Math 8 Midterm Exam I Answers, Winter 2004

1.) Short Answer

(i)
$$\lim_{n \to \infty} \frac{n^3 - 3\sqrt{n} + 5\cos(n^3)}{n^2 - 1 - 2n^3} = -\frac{1}{2}$$

(ii) The radius of convergence of the power series $\sum_{n=5}^{\infty} \frac{(2x+5)^n}{n^2 3^n}$ is $R = \frac{3}{2}$.

- (iii) $-3 + \frac{5}{3} \frac{25}{9} + \frac{125}{27} \cdots = \underline{\text{divergent series}}$ since it is a geometric series with $r = -\frac{5}{3}$ and $|r| = \frac{5}{3} > 1$.
- (iv) The general solution of $y' = y + \frac{1}{y}$, y > 0, is $y = \sqrt{Ce^{2x} 1}$.
- (v) A mass of 2 kg is attached to a horizontal spring that has a natural length of 3 meters. A force of 6 N is required to stretch the spring to a length of 3.5 meters. The damping constant is 14. If y(t) is the disaplement of the mass from equilibrium at time t, then y(t) satisfies what differential equation?

Answer: y'' + 7y' + 6y = 0.

2.) True or False

- (i) True: The modulus of 3 4i is the real number 5.
- (ii) False: The complex conjugate of 3 4i is the complex number -3 + 4i.
- (iii) True: The general solution of the ODE 6y'' = -4y has the general form $y = C_1 \cos(\beta x) + C_2 \sin(\beta x).$
- (iv) True: The differential equation $x\frac{dy}{dx} = xy^2 5y^2$ is separable. (v) False: The differential equation 3y'' 8y' + 7y 4x = 0 is a second-order, constant coefficient, linear, homogeneous differential equation.
- (vi) False: Let $a_n = n!/n^{100}$. Then the sequence $\{a_n\}_{n=1}^{\infty}$ converges to zero.
- (vii) False: The imaginary part of the complex number z = (1 2i)(1 + 3i) is -6.

- (viii) False: If $\lim_{n\to\infty} a_n = 0$ then $\sum_{n=1}^{\infty} a_n$ converges to a limit. (ix) True: If $\lim_{k\to\infty} |a_{k+1}/a_k| = 0.5$ then $\sum_{n=1}^{\infty} a_n$ converges. (x) True: The Maclaurin series for $\cos(7x^2)$ converges for all real values of x.

3.) Multiple Choice

(i) A square root of the complex number w = -4i can be written in the form

$$z = 2(\cos(\theta) + i\sin(\theta))$$

where the angle θ is given by:

C. $\theta = \frac{3\pi}{4}$

(ii) The function $y = c_1 e^{-t} + c_2 e^{4t}$, where c_1 and c_2 are constants, is a general solution to which differential equation?

B. y'' - 3y' - 4y = 0

(iii) The Taylor polynomial of degree 3 centered at a = 0 for the function $f(x) = xe^{2x}$ is:

B. $x + 2x^2 + 2x^3$

(iv) The direction field for the differential equation y' = y/x is represented by which diagram?

Diagram D:

Problem 4.) Consider the following first-order linear differential equation:

$$4y' - 12y - 60x = 0$$

(i) Write this equation in standard form $\frac{dy}{dx} + P(x)y = Q(x)$.

Answer: $\frac{dy}{dx} - 3y = 15x$. P(x) = -3 and Q(x) = 15x.

(ii) The differential equation in part (i.) becomes easier if we multiply both sides by what function I(x)?

Answer: $I(x) = e^{-3x}$.

(iii) Find the general solution to the above differential equation.

Answer: $y = -5(x + \frac{1}{3}) + Ce^{3x}$.

(iv) Find the unique solution that passes through the point $\left(-\frac{1}{3}, \frac{4}{e}\right)$.

Answer: C = 4 so $y = -5(x + \frac{1}{3}) + 4e^{3x}$.

Problem 5.) A tank initially contains 1,000 liters of pure water. Brine containing 0.05 kilograms of salt per liter enters through one pipe at 5 liters per minute. Brine containing 0.035 kilograms of salt per liter enters through a second pipe at a rate of 10 liters/min. Water is draining through a hose in the bottom at a rate of 15 liters/min. The tank is kept thoroughly mixed at all times.

Let x(t) be the amount of salt (in kg) present in the tank after t minutes.

(i) What differential equation describes how the salt content of the tank changes wrt time?

Answer: $\frac{dx}{dt} = \frac{600 - 15x}{1000}$

(ii) What is the general solution to the differential equation in part (i)?

Answer: $x(t) = 40 - Ce^{-15t/1000}$

(iii) What additional piece of information allows one to **uniquely** determine the amount of salt present at time t?

Answer: x(0) = 0.

(iv) How much salt is present in the tank at time t?

Answer: $C = 40 \implies x(t) = 40(1 - e^{-15t/1000}).$

(v) After one hour?

Answer: $x(60) = 40(1 - e^{-0.9}).$

Problem 5.) Let $f(x) = \sin(x)$.

- (i) Find the Taylor polynomial $T_2(x)$ of degree 2 for f centered at $a = \frac{\pi}{3}$. Answer: $T_2(x) = \frac{\sqrt{3}}{2} + \frac{1}{2}(x - \frac{\pi}{3}) - \frac{\sqrt{3}}{4}(x - \frac{\pi}{3})^2$.
- (ii) Use T_2 to estimate $\sin(\frac{\pi}{3} + \frac{1}{2})$. Express your answer as a fraction $\frac{a}{b}$. Answer: $\sin(\frac{\pi}{3} + \frac{1}{2}) \approx T_2(\frac{\pi}{3} + \frac{1}{2}) = \frac{7\sqrt{3}+4}{16}$.
- (iii) Find an upper bound for the absolute error in approximating $\sin(\frac{\pi}{3} + \frac{1}{2})$ with $T_2(\frac{\pi}{3} + \frac{1}{2})$.

$$f^{(3)}(x) = -\cos(x) \implies |f^{(3)}(x)| = |\cos(x)| \le 1 = M.$$

$$|f(x) - T_2(x)| = |R_2(x)| \le \frac{M|x - \frac{\pi}{3}|^3}{3!} = \frac{|x - \frac{\pi}{3}|^3}{6}$$

When $x = \frac{\pi}{3} + \frac{1}{2}$ we get $|R_2(\frac{\pi}{3} + \frac{1}{2})| \le \frac{(1/2)^3}{6} = \frac{1}{48} = E.$
Answer: $E = \frac{1}{48}$ is an upper bound for the absolute error.