Math 8 Midterm Exam I Answers, Winter 2004

1.) Short Answer

(i) $\lim _{n \rightarrow \infty} \frac{n^{3}-3 \sqrt{n}+5 \cos \left(n^{3}\right)}{n^{2}-1-2 n^{3}}=-\frac{1}{2}$
(ii) The radius of convergence of the power series $\sum_{n=5}^{\infty} \frac{(2 x+5)^{n}}{n^{2} 3^{n}}$ is $R=\frac{3}{2}$.
(iii) $-3+\frac{5}{3}-\frac{25}{9}+\frac{125}{27}-\cdots=$ divergent series since it is a geometric series with $r=-\frac{5}{3}$ and $|r|=\frac{5}{3}>1$.
(iv) The general solution of $y^{\prime}=y+\frac{1}{y}, \quad y>0$, is $y=\sqrt{C e^{2 x}-1}$.
(v) A mass of 2 kg is attached to a horizontal spring that has a natural length of 3 meters. A force of 6 N is required to stretch the spring to a length of 3.5 meters. The damping constant is 14 . If $y(t)$ is the disaplcement of the mass from equilibrium at time t, then $y(t)$ satisfies what differential equation?

Answer: $y^{\prime \prime}+7 y^{\prime}+6 y=0$.

2.) True or False

(i) True: The modulus of $3-4 i$ is the real number 5 .
(ii) False: The complex conjugate of $3-4 i$ is the complex number $-3+4 i$.
(iii) True: The general solution of the ODE $6 y^{\prime \prime}=-4 y$ has the general form $y=C_{1} \cos (\beta x)+C_{2} \sin (\beta x)$.
(iv) True: The differential equation $x \frac{d y}{d x}=x y^{2}-5 y^{2}$ is separable.
(v) False: The differential equation $3 y^{\prime \prime}-8 y^{\prime}+7 y-4 x=0$ is a second-order, constant coefficient, linear, homogeneous differential equation.
(vi) False: Let $a_{n}=n!/ n^{100}$. Then the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to zero.
(vii) False: The imaginary part of the complex number $z=(1-2 i)(1+3 i)$ is -6 .
(viii) False: If $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum_{n=1}^{\infty} a_{n}$ converges to a limit.
(ix) True: If $\lim _{k \rightarrow \infty}\left|a_{k+1} / a_{k}\right|=0.5$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
(x) True: The Maclaurin series for $\cos \left(7 x^{2}\right)$ converges for all real values of x.

3.) Multiple Choice

(i) A square root of the complex number $w=-4 i$ can be written in the form

$$
z=2(\cos (\theta)+i \sin (\theta))
$$

where the angle θ is given by:
C. $\theta=\frac{3 \pi}{4}$
(ii) The function $y=c_{1} e^{-t}+c_{2} e^{4 t}$, where c_{1} and c_{2} are constants, is a general solution to which differential equation?
B. $y^{\prime \prime}-3 y^{\prime}-4 y=0$
(iii) The Taylor polynomial of degree 3 centered at $a=0$ for the function $f(x)=$ $x e^{2 x}$ is:
B. $x+2 x^{2}+2 x^{3}$
(iv) The direction field for the differential equation $y^{\prime}=y / x$ is represented by which diagram?

Diagram D:
Problem 4.) Consider the following first-order linear differential equation:

$$
4 y^{\prime}-12 y-60 x=0
$$

(i) Write this equation in standard form $\frac{d y}{d x}+P(x) y=Q(x)$.

Answer: $\frac{d y}{d x}-3 y=15 x . P(x)=-3$ and $Q(x)=15 x$.
(ii) The differential equation in part (i.) becomes easier if we multiply both sides by what function $I(x)$?

Answer: $I(x)=e^{-3 x}$.
(iii) Find the general solution to the above differential equation.

Answer: $y=-5\left(x+\frac{1}{3}\right)+C e^{3 x}$.
(iv) Find the unique solution that passes through the point $\left(-\frac{1}{3}, \frac{4}{e}\right)$.

Answer: $C=4$ so $y=-5\left(x+\frac{1}{3}\right)+4 e^{3 x}$.
Problem 5.) A tank initially contains 1,000 liters of pure water. Brine containing 0.05 kilograms of salt per liter enters through one pipe at 5 liters per minute. Brine containing 0.035 kilograms of salt per liter enters through a second pipe at a rate of 10 liters $/ \mathrm{min}$. Water is draining through a hose in the bottom at a rate of 15 liters/min. The tank is kept thoroughly mixed at all times.

Let $x(t)$ be the amount of salt (in kg) present in the tank after t minutes.
(i) What differential equation describes how the salt content of the tank changes wrt time?

Answer: $\frac{d x}{d t}=\frac{600-15 x}{1000}$
(ii) What is the general solution to the differential equation in part (i)?

Answer: $x(t)=40-C e^{-15 t / 1000}$
(iii) What additional piece of information allows one to uniquely determine the amount of salt present at time t ?

Answer: $x(0)=0$.
(iv) How much salt is present in the tank at time t ?

Answer: $C=40 \Longrightarrow x(t)=40\left(1-e^{-15 t / 1000}\right)$.
(v) After one hour?

Answer: $x(60)=40\left(1-e^{-0.9}\right)$.
Problem 5.) Let $f(x)=\sin (x)$.
(i) Find the Taylor polynomial $T_{2}(x)$ of degree 2 for f centered at $a=\frac{\pi}{3}$.

Answer: $T_{2}(x)=\frac{\sqrt{3}}{2}+\frac{1}{2}\left(x-\frac{\pi}{3}\right)-\frac{\sqrt{3}}{4}\left(x-\frac{\pi}{3}\right)^{2}$.
(ii) Use T_{2} to estimate $\sin \left(\frac{\pi}{3}+\frac{1}{2}\right)$. Express your answer as a fraction $\frac{a}{b}$.

Answer: $\sin \left(\frac{\pi}{3}+\frac{1}{2}\right) \approx T_{2}\left(\frac{\pi}{3}+\frac{1}{2}\right)=\frac{7 \sqrt{3}+4}{16}$.
(iii) Find an upper bound for the absolute error in approximating $\sin \left(\frac{\pi}{3}+\frac{1}{2}\right)$ with $T_{2}\left(\frac{\pi}{3}+\frac{1}{2}\right)$.
$f^{(3)}(x)=-\cos (x) \Longrightarrow\left|f^{(3)}(x)\right|=|\cos (x)| \leq 1=M$.
$\left|f(x)-T_{2}(x)\right|=\left|R_{2}(x)\right| \leq \frac{M\left|x-\frac{\pi}{3}\right|^{3}}{3!}=\frac{\left|x-\frac{\pi}{3}\right|^{3}}{6}$
When $x=\frac{\pi}{3}+\frac{1}{2}$ we get $\left|R_{2}\left(\frac{\pi}{3}+\frac{1}{2}\right)\right| \leq \frac{(1 / 2)^{3}}{6}=\frac{1}{48}=E$.
Answer: $E=\frac{1}{48}$ is an upper bound for the absolute error.

