
Math 11
Fall 2007

Practice Problem Solutions

Here are some problems on the material we covered since the second
midterm. This collection of problems is not intended to mimic the final in
length, content, or difficulty.

The final exam will concentrate on material covered since the second
midterm, but there will also be problems on earlier material.

1. True or False:

(a) The function

~r(t) = ~a + t(~b − ~a) 0 ≤ t ≤ 1

parametrizes the straight line segment from ~a to ~b.

TRUE. This is a standard way to parametrize a line segment.

(b) If the coordinate functions of ~F : R
3 → R

3 have continuous second

partial derivatives, then curl(div(~F )) equals zero.

FALSE. The divergence of ~F is a scalar function, so its curl is
not even defined.

(c) Putting together the two different vector forms of Green’s Theo-
rem, we can see that if D is a region satisfying the hypotheses of
the theorem, and P and Q are functions satisfying the hypotheses
of the theorem, we must have

∫

∂D

(P,Q) · T̂ ds =

∫

∂D

(P,Q) · N̂ ds

Here ∂D denotes the positively oriented boundary of D, and T̂

denotes the unit tangent vector to a curve, and N̂ the unit nor-
mal vector, so the integral on the left is the usual line integral of
~F = (P,Q) along ∂D, and the integral on the right is the integral

representing the flux of ~F = (P,Q) across ∂D.

FALSE: The two different vector forms of Green’s Theorem do
deal with these two line integrals, but they are equal to different
double integrals over D.
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(d) For any vector field ~F in R
3 all of whose coordinate functions

have continuous first and second partial derivatives, we have that
div(curl(~F )) = 0.

TRUE: This is one of the things Clairaut’s Theorem tells us;
another is that, for a scalar function f with continuous first and
second partial derivatives, curl(grad(f)) = 0.

(e) If the vector field ~F is conservative on the open region D then line

integrals of ~F are path-independent on D, regardless of the shape
of D.

TRUE: The Fundamental Theorem of Line Integrals tells us this.
It is necessary for D to have no holes if we want to use the fact
that curl(~F ) = ~0 on D to tell us that ~F is conservative on D.

(f) If ~F is any vector field, then curl(~F ) is a conservative vector field.

FALSE: We know the curl of a conservative vector field must be ~0,
so if this were true then we would always have curl(curl(~F )) = ~0

for any vector field ~F . But this is not true. (Try computing
curl(curl(xz, yz, 0)).)

2. (a) Find a potential function f for the vector field

~F (x, y) = (2x + 2y, 2x + 2y).

A potential function is just a function f such that ~F = ∇f .

SOLUTION: There are several ways to go about finding a po-
tential function. The organized antidifferentiation method is as
follows:

If ∇f = ~F we must have

fx = 2x + 2y (1)

fy = 2x + 2y (2)

Starting with Equation 1 and integrating with respect to x (treat-
ing y as a constant) we get

fx = 2x + 2y
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f = x2 + 2xy + C(y) (3)

Note that the “constant” of integration C can actually be a func-
tion of y, as we are treating y as a constant. Now we differentiate
this equation with respect to y to get

fy = 2x + C ′(y)

Comparing this to Equation 2 we see that we must have

fy = 2x + 2y

fy = 2x + C ′(y)

C ′(y) = 2y

which we can achieve by letting

C(y) = y2.

(If we were trying to satisfy an initial condition, say f(1, 1) = 0,
we would say C(y) = y2 +B, where B is a constant, and later use
the initial condition to solve for B. But we aren’t, so we just go
ahead.) Plugging this back into Equation 3 we see we can set

f(x, y) = x2 + 2xy + y2.

The less organized antidifferentiation method begins with the same
two equations

fx = 2x + 2y

fy = 2x + 2y

and then integrates the first with respect to x and the second with
respect to y to get

f = x2 + 2xy + C(y)

f = 2xy + y2 + A(x)

Examining these two expressions for terms in common, we guess
that

f = x2 + 2xy + y2
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will work. Since there is an element of inspiration in this last
step, it is important to check that this is the correct answer by
computing ∇f to make sure that in fact ∇f = ~F .

A third way to compute f is to use the Fundamental Theorem of
Line Integrals. We know that if γ is any path from (0, 0) to (a, b),
and if f(0, 0) = 0 then

∫

γ

∇f(x, y) · d~r = f(a, b) − f(0, 0) = f(a, b).

We can let γ consist of the straight line from (0, 0) to (a, 0) followed
by the straight line from (a, 0) to (a, b). Then we have

f(a, b) =

∫

γ

∇f(x, y) · dr =

∫

γ

〈2x + 2y, 2x + 2y〉 · dr =

∫

γ

(2x+2y) dx+(2x+2y) dy =

∫ a

0

(2x+0) dx+

∫ b

0

(2a+2y) dy =

a2 + 2ab + b2.

(b) Verify the Fundamental Theorem of Line Integrals for

∫

C

~F ·d~r in

the case
~F (x, y) = (2x + 2y, 2x + 2y)

and C is the portion of the positively oriented circle x2 + y2 = 25
from (5, 0) to (3, 4).

SOLUTION: To verify the Fundamental Theorem of Line Inte-
grals is to check that it is true in this case. The Fundamental
Theorem of Line Integrals tells us that, in this case, if ~F = ∇F ,
then

∫

C

~F · d~r = f(3, 4) − f(5, 0).

We have already found f such that ~F = ∇f , namely

f(x, y) = x2 + 2xy + y2 = (x + y)2

so that

f(3, 4) − f(5, 0) = (3 + 4)2 − (5 + 0)2 = 24,
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so to verify the Fundamental Theorem of Line Integrals in this
case, we must compute

∫

C

~F · d~r =

∫

C

~F 〈2x + 2y, 2x + 2y〉 · d~r

and see that the answer is also 24.

To compute the line integral we parametrize C by

~r(t) = 〈5 cos t, 5 sin t〉

for 0 ≤ t ≤ θ, where θ is the angle whose cosine is
3

5
and whose

sine is
4

5
. Then we have

d~r = 〈−5 sin t, 5 cos t〉 dt

∫

C

~F · d~r =

∫ θ

0

〈10 cos t + 10 sin t, 10 cos t + 10 sin t〉 · 〈−5 sin t, 5 cos t〉 dt =

∫ θ

0

50(cos2 t − sin2 t) dt =

∫ θ

0

50 cos(2t) dt =

50
sin(2t)

2

∣

∣

∣

θ

0

= 50
sin(2θ)

2
= 50 cos θ sin θ = 50

(

3

5

) (

4

5

)

= 24.

3. Find
∫

C
~F (x, y) d~r where

~F (x, y) =

(

yexy + cos x, xexy +
1

y2 + 1

)

and C is the portion of the curve y = sin x from x = 0 to x =
π

2
.

SOLUTION: We can check that ~F is conservative, by checking that

∂

∂x

(

xexy +
1

y2 + 1

)

=
∂

∂y
(yexy + cos x) = exy + xyexy
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Therefore this problem calls for the Fundamental Theorem of Line In-
tegrals. Using the same method as in the last problem we see that

~F (x, y) = ∇f(x, y)

where
f(x, y) = exy + sin x + tan−1 y.

Therefore
∫

C

~F (x, y) d~r = f
(π

2
, 1

)

− f(0, 0) =

(

e
π

2 + sin
π

2
+ tan−1 1

)

−
(

e0 + sin 0 + tan−1 0
)

=

e
π

2 + 1 +
π

4
− 1 = e

π

2 +
π

4

An alternative method of using the fact that ~F is conservative, rather
than finding f and applying the Fundamental Theorem of Line Inte-
grals, is to use path independence. That is, instead of computing the
line integral of ~F along C, we can compute the line integral of ~F along
any other curve with the same endpoints, say the line segment from

(0, 0) to
(π

2
, 0

)

followed by the line segment from
(π

2
, 0

)

to
(π

2
, 1

)

.

4. The temperature at a point in space is given by the function

T (x, y, z) = z2 − xy.

Heat flows from regions of high temperature to regions of low temper-
ature, and the rate of heat flow is proportional to the rate at which
temperature changes. That is, heat flow (in appropriate units) is given
by

~F (x, y, z) = −∇T (x, y, z).

The rate at which heat flows across a surface S is given by the flux of
the heat flow ~F across S,

∫∫

S

~F · d~S.

If S is the surface given in cylindrical coordinates by

z = θ r ≤ 1 0 ≤ θ ≤ 2π
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oriented so the unit normal vector slants upwards, find the rate at
which heat flows across S.

Don’t try anything fancy here. Just parametrize the surface and com-
pute the flux.

SOLUTION: We can use cylindrical coordinates to parametrize the
surface, letting u be r and v be θ. Then our parametrization is

〈x, y, z〉 = ~r(u, v) = 〈u cos v, u sin v, v〉 0 ≤ u ≤ 1 0 ≤ v ≤ 2π

and our surface integral giving the flux is

∫∫

S

~F · d~S =

∫

2π

0

∫

1

0

~F (u cos v, u sin v, v) · (~ru × ~rv) du dv

Now we have

~F (x, y, z) = −∇T (x, y, z) = −〈−y, −x, 2z〉 = 〈y, x, −2z〉

~F (u cos v, u sin v, v) = 〈u sin v, u cos v, −2v〉

~ru = 〈cos v, sin v, 0〉

~rv = 〈−u sin v, u cos v, 1〉

~ru × rv = 〈sin v, − cos v, u〉

(Note that this gives the correct orientation of the surface.)

~F (u cos v, u sin v, v) · (~ru × ~rv) = u(sin2 v − cos2 v − 2v)

∫∫

S

~F · d~S =

∫

2π

0

∫

1

0

~F (u cos v, u sin v, v) · (~ru × ~rv) du dv =

∫

2π

0

∫

1

0

u(sin2 v − cos2 v − 2v) du dv = −2π2

5. Find
∫∫

S

~F · d~S

where S is the conical surface

z2 = x2 + y2 0 ≤ z ≤ 1
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oriented so the unit normal vector slants downwards, and ~F is the
function

~F (x, y, z) = (x + tan−1(y2), −y + sec(x + z), z2).

Note that S is not a closed surface. Nevertheless, there is a better way
to do the problem than brute force.

SOLUTION: Sometimes we can apply Gauss’s Theorem (the Diver-
gence Theorem) to compute the surface integral over a surface that is
not closed, by viewing that surface as part of the boundary of a solid
region.

In this case, let E be the region above the surface S and below the plane
z = 1. That is, E is the region described in cylindrical coordinates by
0 ≤ r ≤ z ≤ 1 (a solid cone). The positively oriented boundary of E

consists of two pieces, the surface S with the given orientation, and the
disc S ′ described by x2 + y2 ≤ 1, z = 1, oriented so its unit normal
vector points upwards, n̂ = k̂ = 〈0, 0, 1〉. Now Gauss’s Theorem tells
us

∫ ∫ ∫

E

div(~F ) dV =

∫ ∫

S

~F · d~S +

∫ ∫

S′

~F · d~S.

Evaluating the two integrals that are not the one we are really interested
in, we see

∫ ∫ ∫

E

div(~F ) dV =

∫ ∫ ∫

E

2z dV =

∫

2π

0

∫

1

0

∫

1

r

2z r dz dr dθ =
π

2

∫ ∫

S′

~F · d~S =

∫ ∫

S′

~F · n̂ dS =

∫ ∫

S′

〈

x + tan−1(y2), −y + sec(x + z), z2
〉

· 〈0, 0, 1〉 dS =

∫ ∫

S′

z2 dS =

∫ ∫

S′

1 dS = area(S) = π

Now we see that

π

2
=

∫ ∫

S

~F · d~S + π

∫ ∫

S

~F · d~S = −
π

2
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6. Let C be the curve consisting of the line segments from (0, 0) to (1, 1)
to (0, 1) and back to (0, 0). Find the value of

∫

C

xy dx +
√

y2 + 1 dy.

SOLUTION: Whenever you want to integrate a vector field in R
2

around a closed curve, and it looks like the computation might be
messy, think of applying Green’s Theorem. The curve C is the positively-
oriented (draw a picture to check this) boundary of the triangle D with
the three corners given, or 0 ≤ x ≤ 1, x ≤ y ≤ 1. Green’s Theorem
tells us

∫

C

P dx + Qdy =

∫ ∫

D

∂Q

∂x
−

∂P

∂y
dA

where
P = xy Q =

√

y2 + 1

∂P

∂y
= x

∂Q

∂x
= 0

Therefore we have
∫

C

P dx + Qdy =

∫ ∫

D

−x dA =

∫

1

0

∫

1

x

−x dy dx =

∫

1

0

−x + x2 dx = −
1

6

7. Let ~F (x, y) = (ex sin y + 3y, ex cos y + 2x− 2y) and φ(x, y) = ex sin y +
2xy − y2.

(a) Find ∇φ(x, y).

SOLUTION:

∇φ(x, y) = (ex sin y + 2y, ex cos y + 2x − 2y)

(b) Compute
∫

C

~F · d~r,
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where C is the positively oriented ellipse 4x2 + y2 = 4. (Hint:

make use of part (a) by comparing ~F and ∇φ.)

SOLUTION: Making use of the hint, we notice

~F (x, y) = ∇φ(x, y) + (y, 0)

and therefore
∫

C

~F · d~r =

∫

C

∇φ · d~r +

∫

C

(y, 0) · d~r

By the Fundamental Theorem of Line Integrals, the integral of
∇φ around a closed curve is zero, and therefore

∫

C

~F · d~r =

∫

C

(y, 0) · d~r

This integral can be evaluated directly or using Green’s Theorem;
we will use Green’s Theorem, letting D be the region enclosed by
C:

∫

C

(y, 0) · d~r =

∫ ∫

D

∂

∂x
(0) −

∂

∂y
(y) dA =

∫ ∫

D

(−1) dA =

−area(D) = −(2)(1)π = −2π

An alternative solution is to apply Green’s Theorem directly to
the original line integral

∫

C
~F · d~r.

8. Evaluate the line integral of the function

F (x, y, z) =
〈

x2y3, exy+z, x + z2
〉

around the circle x2 + z2 = 1 in the plane y = 0, oriented counterclock-
wise as viewed from the positive y-direction.

SOLUTION: Whenever you want to integrate a vector field in R
3

around a closed curve, and it looks like the computation might be
messy, think of applying Stokes’ Theorem. The circle C in question is
the positively-oriented boundary of the disc S given by x2 + z2 ≤ 1,
y = 0, with the unit normal vector n̂ pointing in the positive y direction.
That is, n̂ = ĵ = 〈0, 1, 0〉.
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Stokes’ Theorem tells us that
∫

C

~F · d~r =

∫ ∫

S

curl(~F ) · d~S =

∫ ∫

S

curl(~F ) · n̂ dS

Evaluating the curl of ~F we see

curl(~F ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

x2y3 exy+z x + z2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
〈

−exy+z, −1, yexy+z − 3x2y2
〉

curl(~F ) · n̂ =
〈

−exy+z, −1, yexy+z − 3x2y2
〉

· 〈0, 1, 0〉 = −1
∫

C

~F · d~r =

∫ ∫

S

curl(~F ) · n̂ dS =

∫ ∫

S

−1 dS = −area(S) = −π

9. Compute the flux of the vector field

~F (x, y, z) = 〈2x, y, 3z〉

outward through the sphere of radius 36 centered at the point (1, 2,−1).

SOLUTION: The flux of ~F through the surface S is given by the
surface integral

∫ ∫

S

~F · d~S

where S is oriented so the normal vector points in the direction of the
flux being computed, in our case, outward from the center of the sphere.

Whenever you need to compute the surface integral of a vector field in
R

3 over a closed surface, and it looks like the computation might be
messy, think of applying Gauss’s Theorem (aka the Divergence The-
orem). Gauss’s Theorem tells us that if S is the positively oriented
boundary of the solid region E (that is, the normal vector of S points
outward from E) then

∫ ∫

S

~F · d~S =

∫ ∫ ∫

E

div(~F ) dV.
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In our example, E is the solid sphere of radius 36 centered at the point
(1, 2,−1),

div(~F ) = 2 + 1 + 3 = 6

and so
∫ ∫

S

~F · d~S =

∫ ∫ ∫

E

div(~F ) dV =

∫ ∫ ∫

E

6 dV =

6(volume(E)) = 6
4π

3
(36)3 = 8 · (36)3 π .

10. Let R be the region in the xy-plane above the x-axis and below the
curve C parametrized by ~r(t) = 〈1 + t3, t − t2〉 for t ∈ [0, 1].

(a) Sketch the region R. (Just do the best you can.)

SOLUTION: Plugging in t = 0 and t = 1 we see that C goes from
(1, 0) to (2, 0). Also, for 0 ≤ t ≤ 1, we have t − t2 = t(1 − t) ≥ 0,
so C lies in the region y ≥ 0, on and above the x-axis. Finally, as
t goes from 0 to 1, we see that on C we have x = 1 + t3 increases
from 1 to 2, and y = t(1 − t) begins at y = 0, increases (to a

maximum value of
1

4
at t =

1

2
, if it matters), and then decreases

again to y = 0. Therefore a point moving along the curve C starts
at (1, 0), moves upward and to the right and then downward and
to the right, and ends at (2, 0). This should allow you to draw a
rough sketch.

(b) Use Green’s Theorem to express the area of R as a line integral.

SOLUTION: The positively oriented boundary of the region R

consists of two pieces, the curve −C (which denotes C with the
opposite orientation) and the line segment C ′ from (1, 0) to (2, 0).
We can apply Green’s Theorem using the function

~F (x, y) = (P,Q) = (−y, 0)

which satisfies
∂Q

∂x
−

∂P

∂y
= 1

to get

area(R) =

∫ ∫

R

1 dA =

∫ ∫

R

∂Q

∂x
−

∂P

∂y
dA =
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∫

−C

~F · d~r +

∫

C′

~F · d~r

We can go a little further by noting that on C ′ we have y = 0 and
so ~F = (−y, 0) = (0, 0) and

∫

C′

~F · d~r = 0

and so we have

area(R) =

∫

−C

~F · d~r = −

∫

C

~F · d~r

(c) Compute the area of R by evaluating your line integral from
part (b).

SOLUTION:

−

∫

C

~F · d~r = −

∫

1

0

~F (~r(t)) · ~r′(t) dt =

−

∫

1

0

(−(t − t2), 0) · (3t2, 1 − 2t) dt =

∫

1

0

3t3 − 3t4 dt =
3

20

11. Consider the vector field ~F (x, y, z) = 〈y + z, x − z, zy〉.

(a) Is ~F conservative? Why not?

SOLUTION: No. We know because

curl(~F ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

y + z x − z zy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 〈z + 1, 1, 0〉 6= ~0.

(b) Let C be any positively oriented simple closed curve in the xy-

plane. Show that
∫

C
~F · d~r = 0. (Hint: treat the region D in the

xy-plane bounded by C as a surface and apply Stokes’s Theorem.)

SOLUTION: Following the hint, the curve C bounds a surface
D contained in the xy-plane,, that is, the plane z = 0. Because D
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is contained in the xy-plane its unit normal vector must be either
〈0, 0, 1〉 or 〈0, 0,−1〉; because C is oriented so it goes counterclock-
wise as viewed from the positive z-direction, in order to make C

the positively-oriented boundary of D, we must orient D so that
n̂ = 〈0, 0, 1〉. Now, by Stokes’ Theorem, we have

∫

C

~F · d~r =

∫ ∫

D

curl(~F ) · d~S =

∫ ∫

D

curl(~F ) · n̂dS =

∫ ∫

D

〈z + 1, 1, 0〉 · 〈0, 0, 1〉 dS =

∫ ∫

S

0 dS = 0.

12. Show that if ~F = (F1, F2) is a vector field on R
2 such that, on all of R

2,
the component functions F1 and F2 have continuous partial derivatives
and

∂F1

∂x
+

∂F2

∂y
= 0,

then the flux integral
∫

C

~F · N̂ ds

is path-independent. That is, if C1 and C2 are two piecewise smooth
curves with the same endpoints, then

∫

C1

~F · N̂ ds =

∫

C2

~F · N̂ ds.

If it helps, you may assume C1 and C2 do not cross, or have any points
in common except their endpoints.

In this problem N̂ denotes the unit normal vector to the curve. Hint:
Use the second version of Green’s Theorem; see page 1103 of the text-
book.

SOLUTION:

There are (at least) two possible proofs you can give here. We outline
the two methods.

Method I: Assume C1 and C2 do not cross, or have any points in com-
mon except their endpoints, and use the hint. The region D between
C1 and C2 has as its positively oriented boundary C1 together with
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C2, one of them with the reversed orientation. Let us say the bound-
ary of D is C1 + (−C2). Then, applying the second version of Green’s
Theorem, we see

∫ ∫

D

∂F1

∂x
+

∂F2

∂y
dA =

∫

C1

~F · N̂ ds +

∫

−C2

~F · N̂ ds

∫ ∫

D

0 dA =

∫

C1

~F · N̂ ds −

∫

C2

~F · N̂ ds

∫

C1

~F · N̂ ds −

∫

C2

~F · N̂ ds = 0

∫

C1

~F · N̂ ds =

∫

C2

~F · N̂ ds

Method 2: Rewrite
∫

C

~F · N̂ ds =

∫

C

F1 dy − F2 dx =

∫

C

(−F2) dx + (F2) dy =

∫

C

~G · d~r

where
~G = (−F2, F1) = (G1, G2)

Now, on all of R
2 we have

∂G2

∂x
−

∂G1

∂y
=

∂F1

∂x
−

∂(−F2)

∂y
=

∂F1

∂x
+

∂F2

∂y
= 0

and because R
2 is a simply connected region, this tells us that ~G is

conservative and line integrals of ~G are path-independent. Therefore
we have

∫

C1

~F · N̂ ds =

∫

C1

~G · d~r =

∫

C2

~G · d~r

∫

C2

~F · N̂ ds
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