
Sample Solutions to Practice Problems for
Exam I

Math 11 Fall 2007

October 17, 2008

In these solutions I have shown enough work to get full credit on an exam.
Parenthetical comments are extra, for your benefit.

1. TRUE or FALSE: There is a function f : R2 → R such that

∂f

∂x
= y and

∂f

∂y
= x2.

Solution: FALSE

(If there were such a function, then its mixed second partial derivatives
would be

∂2f

∂y∂x
= 1

∂2f

∂x∂y
= 2x.

These functions are continuous and unequal, but by Clairaut’s The-
orem, if a function has continuous second partial derivatives then its
mixed second partials must be equal.)

2. TRUE or FALSE: There is a function f : R2 → R such that

∂f

∂x
= x and

∂f

∂y
= y2.

Solution: TRUE

(An example is f(x, y) =
x2

2
+
y3

3
+ 8. This is not a straightforward

problem for us at this point, although we can check that the mixed
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partials are equal, so Clairaut’s Theorem doesn’t rule out such an f .
We can hope that this means there is such an f .

To be sure of this, you can look for an f that works. There are two
ways you could have gone about this. One is to notice that fx depends
only on x and fy depends only on y, and guess that therefore f is gotten
by adding together two pieces, one depending on x and the other on
y. The other is to guess that a function whose partial derivatives are
degree-2 polynomials must itself be a degree-3 polynomial,

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j,

where a . . . j are constants, then to find the partial derivatives of such
a polynomial, and solve for the constants a..j that give us fx = x and
fy = y2.)

3. Find the directional derivative of the function

f(x, y, z) = 3xy + z2

at the point (1, −2, 2) in the direction from that point toward the
origin.

Solution:

Vector from that point toward the origin:

v = 〈−1, 2, −2〉

Unit vector in that direction:

u =
1

||v||
v =

〈
−1

3
,

2

3
,
−2

3

〉
Directional derivative in direction u

Duf((1, −2, 2) = ∇f(1, −2, 2) · u

∇f(x, y, z) = 〈3y, 3x, 2z〉 ∇f(1, −2, 2) = 〈−6, 3, 4〉

Duf((1, −2, 2) = ∇f(1, −2, 2) · u = 〈−6, 3, 4〉 ·
〈
−1

3
,

2

3
,
−2

3

〉
=

4

3
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4. A skier is on a mountain with equation

z = 100− 0.4x2 − 0.3y2,

where z denotes height.

(a) The skier is located at the point with xy-coordinates (1, 1), and
wants to ski downhill along the steepest possible path. In which
direction (indicated by a vector (a, b) in the xy-plane) should the
skier begin skiing?

Solution:

Direction of greatest rate of decrease is opposite of direction of
gradient.

∇g(x, y) = 〈−0.8x, −0.6y〉

∇g(1, 1) = 〈−0.8, −0.6〉 ||∇g(1, 1)|| = 1

Gradient vector is already a unit vector, so unit vector in opposite
direction is

u = −∇g(1, 1) = 〈0.8, 0.6〉

(b) The skier begins skiing in the direction given by the xy-vector
(a, b) you found in part (a), so the skier heads in a direction in
space given by the vector (a, b, c). Find the value of c.

Solution:

The directional derivative in the direction u (or (a, b)),

Dug(1, 1) = ∇g(1, 1) · u = (−u) · u = −1

gives the slope. which is the ratio of vertical change to horizon-
tal change. In the direction of the vector 〈a, b, c〉, this ratio is

c√
a2 + b2

. So

Dug(1, 1) =
c√

a2 + b2
=
c

1
= c.

c = Dug(1, 1) = −1

3



(c) A hiker located at the same point on the mountain decides to
begin hiking downhill in a direction given by a vector in the xy-
plane that makes an angle θ with the vector (a, b) you found in
part (a). How big should θ be if the hiker wants to head downhill
along a path whose slope is at most 0.5 (in absolute value)?

Solution: If the hiker’s direction is given by a unit vector v, we
want

−0.5 ≤ Dv(1, 1) ≤ 0

The angle v makes with u (that is, with (a, b)) is the same as the
angle −v makes with −u (that is, with ∇g(1, 1)). We have

Dv(1, 1) = ∇g(1, 1) · v = −(∇g(1, 1) · (−v)) =

−(||∇g(1, 1)|| cos θ) = − cos θ

So we want
−0.5 ≤ − cos θ ≤ 0

0 ≤ cos θ ≤ 0.5

π

2
≥ θ ≥ π

3

5. Suppose that f : R3 → R is a differentiable function, u is a unit vector
in R3, and r : R → R3 is a differentiable function representing the
position of a moving object as a function of time. Let g(t) be the value
of f at the object’s position at time t. Show that if at time t0 the
object is at position (x0, y0, z0) moving in the direction u with a speed
of 1, then g′(t0) = Duf(x0, y0, z0).

This problem calls for a mathematical argument, not a proof via intu-
itive physical reasoning.

Solution:

Let us set w = f(x, y, z), and write r in terms of its components as
r(t) = 〈r1(t), r2(t), r3(t)〉 = 〈x, y, z〉. We have that w is a function of
x, y and z, and x, y and z are functions of t, so w is a function of t
(w = g(t)) and by the Chain Rule

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
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dw

dt
=

〈
∂w

∂x
,
∂w

∂y
,
∂w

∂z

〉
·
〈
dx

dt
,
dy

dt
,
dz

dt

〉
or rewriting this in terms of the functions and noting where these func-
tions are to be evaluated,

g′(t) = ∇f(r1(t), r2(t), r3(t)) · r′(t) = ∇f(r(t)) · r′(t)

When t = t0 we have r(t0) = 〈x0, y0, z0〉. Also, r′(t0) is the velocity of
the moving object at time t0. The velocity is a vector in the direction
of motion (in this case, in the direction of u) whose magnitude is the
speed (in this case, 1). Since u is a unit vector, a vector of length 1 in
the direction of u is just u, and so r′(t0) = u. Substituting back into
our expression for g′(t), we have

g′(t0) = ∇f(r(t0)) · r′(t0) = ∇f(x0, y0, z0) · u = Duf(x0, y0, z0)

6. Let f(x, y, z) = x2 − y2 + xyz and v = 〈3, 4, 12〉.

(a) Find the directional derivative of f in the direction of the vector
v at the point (1, 2, −1).

Solution:

A unit vector in the direction of v is

u =
1

||v||
v =

1√
169
〈3, 4, 12〉 =

〈
3

13
,

4

13
,

12

13

〉
At the point (1, 2, −1) we have

∇f(x, y, z) = 〈2x+ yz, −2y + xz, xy〉

∇f(1, 2, −1) = 〈0, −5, 2〉
The directional derivative is

Duf(1, 2, −1) = ∇f(1, 2, −1)·u = 〈0, −5, 2〉·
〈

3

13
,

4

13
,

12

13

〉
=

4

13

(b) Let r(t) be a differentiable function giving the position of a moving
object as a function of time, such that at time t = 0 the object is
at the point (1, 2, −1) moving in the direction of v at a speed of
1. Compute r ′(0).
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Solution:

This is the velocity of the object at t = 0. The velocity is a vector
in the direction of motion (the direction of v) whose length is the
speed (1). A vector of length 1 in the direction of v is the vector
u we computed in part (a):

r′(0) =

〈
3

13
,

4

13
,

12

13

〉
(c) Consider the same moving object whose position function is given

in part (b). Let g(t) be the value of f at the object’s position at
time t. Find g′(0).

Solution: By the Chain Rule we have

(f ◦r)′(0) = f ′(r(0))·r′(0) = ∇f(r(0))·r′(0) = ∇f(1, 2, −1)·r′(0)

= 〈0, −5, 2〉 ·
〈

3

13
,

4

13
,

12

13

〉
=

4

13

7. Sometimes a surface in R3 is easiest to picture by expressing z as a
function of polar coordinates r and θ. We may still want to find the
partial derivatives of z with respect to x and y, for example, to draw
the gradient field.

Give expressions for
∂z

∂x
and

∂z

∂y
in terms of

∂z

∂r
,
∂z

∂θ
, r and θ. Your

expressions should be valid when x > 0.

Recall that when x > 0 rectangular (Euclidean) and polar coordinates
are related by the formulas

x = r cos(θ) y = r sin(θ)

r =
√
x2 + y2 θ = arctan

(y
x

)
,

where arctan is the inverse tangent function.

Solution:

By the Chain Rule we have

∂z

∂x
=
∂z

∂r

∂r

∂x
+
∂z

∂θ

∂θ

∂x
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∂z

∂y
=
∂z

∂r

∂r

∂y
+
∂z

∂θ

∂θ

∂y

Find the partials of r and θ:

r = (x2 + y2)
1
2

∂r

∂x
=

1

2
(x2 + y2)−

1
2 2x =

x√
x2 + y2

=
r cos θ

r
= cos θ

∂r

∂y
=

1

2
(x2 + y2)−

1
2 2y =

y√
x2 + y2

=
r sin θ

r
= sin θ

θ = arctan
(y
x

)
∂θ

∂x
=

1

1 + y2

x2

−y
x2

=
−y

x2 + y2
=
−r sin θ

r2
=
− sin θ

r

∂θ

∂y
=

1

1 + y2

x2

1

x
=

x

x2 + y2
=
r cos θ

r2
=

cos θ

r

Plug in:

∂z

∂x
=
∂z

∂r
cos θ +

∂z

∂θ

− sin θ

r

∂z

∂y
=
∂z

∂r
sin θ +

∂z

∂θ

cos θ

r

8. Find an equation for the tangent plane to the surface with equation

x2 − y2 + z2 = 4

at the point (2, 1, −1).

Solution:

This is a level surface of the function f(x, y, z) = x2 − y2 + z2 so a
normal vector to the level surface is ∇f(x, y, z) = 〈2x, −2y, 2x〉. A
normal vector to the tangent plane is

n = ∇f(2, 1, −1) = 〈4, −2, −2〉

and the equation of the plane is

〈4, −2, −2〉 · 〈x− 2, y − 1, z + 1〉 = 0
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4(x− 2)− 2(y − 1)− 2(z + 1) = 0

4x− 2y − 2z = 8

9. Find parametric equations for the line through the points

A = (1, 2, 3) and B = (2, 1, −1).

Solution:

Vector in direction of line:

~AB = 〈2, 1, −1〉 − 〈1, 2, 3〉 = 〈1, −1, −4〉

Vector equation of line:

r = 〈1, 2, 3〉+ t 〈1, −1, −4〉

(Parametric) scalar equations:

x = t+ 1 y = −t+ 2 z = −4t+ 3

10. Find an equation in the form Ax+By+C = D for the plane containing
the line

x− 1

2
= y + 1 =

z − 2

3

and the point C = (2, 0, 3).

Solution: Rewrite equation of line:

t =
x− 1

2
= y + 1 =

z − 2

3

〈x, y, z〉 = 〈2t+ 1, t− 1, 3t+ 2〉 = 〈1, −1, 2〉+ t 〈2, 1, 3〉

Vector parallel to line, therefore to plane:

〈2, 1, 3〉

Vector parallel to plane, between points 〈1, −1, 2〉 (on line) and 〈2, 0, 3〉:

〈2, 0, 3〉 − 〈1, −1, 2〉 = 〈1, 1, 1〉
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Vector normal to plane:

n = 〈2, 1, 3〉 × 〈1, 1, 1〉 = 〈−2, 1, 1〉

Equation of plane:

−2(x− 2) + 1(y) + 1(z − 3) = 0

−2x+ y + z = −1

11. Consider the lines L1 and L2 with vector equations

〈x, y, z〉 = 〈1, 2, 3〉+ t 〈a, 1, 0〉 and 〈x, y, z〉 = 〈2, 0, 1〉+ s 〈1, 1, 0〉

respectively. Is it possible to choose the constant a so that the lines
intersect? (This is not simply a “YES or NO” question. You must
explain how you arrived at your conclusion.)

Solution:

Rewrite the equations of the lines:

〈x, y, z〉 = 〈1 + at, 2 + t, 3〉 and 〈x, y, z〉 = 〈2 + s, s, 1〉

We see that, whatever the value of a, every point on L1 has z-coordinate
3 and every point on L2 has z-coordinate 1. Therefore no point can be
on both lines, and the answer to the question is NO: It is not possible
to choose the constant a so that the lines intersect.

12. Suppose that u×v = 〈5, 1, 1〉, that u ·u = 4, and that v ·v = 9. Then
|u · v| is equal to:

(a) 2

(b) 3

(c) 4

(d) 5

(e) None of these.
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Solution:

(b) 3

(From the given information we see that |u × v| = |u||v| sin θ = 3
√

3,
where θ is the angle between the vectors, |u| = 2, and |v| = 3. We

can then figure out that sin θ =

√
3

2
and cos θ = ±1

2
. From this we see

u · v = |u||v| cos θ = ±3.)

13. Find the distance between the planes x+ y + z = 1 and x+ y + z = 4.

(a) 2

(b)
√

2

(c)
√

3

(d) 3

(e) None of these.

Solution:

(c)
√

3

(We can take any vector v between the planes, say the vector 〈3, 0, 0〉
between the points (1, 0, 0) and (4, 0, 0), and find its component in
the direction of a vector n = 〈1, 1, 1〉 normal to both planes. This

component is
v · n
|n|

=
√

3.

We could also notice that the line x = y = z is normal to both planes,

and intersects them in the points

(
1

3
,

1

3
,

1

3

)
and

(
4

3
,

4

3
,

4

3

)
. There-

fore the distance between the planes is the distance between these two
points, or

√
3.)

14. Find the tangent plane to f(x, y) = x2 + 2y2 at the point (2, 1, 6).

(a) x+ y + z = 9

(b) 4x− 4y − z = −9

(c) 4x+ 4y − z = 6

(d) 4x+ 4y + z − 18
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(e) None of these.

Solution:

(c) 4x+ 4y − z = 6

15. TRUE or FALSE: The function f is continuous at the point (0, 0),
where

f(x, y) =


x4 + y4

x2 + y2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Solution:

TRUE

(To see this, we must check that

lim
(x,y)→(0,0)

f(x, y) = f(0, 0)

or that

lim
(x,y)→(0,0)

x4 + y4

x2 + y2
= 0

We can do this by seeing that

0 ≤ x4 + y4

x2 + y2
≤ x4 + 2x2y2 + y4

x2 + y2
=

(x2 + y2)2

x2 + y2
= x2 + y2

and then using the Squeeze Theorem.)

16. Suppose that a and b are two vectors in R3 such that if a and b are
drawn emanating from the origin they both lie in the xy-plane, a in
the third quadrant (x < 0 and y < 0) and b in the second quadrant
(x < 0 and y > 0.)

Suppose also that we know |a| = 1 and |b| = 2 and a · b = 1.

(a) Is the projection of b onto a longer than a, shorter than a, or the
same length as a?

Solution:
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If θ is the angle between a and b, then

|a| =
√

a · a = 1 |b| =
√

b · b = 2 cos θ =
a · b
|a||b|

=
1

2

The length of the projection of b onto a is |b| cos θ = 1, so it is
the same length as a.

(b) In what direction does a× b point?

Solution:

It must point in a direction normal to both a and b, that is,
normal to the xy-plane, so either the direction given by k or the
direction given by −k. Looking down from the top (k direction)
of the xy-plane we see that from a to b is a clockwise direction, so
by the right-hand rule, the cross product points in the direction
given by −k.

(c) Find the length of a× b.

Solution:

If cos θ =
1

2
then sin θ =

√
3

2
(we know it cannot be negative

because we always take θ to be an acute angle) so

|a× b| = |a||b| sin θ =
√

3

17. A point moves along the intersection of the surface

z = x2 + y2

with the plane
x+ y = 2

from the point (2, 0, 4) to the point (0, 2, 4), in such a way that x = 2−t
(where t denotes time and x denotes the x-coordinate of the point’s
position at time t).

Find the

(a) velocity

(b) acceleration
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(c) unit tangent vector T

(d) speed

when the point is at position (1, 1, 2).

Solution:

Parametrize the curve. We are given x = 2 − t, and so y = 2 − x = t
and z = x2 + y2 = 2t2 − 4t + 4. Thus, r(t) = 〈2− t, t, 2t2 − 4t+ 4〉,
r′(t) = 〈−1, 1, 4t− 4〉, r′′(t) = 〈0, 0, 4〉. At (1, 1, 2), t = 1:

velocity = v = r′(1) = 〈−1, 1, 0〉

acceleration = a = r′′(1) = 〈0, 0, 4〉

unit tangent vector = T =
1

|v|
v =

〈
−1√

2
,

1√
2
, 0

〉
speed = |v| =

√
2

18. Approximate

∫ 0.1

−0.1

e−t2 dt using a linear approximation to the function

g(x, y) =

∫ y

x

e−t2 dt.

Solution:

Using the Fundamental Theorem of Calculus

∂

∂y

∫ y

x

e−t2 dt = e−y2

∂

∂x

∫ y

x

e−t2 dt = −e−x2

and near (x0, y0) = (0, 0),

g(x, y) ≈ g(x0, y0) +
∂g

∂x
(x0, y0)(x− x0) +

∂g

∂y
(x0, y0)(y − y0)

g(x, y) ≈
∫ y0

x0

e−t2 dt+−e−x2
0(x− x0) + ey2

0(y − y0)

g(x, y) ≈
∫ 0

0

e−t2 dt+−e0(x− 0) + e0(y − 0)
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∫ y

x

e−t2 dt ≈ 0 + (−1)(x) + (1)(y) = y − x∫ 0.1

−0.1

e−t2 dt ≈ 0.2

(This should make intuitive sense. The function e−t2 is not one that
we can integrate in a straightforward way, but we know that its value
at t = 0 is 1. Therefore if we integrate it from −0.1 to 0.1, finding
the area under its graph above a small interval around 0, we know
the height of its graph on that interval is approximately 1, so the area
is approximately 1 times the length of the interval, or in this case
approximately 0.2. )

19. Suppose a point moves along the surface z = f(x, y) with its position
at time t given by ~r(t) = (x(t), y(t), z(t)). Notice that this means

z(t) = f(x(t), y(t)).

At time t0 the point is at position (x0, y0, z0) = (x0, y0, f(x0, y0)).

(a) Write down an expression for a vector that is normal to the surface
z = f(x, y) at the point (x0, y0, z0). Your expression will involve
the partial derivatives of f at (x0, y0).

Solution:

n =

〈
∂f

∂x
(x0, y0),

∂f

∂x
(x0, y0), −1

〉
(This is a formula that you may remember, since we have used
it so often, so you can just write it down without explanation—
provided you get it right. You can’t expect to get partial credit
for writing down an incorrect formula, however, so be careful.)

(b) Use the fact that the velocity vector (x′(t0), y
′(t0), z

′(t0)) is tan-
gent to the surface, and therefore normal to the vector you found
in part (a), to solve for z′(t0) in terms of x′(t0), y

′(t0), and the
partial derivatives of f at (x0, y0).

Solution:
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Since the two vectors are normal, their dot product is zero:

v · n = 0

〈x′(t0), y′(t0), z′(t0)〉 ·
〈
∂f

∂x
(x0, y0),

∂f

∂x
(x0, y0), −1

〉
= 0

∂f

∂x
(x0, y0)x

′(t0) +
∂f

∂y
(x0, y0)y

′(t0)− z′(t0) = 0

z′(t0) =
∂f

∂x
(x0, y0)x

′(t0) +
∂f

∂y
(x0, y0)y

′(t0)

(c) Now use the chain rule to compute z′(t0). Your answer should
be in terms of x′(t0), y

′(t0), and the partial derivatives of f at
(x0, y0).

In fact, your answer should be the same as your answer to part
(b). You can view parts (a) and (b) as a proof of the chain rule
in this case.

Solution:

By the Chain Rule,

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

or indicating where each function should be evaluated,

dz

dt
(t0) =

∂f

∂x
(x(t0), y(t0))

dx

dt
(t0) +

∂f

∂y
(x(t0), y(t0))

dy

dt
(t0)

or, since x(t0) = x0 and y(t0) = y0),

z′(t0) =
∂f

∂x
(x0, y0)x

′(t0) +
∂f

∂y
(x0, y0)y

′(t0)

20. (Short answer problem.)

(a) What is the area of the triangle with corners (0, 0, 0), (0, 1, −1)
and (1, 0, 1)?

Solution:
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√
3

2

(The triangle is half of the parallelogram whose edges are vectors
from (0, 0, 0) to (0, 1, −1) and to (1, 0, 1), so the triangle has
half the area of the parallelogram. The area of the parallelogram
is the magnitude of the cross product of those vectors.)

(b) Give an equation for the plane containing (0, 0, 0) and parallel to
the plane with equation 3x+ 2y − z = 8.

Solution:

3x+ 2y − z = 0

(The components of the vector normal to the given plane are the
coefficients of x, y and z in its equation 3x+2y−z = 8. Since the
parallel plane has the same normal vector, its equation must have
the same coefficients, so its equation has the form 3x+2y−z = D.
You can find the constant term D by plugging in the coordinates
of a point on the plane, in this case, x = y = z = 0.)

(c) True or False? If f : R2 → R is a function with continuous second
partial derivatives, then fxy = fyx.

Solution:

TRUE

(This is Clairaut’s Theorem.)

21. A spaceship moves so that its position at time t, for 0 ≤ t ≤ 1, is(
t, t, t

3
2

)
. At time t = 1 the engines are turned off, so that the space-

ship continues to move at the same velocity it had reached at t = 1.

(a) Find the arc length of the path traveled by the spaceship between
times t = 0 and t = 1.

Solution:

For 0 ≤ t ≤ 1,

position =
〈
t, t, t

3
2

〉
velocity =

〈
1, 1,

3

2
t

1
2

〉
speed =

∣∣∣∣〈1, 1,
3

2
t

1
2

〉∣∣∣∣ =

√
9

4
t+ 2 =

(
9

4
t+ 2

) 1
2
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arclength =

∫ 1

0

speed dt =

∫ 1

0

(
9

4
t+ 2

) 1
2

dt

=
8

27

(
9

4
t+ 2

) 3
2
∣∣∣∣1
0

=
8

27

((
17

4

) 3
2

− 2
3
2

)
(b) Where is the spaceship at time t = 2?

Solution:

When t = 1 the spaceship is at position 〈1, 1, 1〉 moving with

velocity

〈
1, 1,

3

2

〉
. From that point on it moves at constant ve-

locity, so we can parametrize its path by

p(t) = 〈1, 1, 1〉+ (t− 1)

〈
1, 1,

3

2

〉
and when t = 2 its position is

p(2) = 〈1, 1, 1〉+ (2− 1)

〈
1, 1,

3

2

〉
=

〈
2, 2,

5

2

〉

22. S is the surface with equation z = x2 + 2xy + 2y.

(a) Find an equation for the tangent plane to S at the point (1, 2, 9).

Solution:

The tangent plane to the graph of f has normal vector given by〈
∂f

∂x
,
∂f

∂y
, −1

〉
, or for our function, 〈2x+ 2y, 2x+ 2, −1〉. At

(1, 2, 9) the normal vector to the tangent plane is n = 〈6, 4, −2〉,
so an equation of the plane is

n · 〈x− 1, y − 2, z − 9〉 = 0

6x+ 4y − 2z = −4

(b) At what points on S, if any, does S have a horizontal tangent
plane?

Solution:

17



The tangent plane is horizontal when the normal vector is vertical,

or when its x and y components,
∂f

∂x
and

∂f

∂y
, are zero. To find

these points we set

2x+ 2y = 0 and 2x+ 2 = 0

x = −y and x = −1

Also, z = x2 + 2xy + 2y and so we have

(x, y, z) = (−1, 1, 1)

23. (a) Show that if v is any vector function of t and |v| is constant, then

v is normal (orthogonal, or perpendicular) to
dv

dt
.

Hint: Express |v| using the dot product, and remember that we
have a “dot product rule” for differentiation.

Solution:

(|v|)2 = v · v

We differentiate both sides, using on the left the fact that (|v|)2 is
constant, so its derivative is zero, and on the right the dot product
rule:

0 =
dv

dt
· v + v · dv

dt
= 2

dv

dt
· v

dv

dt
· v = 0

These two vectors are normal to each other because their dot
product is zero.

(b) Use the result of part (a) to show that if an object travels with
constant speed, then its acceleration is normal to its direction of
motion.

This agrees with our physical intuition. Acceleration in the di-
rection of motion should correspond to changing speed, and ac-
celeration normal to the direction of motion should correspond to
changing direction.

Solution:
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If v is the velocity function and a the acceleration function, then

we know that a =
dv

dt
. Since speed is the magnitude of velocity,

we know that |v| is constant, so by part (a),
dv

dt
⊥ v, or a ⊥ v.

This means acceleration is normal to velocity, or normal to the
direction of motion.

24. (Short answer problem.) Match each of the functions below with the
correct pictures of its graph and its level curves. There are pictures on
the following pages.

(a) f(x, y) = xy. Graph: C . Level Curves: H .

(b) f(x, y) = y − x2. Graph: A . Level Curves: G .

(c) f(x, y) =
1

x2 + y2 + 1
. Graph: B . Level Curves: F .
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Figure 1: A Picture for Problem 24
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Figure 2: A Picture for Problem 24
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Figure 3: A Picture for Problem 24
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Figure 4: A Picture for Problem 24
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Figure 5: A Picture for Problem 24
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Figure 6: A Picture for Problem 24
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Figure 7: A Picture for Problem 24
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Figure 8: A Picture for Problem 24
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