y}, f_{x y}$.
(b) (5 points) What are the critical points of f ?
(c) (5 points) Classify the critical points of f.
(d) (10 points) Find the absolute maximum and minimum of f on the region given by $-1 \leq x \leq 1$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.
5. (15 points total) The temperature at a point (x, y) is given by

$$
T(x, y)=200 e^{-x^{2}-3 y^{2}}
$$

where T is measured in degrees centigrade and x, y in meters.
(a) (5 points) Find the rate of change of the temperature at the point $(2,-1)$ in the direction toward the point $(3,-3)$.
(b) (5 points) At this same point, in which direction does the temperature change the fastest?
(c) (5 points) What is the maximal rate of increase at this point?
6. (15 points total) Let S be the surface given by $z=f(x, y)$ where $f(x, y)=$ (a) (5 points) Find ∇f.
(b) (5 points) What is the equation of tangent plane to S at the point $(1,-1,1)$?
(c) (5 points) Use a linear approximation of this function at $(1,-1,1)$ to approximate the value of the function f at the point (1.1, -1.2).

Math 8 Show all your work!

7. (15 total)
(a) (10) Evaluate

$$
\int \sec ^{3}(\theta) d \theta
$$

Hint: use integration by parts

Math 8 Show all your work!
(b) (5) Evaluate the integral

$$
\int_{0}^{1} \sqrt{1+s^{2}} d s
$$

Math 8 Show all your work!
(c) (5) Find the arclength of $\vec{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $0 \leq t \leq 1$.

This page for scrap work.

This page for scrap work.

This page for scrap work.

NAME (Print!):
Check one: Hladky (11:15):
Pauls (1:45):
\qquad
\qquad

Math 8
3/13/2005
Final Exam

Problem	Points	Score
1	5	
2	15	
3	10	
4	25	
5	15	
6	15	
7	15	
Total	100	

