
Classifying Trees by Chromatic
Symmetric Functions of Trees

By
Jenny Chaeeun Song

SENIOR HONORS THESIS
ROSA C. ORELLANA, ADVISOR

DEPARTMENT OF MATHEMATICS
DARTMOUTH COLLEGE

JUNE, 2023



Acknowledgement
First and foremost, I want to express my sincere gratitude for my faculty advisor,

Professor Rosa Orellana, for her continued support and mentorship throughout the

process of writing this thesis. Her introduction to combinatorics class in my sopho-

more year motivated me to pursue a combinatorics research for my senior thesis, and

her guidance and enthusiasm let me feel the joy of mathematics research. I also want

to thank her for the opportunity to present my work at Hudson River Undergraduate

Conference this past April, which let me put my research in a broader context and

learn from other undergraduate math students pursuing research in various areas in

mathematics.

I would also like to give special thanks to Michael Gonzalez ’23 and Mario Tomba

’25 for many advice and supplying me with various resources that helped my research.

As they started pursuing research with Professor Orellana long before I did, they

kindly shared the sagemath code for deletion near-contraction algorithm and allowed

me to edit the code for my own needs. I’d also like to thank them for helping me

with formatting graphs on latex and sharing other resources for latex formatting that

greatly saved my time.

Moreover, I want to thank my other professors in the Dartmouth Mathematics

department for allowing me to enjoy mathematics at Dartmouth, professors in other

departments for enriching my Dartmouth liberal arts education, and my friends and

family for emotionally supporting me during my four years at Dartmouth and letting

me feel trusted in my abilities.

ii



Abstract
This thesis approaches the problem of classifying and distinguishing trees by their

chromatic symmetric functions with the limited number of colors. The first part of

the thesis is on the bicoloring of trees with n vertices. Every tree can be properly

colored using two colors, with one color used c1 times and the other color used n− c1

times. Using polynomials in two variables, we partition the set of trees according to

the number of times each color is used. The use of minimal units, which generate

every tree that belongs to each block in the partition, allows us to define formulas

and bijective relationships to count the size of each block in the partition. Chromatic

symmetric functions using two colors do not distinguish trees with n vertices. Thus,

we finally approach the problem of distinguishing trees by their chromatic symmetric

functions and how many colors are needed. I show that, using chromatic symmetric

functions with three colors, we can distinguish bicolorable trees with the fewer color

used twice.
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Chapter 1

Introduction

Graph theory has various applications, ranging from theoretical mathematics to ap-

plied mathematics and computer science. One of the most popular problems in graph

theory is the four-color theorem. The theorem states that any map can be colored

with four colors so that no two regions sharing borders have the same color. Color-

ing graphs has been of particular interest to mathematicians due to its wide-ranging

applications, such as scheduling problems and solving Sudoku puzzles, to name a

few. In 1995, Stanley introduced the symmetric function generalization to the chro-

matic polynomial in [St], and chromatic symmetric functions have been widely studied

since. In this thesis, I explore ways to classify graphs using their chromatic symmetric

functions.

The main objective of my thesis is to restrict the number of colors used and

examine whether trees can be distinguished by their chromatic symmetric functions

with a limited number of colors. A tree that has a chromatic symmetric function

of 24m1111 + 6m211 + 2m22 has a chromatic symmetric function of 6m211 when the

number of colors is restricted to 3. While explanations of the notations in the m

basis will be given in later sections, this example describes the intuition that there
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are fewer ways to color a tree when there is a restriction on the number of colors used,

making it less likely for trees to be distinguished by their chromatic functions.

I start my thesis by exploring two-colorings, or bicolorings, of trees, where we use

exactly two colors to properly color trees with n vertices. Particularly, I examine how

many times each of the two colors is used. For bicoloring of trees with n vertices, if

one color is used c1 times, then the other color is used c2 = n− c1 times. I denote by

c1 the color that was used fewer times, which will be consistent throughout this thesis.

Trees with n vertices can be partitioned by the value of c1, as shown in the following

diagram. From those partitions, I derive formulas that count the size of each block

associated with differing values of c1. I show that there is some combinatorial object

that can be bijected to the trees satisfying the condition, and prove there exist some

minimal unit(s) for each block that generate every tree with n vertices that can be
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bicolored with one color used exactly c1 times.

However, naturally, trees with n vertices are not distinguished by the 2−chromatic

symmetric function. Thus, the fourth chapter in this thesis investigates how many

colors need to be used to distinguish trees by their chromatic symmetric functions

(distinguishing number). I outline the potential next steps in the fifth and last chap-

ter.
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Chapter 2

Preliminaries and Definitions

2.1 Combinatorial Objects

In this section, I define several combinatorial objects that I will use commonly

throughout this thesis. Most terms can be found in introductory combinatorics text-

books such as [Br]. I also borrowed some definitions from [Eg]. Readers who are

familiar with introductory combinatorics may skip to Definition 3.

Definition 1. A partition of integer n into m parts is a sequence of positive integers

(λ1, ..., λm) such that λ1 + ...+ λm = n and λ1 ≥ ... ≥ λm > 1.

Definition 2. A composition of an integer n into m parts is a sequence of positive

integers (λ1, ..., λm) such that λ1 + ... + λm = n. A weak composition may have

λj = 0 for some j.

The main difference between a partition and a composition of an integer n is that

a composition counts reordered sequences with the same elements as different objects,

while a partition counts them as the same object.
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Example 1. Partitions of 6 into three parts are

(1, 1, 4), (1, 2, 3), (2, 2, 2),

whereas compositions of 6 into three parts are

(1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2),

(2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2), (2, 2, 2)

In general, it is easier to count compositions of n than count partitions of n as

there are known formulas for the number of compositions of n into k parts. Now, I

define a concept that derives from the definition of partitions and compositions that

may not be defined in introductory combinatorics courses.

Definition 3. A non-symmetric partition of n into k parts is a weak composition

of n into k parts up to reversal.

Let us break down this definition. Since I have a composition, I count reordered

sequences with the same elements as different objects. Up to reversal means that I

consider two objects the same if they are reverses of one another. For example, I

consider (1, 0, 0) equivalent to (0, 0, 1), but (0, 1, 0) is distinguished from (1, 0, 0) or

(0, 0, 1). For a more precise demonstration of this definition, see Example 2.

Example 2. For n = 4, partitions into at most three parts are :

(4, 0, 0), (4, 1, 0), (2, 2, 0), (2, 1, 1)
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Weak compositions of 4 into three parts are:

(0, 0, 4), (0, 1, 3), (0, 2, 2), (0, 3, 1), (0, 4, 0),

(1, 0, 3), (1, 1, 2), (1, 2, 1), (1, 3, 0), (4, 0, 0),

(2, 0, 2), (2, 1, 1), (2, 2, 0), (3, 0, 1), (3, 1, 0)

Lastly, non-symmetric partitions of 4 into three parts are:

(4, 0, 0), (0, 4, 0), (3, 1, 0), (0, 3, 1), (1, 0, 3),

(2, 2, 0), (2, 0, 2), (2, 1, 1), (1, 2, 1)

This definition will be used in Chapter 3. In general, in order to use this def-

inition, we want to put symmetric parts in opposite ends of the partition. We will

discuss this definition further in the next section.

2.2 Basic graph theory

This section gives readers an overview of basic terminology in graph theory that may

arise in this thesis. As the concepts introduced can be found in introductory graph

theory textbooks ([Ha], [Bo], or [De]), readers who are familiar with graph theory

may skip to section 2.3.

Definition 4. A graph G is a tuple (V (G), E(G)) where V (G) represents a non-

empty set of vertices and E(G) represents a set of edges. Two vertices u, v ∈ V (G)

are adjacent if (u, v) ∈ E(G).

I only study simple graphs in this thesis. A simple graph is a graph where 1)

no two edges share the same start and endpoint and 2) there is no loop.
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Figure 2.1: Isomorphic graphs

Definition 5. The degree of vertex v, d(v), is the number of edges incident to v.

Definition 6. The leaf is a vertex with d(v) = 1.

Definition 7. Two graphs G and H are isomorphic if there is a bijection ϕ : V (G) →

V (H) such that (v, w) ∈ E(G) if and only if (ϕ(v), ϕ(w)) ∈ E(H) for any pair of

vertices v, w ∈ V (G).

Isomorphism, in lay terms, means the "sameness" of two or more graphs. In other

words, two graphs are isomorphic when there is a one-to-one correspondence between

the vertices and the edges of the graph. Even if two graphs look different in the way

they are visually presented like in Figure 2.1, they are actually the same graph if

they have a bijection ϕ as described in Definition 6.

Showing the isomorphism or non-isomorphism of two or more trees is important in

this thesis. Two graphs cannot be isomorphic if any of those conditions are satisfied:

[El]

• One graph is bipartite (the vertices can be partitioned into two) and the other

is not.

• They have distinct complements.

• They have different order or size.

• One graph has a vertex of degree k and the other doesn’t.
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• The chromatic number is not the same.

• One contains a cycle and the other does not.

• They have different girth (the length of the graph’s shortest cycle).

Definition 8. A path is a sequence of edges that join vertices in a graph. Moreover,

we may call a graph a path if the graph only has one path.

Figure 2.2: Path of length 4

Definition 9. The diameter of a graph is the length of the longest path that can be

formed between any two vertices of the graph.

Figure 2.3: Graph with diameter 4

The diameter of this graph is 4 since the longest path that can be formed in the

graph is between the leftmost vertex and the rightmost vertex marked in red. There

are four edges that connect those vertices, making the diameter 4.

Definition 10. A graph G is connected if there is a path between any two vertices

in the graph.

Figure 2.4: Not connected
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Figure 2.5: Cyclic graph.

Definition 11. A cycle in graph is a path that starts from one vertex and ends in

the same vertex. A graph is acyclic if the graph does not have any cycles.

With the definition of connected and cycle, we now arrive at the definition of

the tree.

Definition 12. A tree is a connected, acyclic graph.

Here, I state some proven facts (propositions) about trees. Readers may refer to

introductory graph theory textbooks for the proofs of these facts.

Proposition 1. In a tree, any two vertices are connected by one path.

Proposition 2. A tree on n vertices has n− 1 edges.

Proposition 3. Every nontrivial tree has at least two leaves. A trivial tree (tree with

one vertex) has one leaf.

The following definitions involving proper coloring lead to chromatic symmetric

functions, which are the main subject of this thesis.

Definition 13. A proper coloring of graph G is a coloring of the vertices of G

where no two adjacent vertices share the same color. More precisely, it is a function

κ : V (G) → [k] where, for u, v ∈ V (G), κ(u) ̸= κ(v) if (u, v) ∈ E(G).

Here, k denotes the number of colors used for coloring.

Definition 14. A chromatic number of graph G is the number of proper colorings

of G.
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2.3 Symmetric Functions and Coloring of Graphs

We define chromatic symmetric functions consistent with Stanley’s generalization

of chromatic symmetric functions in [St]. The definitions in this section were

borrowed from [St] and [Eg]. We will begin this section by defining symmetric

functions in general terms.

Definition 15. A symmetric function is a function that is not changed by the

permutation of variables. That is, for commuting invariants x1, ..., xn,

f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n)).

A symmetric polynomial is a symmetric function that is represented in a poly-

nomial form. For instance, x3
1x2x3+x1x

3
2x3+x1x2x

2
3 is a symmetric polynomial since

commuting the variables does not change the polynomial. The degree of each mono-

mial is 3 + 1 + 1 = 5, which is the sum of the exponents of indeterminants. This

polynomial is a homogeneous polynomial since it is composed of monomials with

the same degree. Now, we can define chromatic polynomial.

Definition 16. A chromatic polynomial is a function χG(k) : N → N that rep-

resents the number of proper colorings of G using k colors. It is also the sum of all

proper colorings of G with k colors, in which each term is 1.

Notice that χG(k) = 0 if a graph G contains a loop. If there is an edge that

connects a vertex to itself, (u, u) ∈ E(G) but κ(u) = κ(u), which means there isn’t

any proper coloring of G. Moreover, if there are multiple edges sharing the same start

and end vertices, removing all but one of those edges does not change χG(k). Thus, it

is customary to only consider simple graphs when discussing chromatic polynomials.
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The following proposition in [Eg] gives a formula for the chromatic polynomial of

trees.

Theorem 1. If T is a tree with n vertices, then χT (k) = k(k − 1)n−1 for all k ≥ 1.

Proof. We can prove this by induction on n. n = 1 is trivial since there are k ways to

color a single vertex with k colors. Now suppose n ≥ 1. Assume the equation holds

for trees with n − 1 vertices. By Proposition 3, T with n vertices has two leaves.

If we remove one of these vertices, denoted v′, then we have a tree T ′ with n − 1

vertices. By our assumption, we can color T ′ with k colors in k(k − 1)n−2 ways. The

choice of coloring v′ is k − 1 colors. v′ has one neighbor, and we can color v′ with

any color but the color of the neighbor’s. Thus, we get χT (n) = k(k − 1)n−1. The

theorem follows by the induction.

The graph in Figure 2.3 is a tree and has chromatic polynomial of k(k − 1)8.

Such is true for any tree with 9 vertices. We now discuss chromatic symmetric

functions, which is a generalization of the chromatic polynomial of a graph by [St].

Given the definition of chromatic polynomials as the sum over all proper colorings of

the graph G with k colors, we may define chromatic symmetric functions in a similar

manner using weights of a proper coloring of G.

Definition 17. [Eg] If c is a proper coloring of G, the weight of c, denoted wtG(c),

is defined

wtG(c) =
∏
v∈V

xc(v).

Definition 18. [Eg] The chromatic symmetric function of G is defined

XG =
∑
c

wtG(c) =
∑
c

∏
v∈V

xc(v)

where c is a proper coloring of G with any number of colors.
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Intuitively, XG is symmetric for any graph. For some coloring c of graph G, you

can permute the colors used in c. [Eg] Our choice of color is arbitrary in mathematical

terms. The below proposition is the generalization of chromatic polynomial, which

gives the relationship between chromatic polynomials using k colors and chromatic

symmetric functions.

Proposition 4. [St] The chromatic polynomial χG(k) can be defined as

χG(k) = XG(1, 1, ..., 1, 0, 0, ...)

where there are exactly k 1’s.

We may write chromatic symmetric functions in terms of monomials by using the

definition of stable partitions.

Definition 19. [Eg] A stable partition of G is the ordered set partition V1, V2, V3, ...

where two adjacent vertices must belong to different blocks of the partition. (Vj may

be empty.)

For each proper coloring c of G, there is a stable partition where a partition Vj is

the set of vertices of color j [Eg]. This relationship is bijective, meaning each proper

coloring can produce a stable partition and vice versa. Thus, we have the following

proposition.

Proposition 5. [Eg] For any graph G with d vertices and any partition λ ⊢ d, let

zλ(G) be the number of stable partitions of G with |Vj| = λj for all j. Then we have

XG =
∑
λ⊢d

zλ(G)mλ

12



Using this definition, we can derive a recursive formula for XPn for Pn (path of

length n).

Proposition 6. For all n ≥ 0,

XPn = en +
n∑

k=2

(k − 1)ekXPn−k

The proofs for Proposition 5 and Proposition 6 can be found in [Eg].
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Chapter 3

Classifying Trees by their Bicoloring

In this chapter, we first show that trees with n vertices can be partitioned by their

bicoloring, as shown in the green "egg-like" figure in the introduction. We examine

properties of the chromatic symmetric functions of trees that can be bicolored. We

begin by defining terms to be used in this chapter.

Definition 20. A two-coloring of a tree refers to a proper coloring of the tree that

uses exactly two colors.

Definition 21. A 2-chromatic symmetric function, or 2-CSF, of a tree refers to

the chromatic symmetric function that uses exactly two colors.

While we are mainly interested in 2-chromatic symmetric functions in Chapter

3, we can generally define k-chromatic symmetric function as a chromatic sym-

metric function that uses exactly k colors. In Chapter 4, we will look at 3-chromatic

symmetric functions.

We denote by x1 and x2 the variables representing the colors used for the proper

coloring of the tree. Then the 2-chromatic symmetric function of the tree can be

represented in the form XT (2) = xc1
1 x

c2
2 + xc2

1 x
c1
2 where c1, c2 denote the number of
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times the color was used and c1 ≤ c2.

For a tree with n ≥ 2 vertices, c1 + c2 = n because if one of the colors was used

for c1 vertices, then the other color must be used for n − c1 vertices. Note that the

only graphs with n vertices that can be bicolored are bipartite graphs.

Theorem 2. Trees with n vertices can be partitioned by their 2-chromatic symmetric

function, as shown in this diagram.

Figure 3.1: Trees with n vertices partitioned by 2-chromatic symmetric function.

Table 3.1 shows that trees with n vertices can be partitioned by the value of c1,

computed for trees with n ≤ 21 vertices. The columns of the table refer to trees with

n vertices, and the rows of the table refer to the value of c1. For example, the entry

for n = 10, c1 = 3 is 19, which means that there are exactly 19 trees with 10 vertices

with 2−chromatic symmetric function of x3
1x

7
2+x7

1x
3
2. The last row of the table is the

total number of trees with n vertices.

Since we defined c1 ≤ c2, the values for c1 = l is computed only for trees with

2l vertices or more. In the next few sections, we will examine closely each case

15



T
ab

le
3.

1:
P
ar

ti
ti

on
in

g
T
re

es
w

it
h
n

ve
rt

ic
es

.

c 1
\n

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

2
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10

3
3

7
10

14
19

24
30

37
44

52
61

70
80

91
10

2
11

4

4
9

28
45

73
10

5
15

2
20

4
27

4
35

1
45

0
55

6
68

8
82

9
99

9

5
37

13
2

24
2

41
2

66
0

10
08

14
79

21
00

29
00

39
11

51
66

67
04

6
16

8
69

3
13

49
24

72
42

19
68

90
10

73
3

16
20

1
23

64
1

33
68

9

7
89

5
39

27
81

05
15

55
3

28
08

9
48

22
1

79
28

3
12

56
22

8
50

97
23

55
7

50
51

7
10

12
52

19
10

45
34

31
02

9
30

98
3

14
75

81
32

68
93

67
77

90

10
19

60
96

95
64

74

T
ot

al
1

1
2

3
6

11
23

47
10

6
23

5
55

1
13

01
31

59
77

41
19

32
0

48
62

9
12

38
67

31
79

55
82

30
65

21
44

50
5

16



concerning the value of c1. Readers may understand the next sections as examining

the trends in each row, where Section 3.1 refers to the row c1 = 1, Section 3.2 to

row c1 = 2, Section 3.3 to row c1 = 3, and Section 3.4 to row c1 = 4. Section 3.5

will then generalize these cases. In examining each case, this chapter will also show

that we can partition each block corresponding to the c1 value even further, using

minimal units. As the term minimal unit will come up frequently in this chapter,

we give a formal definition in this section.

Definition 22. A minimal unit for a block in a partition of trees is a tree that can

generate every tree that belongs in that block. A tree is not a minimal unit if it can

be produced from another tree belonging to that block.

In general, there are three traits for a minimal unit. First, the minimal unit must

generate every tree that belongs in the block. Second, if there are more than one

minimal unit for a certain block, the minimal units should generate disjoint set of

trees. Third, a minimal unit cannot be generated from another tree that belongs in

that block. The idea is generally depicted in the diagram Figure 3.2.

When "producing" or "generating" trees from a minimal unit, we want to keep

the number of red vertices. Thus, to produce a tree with n vertices from a minimal

unit consisting of k vertices, we must add n− k vertices, but we can only add black

vertices adjacent to the red vertices since we cannot add more red vertices.

For example, Figure 3.3 is not a minimal unit for c1 = 2 case since there exists

another tree that can produce this tree without adding any vertex corresponding to

c1, as shown in Figure 3.4. We will show with more examples how the minimal units

may apply for each case. We will then generalize more properties of minimal units in

Section 3.5.

For the next few sections, please review the convention that c1 + c2 = n, c1 ≤ c2,
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Figure 3.2: Partitioning by minimal units

Figure 3.3: A non-example of minimal unit

Figure 3.4: A more minimal tree than Figure 3.1

where xc1
1 x

c2
2 +xc2

1 x
c1
2 . We are basing each case on c1. Moreover, let us mark the color

with c1 occurrences as red, without loss of generality since the colors can be swapped.

3.1 One color used exactly once

Let c1 = 1, meaning the color with fewer occurrences is used exactly once. Trees

belonging to this block have the 2-chromatic symmetric function

XT (2) = x1
1x

n−1
2 + xn−1

1 x1
2.

18



Figure 3.5 is a tree with the 2-chromatic symmetric function x1
1x

3
2 + x3

1x
1
2.

Figure 3.5: Tree with c1 = 1

Proposition 7. Any tree with n vertices that have the 2- chromatic symmetric func-

tion x1
1x

n−1
2 + xn−1

1 x1
2 is a star.

Proof. Suppose not. Then there exists a tree T that is not the star and has the

chromatic symmetric function x1
1x

n−1
2 +xn−1

1 x1
2. Since a star with n vertices has n− 1

leaves, this means that there exists a tree that has two or more non-leaf vertices that

satisfies the condition. Denote by v1 and v2 two of the internal vertices of T , meaning

v1 and v2 have degree 2 or higher. If (v1, v2) ∈ E(T ), then v1 and v2 must have

different colors, namely x1 and x2. However, both v1 and v2 must each be connected

to at least one other vertex; whichever vertex connected to v1 will have color x2, and

whichever vertex connected to v2 will have color x1. Thus, both x1 and x2 are used at

least twice. Otherwise, if (v1, v2) /∈ E(T ), then v1 and v2 are connected to at least two

other vertices each. If v1 and v2 are colored the same with color x1, then x1 is used

at least twice. In addition, the combine of at least 4 adjacent vertices of v1 and v2

will be colored with the other color x2. If v1 and v2 are each colored x1 and x2, then

there will also be at least two adjacent vertices of v1 colored x2 and at least two of

v2 colored x1. Thus, both x1 and x2 are used at least three times. By contradiction,

there can only be one non-leaf vertex.
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3.1.1 Minimal unit for c1 = 1

As we showed that the only trees with n vertices that can be bicolored with one color

used exactly once (and the other color n− 1 times) are stars, the minimal unit for

the c1 = 1 case is a trivial tree with one vertex as in Figure 3.6.

Figure 3.6: Minimal unit for c1 = 1

Any tree with 2-CSF x1
1x

n−1
2 + xn−1

1 x1
2 can be produced by adding n − 1 black

vertices to this unit, and is a star. Stars are an important unit in the study of

chromatic symmetric functions. We will see in later sections that there are more

complex minimal units for larger c1 values. Now, we consider trees that are not stars.

3.2 One color used exactly twice

Consider c1 = 2, meaning the color with fewer occurrences is used exactly twice. This

means that the 2-CSF for trees in this block is

XT (2) = x2
1x

n−2
2 + xn−2

1 x2
2.

Figure 3.7 is an example of a tree with 6 vertices where c1 = 2.

Figure 3.7: Tree with c1 = 2

While we did not state explicitly in the case for c1 = 1, the maximum diameter of

20



trees that satisfy the condition c1 = 1 is 2 since all such trees are stars. Proposition

8 states a similar condition for c1 = 2.

Proposition 8. All trees with n vertices that can be bicolored with one of the colors

used exactly two times (and the other color n− 2 times) have diameter at most 4.

Proof. Suppose that there is a tree that satisfies the condition c1 = 2 with a diameter

greater or equal to 5. A tree with diameter greater or equal to 5 contains a path

with at least 6 vertices. Since x1 and x2 must alternate, both x1 and x2 must be used

exactly three times in the path with 6 vertices, contradicting our condition.

3.2.1 Minimal unit for c1 = 2

To derive the minimal unit for c1 = 2 case, let us give more examples of trees with

this 2-CSF.

Figure 3.8: Examples for c1 = 2

Notice that for all trees satisfying c1 = 2, we have a spine of length 3. This is

because the two vertices colored in red must be one vertex apart from each other.

The red end vertices of the spines are connected to black leaf vertices. Therefore, for
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c1 = 2, the minimal units are the spines with 3 vertices. Just like the c1 = 1 case,

there is only one minimal unit for c1 = 2 case.

Figure 3.9: Minimal Unit for c1 = 2

The intuition behind Theorem 3 is that there are n − 3 leaf vertices connected

to the two red vertices.

Theorem 3. Denote by g(n) the number of proper colorings of trees with n vertices

with 2-CSF

XT (2) = x2
1x

n−2
2 + xn−2

1 x2
2.

Then g(n) is the number of partitions of n− 3 into at most two parts.

Proof. Let T be the set of trees that satisfy this condition and P the set of a partition

of n − 3 into two parts. Then f : T → P maps t ∈ T to partitions of n − 3 where

the end vertices of the spine, v1 and v2, are each connected to a1 and a2 leaves, which

corresponds to the partition (a1, a2) ∈ P. Notice that a1 + a2 = n− 3 since the spine

has length 3. To show |T| = |P|, we need to show that f is a bijective function.

Suppose toward a contradiction that f is not injective. Then for some partition

(a1, a2) of n − 3 into two parts, there exist two non-isomorphic trees. Then f(t1) =

f(t2) = (a1, a2), where t1 ̸= t2. On the three-vertex spine of t1, the number of leaves

connected to one of the end vertices is a1 and the number of leaves connected to the

other end vertex is a2. However, the same is true for t2. Since the tree is unlabeled, t1

and t2 are isomorphic. Thus we have a contradiction and f is injective. Surjectivity

also follows intuitively by construction of f . We need to show that for all (a1, a2) ∈ P,

every tree that can be constructed by adding a1 and a2 leaves to the end vertices of

the spine is a tree that belongs to T. This follows since the end vertices of the spine
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can be colored with with one color that is used exactly c1 = 2 times and the rest with

the other color that is used exactly n− 2 times since a1 + a2 + 1 = n− 2, where the

1 corresponds to the middle vertex of the spine.

Figure 3.10: (a1, a2) = (2, 1)

Figure 3.11: (a1, a2) = (3, 0)

Theorem 3 is backed up by the sequence A004526 on Online Encyclopedia of

Integer Sequences [OE1], which corresponds to the row with c1 = 2 in Table 3.1.

Moreover, using the bijection, we can count the number of bicolorings of trees with

n vertices where c1 = 2 and c2 = n− 2.

Corollary 1. The number of bicolorings of trees with n ≥ 4 vertices where c1 = 2 is

g(n) =

⌊
n− 1

2

⌋

.
Proof. Algebraically,

g(n) =

⌊
n− 1

2

⌋
= 1 +

⌊
n− 3

2

⌋
(3.1)

The number of partitions of n− 3 into one part is 1, corresponding to the 1 in (3.1).

Then, we want to count the partitions of n − 3 into two parts, and e can count it
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by the number of possible smallest part in each partition. In other words, in (a1, a2)

where a2 ≤ a1, how many values are possible for a2. We can derive that for each n,

the partitions can range from (n− 4, 1) to (
⌊
n−3
2

⌋
,
⌊
n−3
2

⌋
) or (

⌊
n−3
2

⌋
+ 1,

⌊
n−3
2

⌋
). For

odd n, the maximum happens when the two parts are equal (
⌊
n−3
2

⌋
,
⌊
n−3
2

⌋
), and for

even n, it happens when the partition is (
⌊
n−3
2

⌋
+ 1,

⌊
n−3
2

⌋
). Thus, there are

⌊
n−3
2

⌋
partitions of n− 3 into exactly 2 parts, making our complete formula

g(n) = 1 +

⌊
n− 3

2

⌋
=

⌊
n− 1

2

⌋
.

3.3 One color used exactly three times

Let’s consider the case where c1 = 3, meaning the color with fewer occurrences was

used exactly three times. Trees in this case have the 2-CSF

XT (2) = x3
1x

n−3
2 + xn−3

1 x3
2.

Figure 3.12 is an example in which one color was used exactly three times.

Figure 3.12: Tree where c1 = 3

Proposition 9 is analogous to proposition 8 of Section 3.2. We will skip the

proof since the proof is exactly the same, except that you replace the path of length
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5 with length 7, meaning that the path contains 8 vertices, and show that each color

must be used 4 or more times.

Proposition 9. All trees that can be bicolored with one of the colors used exactly

three times have diameter at most 6.

3.3.1 Minimal Units for c1 = 3

For the bicoloring of trees where one of the colors is used exactly three times, the

minimal units are a star with four vertices and a path with five vertices as described

in Figure 3.13. For convenience, we refer to the first minimal unit as "the path"

and the second minimal unit as "the star."

Figure 3.13: Path unit (left) and Star unit (right)

• Path unit for c1 = 3

Let’s first consider the path unit. Among trees with n vertices that have the 2-CSF

XT (2) = x3
1x

n−3
2 + xn−3

1 x3
2,

some trees can be produced from the path unit by adding black vertices to the three

red vertices.

Theorem 4. Let f(n) be the number of trees with the above 2-CSF that can be pro-

duced from the path unit. Then f(n) is the number of nonsymmetric partitions of

n− 5 into three parts.
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f(n) is the sequence A002620 on Online Encyclopedia of Integer Sequences, and

the term non-symmetric sequence was mentioned by Jon Perry in [OE3].

Similar to the proof of Theorem 3, we can construct a function f from the set of

trees satisfying this condition to the set of nonsymmetric partitions of n−5. Showing

the bijectivity of this function is analogous to showing the bijecticity of f in Theorem

3.

Example 3. When n = 6, you have two non-isomorphic graphs that are produced

from the path.

Figure 3.14: Trees 6 vertices produced from path

We denote those trees (1, 0, 0) and (0, 1, 0), respectively. Note that we cannot add

another red vertex to the rightmost red vertex as the tree will be isomorphic to the

first tree. In other words, (0, 0, 1) is isomorphic to (1, 0, 0) since the partitions are

the same if reversed.

Example 4. When n = 9, we have nine trees that can be built from the path unit.

Figure 3.15: (0, 0, 4)
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Figure 3.16: (0, 1, 3) and (1, 0, 3)

Figure 3.17: (0, 3, 1) and (0, 4, 0)

Figure 3.18: (1, 2, 1) and (2, 1, 1)

Figure 3.19: (2, 2, 0) and (2, 0, 2)

Note the non-symmetric partitions corresponding to each tree. As described from

the examples, each bicoloring of tree using one color exactly three times generated

from the path unit correspond to the nonsymmetric partitions of n− 5 into at most

three parts, with zeros used for padding. Theorem 4 leads to a corollary that count

the exact number of trees that belong to this case. The formula is derived from the

sequence A002620 on Online Encyclopedia of Integer Sequences [OE3].

Corollary 2. The number of bicoloring of trees with n vertices that can be produced
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from the path unit and uses one color exactly three times is the quarter square of n−3:

⌊
(n− 3)2

4

⌋
.

• Star unit for c1 = 3

Figure 3.20: Star unit

Let’s direct our attention to the star unit. Some trees with n vertices that have

the 2−CSF corresponding to the case c1 = 3 can be generated from the star unit.

Since the star is symmetric about the center, adding a vertex to any of the red vertices

produces an isomorphic graph.

Theorem 5. Let h(n) denote the number of trees with n vertices that have the 2−CSF

corresponding to the case c1 = 3 and can be generated from the star unit. Then h(n)

is the number of partitions of n− 4 into at most three parts.

Proof. We show that there is a bijection relationship between trees with this condition

and partitions of n− 4 into at most three parts. The proof is analogous to the proof

of Theorem 3 and Theorem 4.

Example 5. When n = 6, there are two non-isomorphic trees that can be produced

from the star unit. Notice (1, 1, 0) is isomorphic to (0, 1, 1) or (1, 0, 1).

h(n) corresponds to the sequence A001399 in [OE4]. In the sequence A001399,

a(n− 4) = h(n). Corollaries to Theorem 5 count the exact number of trees h(n).
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Figure 3.21: (2, 0, 0) (left) and (1, 1, 0) (right)

Corollary 3. h(n) is also equivalent to the number of partitions of n− 1 into exactly

three parts.

Corollary 3 follows from Theorem 5 when instead of considering the number

of vertices attached to each red vertex, we include the red vertex in the size of each

block, making the size of each block non-zero. We are only excluding the center vertex

in the partition, creating partitions of n− 1 into exactly three parts.

In the next corollary, we consider a special case of trees: tripods. Tripods are

trees with exactly three leaves, and there is exactly one vertex with degree 3 called

the hub. In Figure 3.22, the three leaves are marked in red, and the hub is marked

in yellow.

Figure 3.22: Tripod With 6 Vertices

Corollary 4. There is a bijection between trees with n vertices that can be produced

from stars where c1 = 3 and tripods with n vertices [OE4].

Proof. Excluding the hub, let the vertices be partitioned based on their relative loca-

tion to the hub. That is, since the hub has degree 3, the vertices are partitioned by
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which of the three edges they are connected to. From that, we can derive a bijection

with partitions of n− 1 into exactly three parts, which are bijective to the trees with

n vertices that can be produced from stars where c1 = 3 by Corollary 3.

In Table 3.2, the red portion of the tree represents the star unit, showing a

correspondence between two classes of trees.

Corollary 5. The partition of trees with n vertices and c1 = 3 produced from the star

unit is

h(n) = round

(
(n− 1)2

12

)
.

Proof. We have shown the bijection relationship between partitions of n − 4 into at

most three parts with zeros used as padding and the trees with a = 3 that uses the

star unit as the minimal unit. Hardy G.H proved in [Hd] that partitions of k into at

most three parts corresponds to the formula round
(

(k+3)2

12

)
. Substituting k = n− 4,

we get the above formula.

Corollary 6. The number of trees with c1 = 3 that uses the star unit as the minimal

unit is given by the generating function

x3

(1− x)(1− x2)(1− x3)
= x3 + x4 + 2x5 + 3x6 + 4x7 + ...,

which corresponds to the number of partitions of n−4 into at most three parts [OE4].

In the above generating function, the number of trees with n = 6 vertices cor-

respond to the coefficeint 2 of x5. In general, the number of trees with n vertices

correspond to the coefficient of xn−1. See the below examples using trees with 6

vertices.

Generally, we define minimal units to claim that those units further partition the

block with c1 = 3. However, does that work for every n? For trees with 6 vertices
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that have the 2-CSF

XT (2) = x3
1x

n−3
2 + xn−3

1 x3
2,

a tree (1, 1, 0) that can be produced from the star unit is isomorphic to the tree

(0, 1, 0) that can be produced from the path unit.

(a) (0, 1, 0) from path (b) (1, 1, 0) from Star

Figure 3.23: Isomorphic trees with 6 vertices

This is because trees with 6 vertices is equicolorable when c1 = 3, meaning when

one color is used exactly three times, the other color is necessarily used three times

as well. However, we claim that for trees with 7 or more vertices, the minimal units

star and path produce disjoint sets of trees that belong in that block.

Lemma 1. For n ≥ 7, bicoloring of trees where c1 = 3 that can be produced from the

star unit are disjoint from the trees that can be produced from the path unit.

Proof. Suppose toward a contradiction that there is an intersection between the trees

that can be produced from the star unit and the trees that can be produced from the

path unit. Trees that can be produced from the path unit have diameter at least 4

and at most 6, whereas trees that can be produced from the star unit have diameter

at least 2 and at most 4. Thus, in order for a tree to belong to the intersection, the

only viable diameter of the tree is 4.

Figure 3.24: Path has diameter at least 4
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Figure 3.25: Star has diameter at most 4

Now suppose there is a tree with n ≥ 7 vertices with diameter 4 that can be

produced from both the path unit and the star unit. Notice that Figure 3.25, which

represents the star unit with diameter 4, contains a path of length 4 consisting of

vertices alternating between black and red. However, while Figure 3.24 has two red

leaves in the path, Figure 3.25 has two black leaves in the path. For n ≥ 7 vertices,

if c1 = 3, c2 = n− 3 and n− 3 ̸= 3. Thus, if the places of red and black vertices are

different, then the trees cannot be isomorphic while having c1 = 3.

We have proved that for n ≥ 7, the star unit and the path unit produce nonisomor-

phic trees. We also know that the two units combined produce all trees for the c1 = 3

case. The star unit sequence is the number of partitions of n− 4 into at most three

parts. For some small n values, we get the sequence 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, ...,

which is in [OE4].

Then, the path sequence is the number of nonsymmetric partitions of n−5 into at

most three parts. For some small n values, we get 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49...,

as defined in [OE3].

Combining those two, we get the sequence 2, 2, 4, 7, 10, 14, 19, 24, 37, 44, 52, 61, 70....

Since the first two sequences correspond to trees with 4 and 5 vertices, we must ex-

clude those from the sequence as c1 cannot be 3 while having c1 ≤ c2 as required.

Then we have a(n) = 4, 7, 10, 14, 19, 24, 37, 44, 52, 61, 70, .... This sequence is A007980

on OEIS [OE2]. a(0) corresponds to the number of trees with n = 6 vertices in the
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c1 = 3 block, and we have shown that there is a tree that is at the intersection of the

star and the path unit due to being equicolorable. Thus, a(0) = 4 even though there

are 3 trees with 6 vertices for the c1 = 3 case. Starting from trees with n ≥ 7 vertices

and a(1), the sequence corresponds to the total number of bicoloring of trees with n

vertices where c1 = 3.

Let us denote by g(n) the total number of trees with n vertices that can be

bicolored with c1 = 3.

Theorem 6. The number of trees with n vertices that can be bicolored with c1 = 3

that uses the star unit is (shown in [OE4])

⌊
(n− 1)2 + 4

12

⌋
,

and the partition of such trees that uses the path unit as the minimal unit is

⌊
(n− 3)2

4

⌋
.

Thus,

g(n) =

⌊
(n− 1)2 + 4

12

⌋
+

⌊
(n− 3)2

4

⌋
=

⌊
n2 − 5n+ 7

3

⌋
for the total number of trees with n vertices that can be bicolored with c1 = 3.

This formula g(n) =
⌊
n2−5n+7

3

⌋
is given by [OE2], which corresponds to the se-

quence for the total number of trees with n vertices where the 2-CSF is

XT (2) = x3
1x

n−3
2 + xn−3

1 x3
2.
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Algebraically, the equation makes sense by the calculation below.

⌊
(n− 3)2

4

⌋
+

⌊
(n− 1)2 + 4

12

⌋
=

⌊
n2 − 6n+ 9

4

⌋
+

⌊
n2 − 2n+ 5

12

⌋

=

⌊
3n2 − 18n+ 27

12

⌋
+

⌊
n2 − 2n+ 5

12

⌋

=

⌊
n2 − 5n+ 8

3

⌋

=

⌊
n2 − 5n+ 7

3

⌋
(3.2)

The last two lines of equation 3.2 are equal because

n2 − 5n = n(n− 5) ≡ m ∈ {0, 1} (mod 3).

We know 5 ≡ 2 (mod 3) and thus if n ≡ i (mod 3), then n − 5 ≡ i + 1 (mod 3). If

i = 0 or i+ 1 = 0, then n(n− 5) ≡ 0 (mod 3). Otherwise, n(n− 5) ≡ 2 (mod 3).

On the other hand, if k ≡ 1 (mod 3) and j1 ·j2 = k, then j1 ≡ j2 ≡ m (mod 3) where

m ∈ {1, 2} so that j1 · j2 ≡ 1 (mod 3).

Now, the sequence A007980 on OEIS [OE2] that gave us the formula g(n) =⌊
n2−5n+7

3

⌋
also leads us to Corollary 7 and Corollary 8.

Corollary 7. For n ≥ 7, g(n) is the number of partitions of 2 · (n − 4) to at most

three parts. It is also the number of partitions of 2n− 5 into exactly three parts.

Corollary 8. For n ≥ 7, g(n) is equal to the expansion of

(1 + x2)

(1− x)2(1− x3)
.

It is the generating function for the number of partitions of 2 · (n−4) to at most three

parts and number of partitions of 2n− 5 into exactly three parts [OE2].
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From the sequence, one may also come up with the recursive formula for g(n) that

we leave as a conjecture.

Conjecture 1. g(n) can also be defined recursively as the following.

g(7) = 7

g(8) = 10

Now, for n ≥ 9,

1. if n ≡ 0 (mod 3) or n ≡ 1 (mod 3),

g(n) = 2 ∗ g(n− 1)− g(n− 2) + 1

2. if n ≡ 2 (mod 3),

g(n) = 2 ∗ g(n− 1)− g(n− 2)

The idea of the proof may be related to the minimal unit relationship.

3.4 One color used exactly four times

Lets now direct our attention to the case where c1 = 4, meaning one of the colors

used was used exactly four times and the other color c2 = n− 4 times. Trees in this

case have the 2-CSF

XT (2) = x4
1x

n−4
2 + xn−4

1 x4
2.

Figure 3.26 an example where one color was used exactly four times.

The first proposition in this section is analogous to Proposition 9 in Section

3.3 and Proposition 8 in Section 3.2. Thus, we leave an abridged proof.
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Figure 3.26: Tree with c1 = 4

Proposition 10. All trees that can be bicolored with one of the colors used exactly

four times (c1 = 4) and the other color n− 4 times have diameter at most 8.

Proof. Suppose that there is a tree with n vertices with diameter 9 or higher that

can be properly bicolored with c1 = 4. In any tree with diameter 9 or more, there

exists a path with 10 vertices. Since colors have to alternate, c1 and c2 have to be

used the equal number of times in the path, which means each color is used 5 times

or more.

3.4.1 Minimial units for c1 = 4

We have four minimal units for c1 = 4, and we call them the star, the path, the T, and

the trident as depicted in Figure 3.27. We show that those units are minimal units,

meaning 1) every tree with 2-CSF XT (2) = x4
1x

n−4
2 + xn−4

1 x4
2 can be generated from

these units and 2) the set of trees that can be generated from each unit is disjoint

from one another.

Following the convention that c1 ≤ c2 and that trees with n = 8 vertices will have

intersection between trees that can be produced from minimal units because they are

equicolorable, we want to show the disjointness for such trees with n ≥ 9 vertices.

Theorem 7 shows the disjointness.

Theorem 7. Trees with n vertices that can be produced from star, path, T, and trident

units are disjoint to each other for all n ≥ 9.
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(a) Star (b) Path

(c) T (d) Trident

Figure 3.27: Minimal Units for c1 = 4

Proof. In order to show that all of them are disjoint from one another, we must show

1) star is disjoint to path, 2) path is disjoint to T, 3) T is disjoint to trident, 4) star

is disjoint to T, 5) star is disjoint to trident, and 6) path is disjoint to trident. Most

of those cases are similar to proving the disjoint for c1 = 3 case, and some cases can

be proven simultaneously.

First, let us show that star is disjoint to T, trident and path. Whichever tree that

can be formed from the star unit has a black vertex of degree 4. In order for there

to be an isomorphic tree to a tree that can be formed from a star, we need to have a

black vertex of degree 4 in the path, trident, or T. However, there is no black vertex

of degree 4 in the T unit, trident unit, or the path unit, and we cannot add more red

vertices to the black vertex since it will violate our condition for c1 = 4.

Second, T is disjoint to path or trident. The similar logic applies because T has

a black vertex of degree 3, while neither path or trident does.
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Lastly, path is disjoint to trident. The longest path that can be formed from the

trident is 6, and the shortest path that can be formed from the T is 6. Thus, the

only possibility for an isomorphic tree is a tree with diameter 6. However, the path

has two red leaves when the diameter is 6, but in order to form a tree with diameter

6 from the trident, we will have black leaves in the path. Since the number of red

vertices is fixed, these trees are not isomorphic.

These three cases are exhaustive. Every unit produces disjoint set of trees with

n ≥ 9 vertices where c1 = 4.

While we won’t discuss the details of partioning each unit like we did for the c1 = 3

case, we will discuss briefly an idea for counting the number of trees corresponding to

each minimal unit. That is, since we can only add vertices to the red vertices in the

minimal units, trees that are produced from each minimal unit are bijective to some

kind of partitions or nonsymmetric partitions.

The star unit for c1 = 4 is bijective to partitions of n − 5 into at most 4 parts,

analogous to the star unit for the c1 = 3 case. The trees from path unit for c1 = 4

are bijective to nonsymmetric partitions of n− 7 into at most 4 parts (where we have

(a, b, b, a)), also analogous to the path unit for the c1 = 3 case. Trees from T and

trident are a little more complicated in that we need to construct the partitions in

a more careful manner. We can construct nonsymmetric partitions, but not up to

reversal. From the labeling of red vertices of the T unit in Figure 3.28, a and d are

symmetrical to each other, but b and c are not. In the trident unit in Figure 3.29,

b, c, and d are symmetrical to each other while a is not. Despite some complications,

partitioning of vertices is still helpful for counting the number of trees in each block.

(maybe elaborate more)
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a

b c

d

Figure 3.28: Labeling red vertices of T unit

a

b

c

d

Figure 3.29: Labeling red vertices of trident unit

3.5 Generalization of minimal units

Having worked out examples with small c1 values, we now generalize the minimal

units. If c1 = k, meaning one of the colors used was used exactly k times and the

other color c2 = n− k times, trees will have the 2-CSF

XT (2) = xk
1x

n−k
2 + xn−k

1 xk
2.

It turns out that trees with c1 = 5 have 9 minimal units, c1 = 6 have 22 minimal

units, and c1 = 7 have 62 minimal units. Simply put, the numbers explode. Intu-

itively, this make sense since the minimal units for c1 = 5 will be used to count trees
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with 11 or more vertices, the minimal units for c1 = 6 will be used to count trees with

13 or more vertices, and the minimal units for c1 = 7 will be used to count trees with

15 or more vertices. From Table 3.1, while there are only 47 trees with 9 vertices,

there are 235 trees with 11 vertices, 1301 trees with 13 vertices, and 7741 trees with

15 vertices. As the number of trees itself explodes, the number of minimal units that

partition the trees would also explode.

With this in mind, we will now describe a process that can generate the minimal

units for any value of k. In particular, we can generate minimal units for trees with

the 2-CSF of

XT (2) = xk
1x

n−k
2 + xn−k

1 xk
2

when we have minimal units for c1 = 1 through c1 = k − 1 cases. Before we describe

the procedure and demonstrate an example, we first state an intuitive remark for

minimal units and a lemma that applies to bicoloring of trees in general.

Remark 1. Any minimal unit cannot have black leaves; that is, every leaf must be

red.

This remark stems from an intuitive fact that if there is a black leaf in a tree, the

tree can be produced from another minimal unit. Thus, the tree cannot be a minimal

unit.

Lemma 2. Trees with n vertices that can be properly bicolored with c1 = k have

diameter at most 2k.

Proof. A tree with diameter 2k + 1 contains a path with 2k + 2 vertices that need

to alternate in color. Thus, each color needs to be used k + 1 times, violating our

condition that c1 = k.
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This lemma is a generalization of Proposition 8, 9, 10. We now describe the

process of producing minimal units for c1 = k using minimal units for c1 = 1, c1 = 2,

..., and c1 = k − 1.

Definition 23. We can generate the minimal units for trees with n vertices and

c1 = k, given minimal units for trees with c1 = 1, c1 = 2, ..., and c1 = k − 1.

1. Start from the minimal unit of c1 = 1. Convert all the red vertices in each

minimal unit to black, and all the black vertices to red.

2. The above step produces black leaves. Add one red vertex to each black leaf so

that there is no black leaf, as it is illegal by Remark 1.

Note that the number of red vertices after this step is the (number of leaves +

the number of black vertices) from the previous minimal unit.

3. If the number of red vertices exceeds k following step 2, discard the minimal unit.

Otherwise, if the number of red vertices is less than k, add more red vertices to

the tree to have c1 = k. Beware of isomorphism.

4. Repeat for c1 = 2, and up to c1 = k − 1.

To assist readers’ understanding of this process, we demonstrate an example to

produce minimal units for c1 = 5.

Example 6. To generate minimal units for c1 = 5, we must consider the minimal

units for c1 = 1, c1 = 2, c1 = 3, and c1 = 4. For c1 = 1 (Figure 3.30), you have a

tree with one vertex. We convert the red vertex to a black vertex, and add five more

red vertices to produce a star with 6 vertices (Figure 3.31).

Next, we consider the unit for the c1 = 2 case, which is the spine of the caterpillar.

We then swap the black and red vertices, which produces two black leaves. We have

to add at least one red vertex to each black leaf, producing Figure 3.32.
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Figure 3.30: Minimal unit for a = 1

Figure 3.31: Star Unit for c1 = 5

Figure 3.32: Middle step producing a minimal unit from spine

Notice that we only have three red vertices in this middle step. Since we want to

produce a minimal unit for c1 = 5, we need to add two more red vertices to the black

vertices. They can be put on the same vertex or one on each vertex, producing the

following two minimal units depicted in Figure 3.33 and Figure 3.34.

Figure 3.33: (2, 0) unit from spine for c1 = 5

Figure 3.34: (1, 1) unit from spine for c1 = 5

Now, we consider minimal units from c1 = 3. There are two units: the path unit

and the star unit. Lets first consider the path unit. We swap the red and black vertices,

and add one red vertex to each black leaf. Then we get the tree in Figure 3.35.
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Figure 3.35: Middle step producing a minimal unit from path

We only have four red vertices in the middle step Figure 3.35. Thus, we need to

add one more red vertex to one of the black vertices up to isomorphism, which yields

the two minimal units in Figure 3.36

Figure 3.36: Two nonisomorphic minimal units for c1 = 5

Then from the star unit of c1 = 3, we can produce the following tree in Figure

3.37 by swapping red and black vertices and adding red leaves to black leaves.

Figure 3.37: Middle step

Here, we need to add one more red vertex, and all black vertices are symmet-

ric. This means that adding a red vertex to any of those black vertices will produce

isomorphic units.

Figure 3.38: Extended F unit for c1 = 5
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Finally, we consider minimal units for c1 = 4. Note that we cannot make a

minimal unit for c1 = 5 using the minimal unit trident because following steps 1 and

2, you have 6 red vertices, as demonstrated in Figure 3.41.

Figure 3.39: Violation of Minimal Unit

Thus, we should work with the other three minimal units for the c1 = 4 case.

The star has one black vertex and four red leaves, making the sum to 1 + 4 = 5.

For the T, we have two black vertices and three red leaves, again making the sum

to 2 + 3 = 5. Lastly, for the path, we have three black vertices and two red leaves,

summing to 3+2 = 5. This means that for each minimal unit for c1 = 4 case, we can

produce exactly one minimal unit for the c1 = 5 case. The minimal units with four

black vertices are shown in Figure 3.40, 3.41, 3.42.

This process produces 9 minimal units for the case c1 = 5, as shown in Figure

3.31, Figure 3.33, Figure 3.34, two in Figure 3.36, Figure 3.38, Figure 3.40,

Figure 3.41, and Figure 3.42. Following this example, readers may have a better

understanding of how the minimal units are produced for bigger c1 values and how

the number of minimal units would increase for bigger c1 values. Now, we should

prove that the trees produced from such minimal units are disjoint.
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Figure 3.40: Cross

Figure 3.41: Path

Figure 3.42: T

Theorem 8. Minimal units for c1 = k case produces disjoint sets of trees with n ≥

2k + 1 vertices.

Proof. The idea of this proof is by induction. From sections 3.1 through 3.4, we

showed the base case. Assume that this theorem holds for some c1 = k − 1 ≥ 4. By

Definition 23, minimal units for c1 = k are produced from minimal units for c1 = 1

through c1 = k − 1, which are disjoint from one another. First, intuitively, minimal

units that are produced from the minimal units in different blocks are disjoint since

there are different number of black vertices. For instance, minimal units for c1 = 5

produced from minimal units for c1 = 2 are disjoint from minimal units for c1 = 5
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produced from minimal units for c1 = 3. Then, minimal units that are produced from

the same block are also disjoint. Say that we are producing minimal units for c1 = k

using minimal units for c1 = m, where m < k. Then we know that the minimal units

for c1 = m are disjoint from one another by our assumption. Thus, all minimal units

for c1 = k that can be produced from the process described in Definition 23 are

disjoint.

Following Theorem 8, we see that bicolorings of trees with n vertices where

c1 = k are further partitioned by minimal units, as shown in Figure 3.2. To count

each block, we can think of non-isomorphic ways to add black vertices to generate

trees with n vertices. Thus, if a minimal unit has m vertices, then we need to add

n−m black vertices to produce a tree with n vertices.
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Chapter 4

Distinguishing Trees with Chromatic

Symmetric Functions

In this section, I will discuss briefly the basic properties of tricoloring of trees, that

is, proper coloring of trees using exactly three colors. Instead of 2-CSFs, we will now

use 3-CSF. Then, I will discuss how we may distinguish trees with two colors or three

colors.

4.1 Tricoloring of trees

As mentioned in an earlier chapter, stars are an important basis for other trees. Thus,

we first find a formula for the chromatic symmetric function of tricoloring of any star

with n ≥ 3 vertices. Denote by Xstn the chromatic function for a star with n vertices.

Note that mx,y,z denote a partition of x+y+z into three parts, as defined by Richard

Stanley. Figure 4.1 describes a tricoloring of star with 6 vertices. In this case, the

partition that corresponds to the tricoloring is m4,1,1. Unlike in bicoloring, we cannot

just swap the colors, which creates non-trivial coefficients for 3-chromatic symmetric
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functions.

Figure 4.1: A tricoloring of star with 6 vertices

Proposition 11. The 3-chromatic symmetric function for a star with n ≥ 5 vertices

is described by the following formula.

Xstn(3) = 2

(
n− 1

1

)
mn−2,1,1 +

(
n− 1

2

)
mn−3,2,1 + ...+

(
n− 1

⌊n−1
2
⌋

)
mn−⌊n−1

2
⌋,n−⌊n−1

2
⌋,1

Proof. Note that Xst1(3) = e1 and Xst2(3) = e2. When n = 3, we have a path of

length 3. Since we have three vertices, we must use each color exactly once. Since

the colors can permute, we have

x1x2x3 + x1x3x2 + x2x1x3 + x2x3x1 + x3x1x2 + x3x2x1.

We can generalize the function as 6m1,1,1. Similarly, Xst4(3) = 6m2,1,1.

Consider Xstn(3) with n ≥ 5. For each star with n vertices, we can construct a

proper coloring by first fixing the color x1 of the middle vertex (center), without loss

of generality. The center vertex represents the last part in the partition mλ1,λ2,λ3 .

Then we are left with n−1 vertices that must not be colored x1. Since n−1 vertices

must be colored with the remaining two colors, we find partitions of n−1 into 2 parts.

For each number n, the partitions can range from (n− 2, 1, 1) to (⌊n−1
2
⌋, ⌊n−1

2
⌋, 1).

Now we must determine the coefficients of each partition. Among n− 1 vertices,

we choose which vertices will be colored in x2 and which vertices will be colored in
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x3, without loss of generality. That is, we choose the second part in the partition λ2

from n − 1. However, if we have 1 as the second part of the partition λ2, we obtain

the same result by choosing the third part in the partition λ3 from n− 1. Thus, we

multiply the term by 2 when λ2 = 1. This gives us the equation

Xstn(3) = 2

(
n− 1

1

)
mn−2,1,1 +

(
n− 1

2

)
mn−3,2,1 + ...+

(
n− 1

⌊n−1
2
⌋

)
mn−⌊n−1

2
⌋,n−⌊n−1

2
⌋,1.

Example 7. A star with n = 5 vertices have the 3−chromatic symmetric function

6m2,2,1 + 8m3,1,1.

A star with n = 6 vertices have the 3−chromatic symmetric function 10m4,1,1 +

10m3,2,1.

A star with n = 7 vertices have the 3−chromatic symmetric function 20m3,3,1 +

15m4,2,1 + 12m5,1,1.

Proposition 11 describes the 3−CSF of stars. To account for many more pos-

sibilities for tricoloring of trees, we will use the deletion-near-contraction relation

(hereafter DNC algorithm) in [Or]. DNC algorithm utilizes stars as the basic unit of

tree as it decomposes trees into stars to compute their chromatic symmetric functions.

Definition 24. [Or] Let (G,w) be a weighted graph and e be a non-loop edge of G.

Then we have

X(G/e,w/e) = X(G,w)⊙e)\le −X(G,w)⊙e·

Moreover, the weighted chromatic symmetric function satisfies the deletion near-

contraction formula:

X(G,w) = X(G\e,w) −X(G,w)⊙e)\le +X(G,w)⊙e·
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Moreover, if G is simple, then

X(G,w) = X(G\e,w) −X(G,w)⊙e)s\le +X((G,w)⊙e)s·

The DNC algorithm allows one to easily compute chromatic symmetric functions

of trees with n vertices. Therefore, this algorithm is helpful for Section 4.2.

4.2 Distingushing Trees

In this section, we explore how chromatic symmetric functions with restrictions on the

number of colors used might distinguish trees. We computed chromatic symmetric

functions on Stanley’s monomial basis using sagemath.

Example 8. The chromatic symmetric function of a star with 5 vertices is 120m1,1,1,1,1+

36m2,1,1,1 + 6m2,2,1 + 8m3,1,1 + m4,1. When we restrict to exactly two colors, the 2-

chromatic symmetric function is m4,1. Similarly, the 3-chromatic symmetric function

is 6m2,2,1 + 8m3,1,1.

Intuitively, for a tree with n vertices, the largest number of colors that can be

used is n. Therefore, when we consider k-chromatic symmetric functions, we will

only consider trees with k or more vertices. The goal of this section is to see how

many colors are needed to distinguish trees with n vertices.

4.2.1 2-Chromatic Symmetric Functions

When using two colors, the first time we see two non-isomorphic graphs sharing

the same chromatic symmetric function is when n = 5, that is, for trees with five

vertices. Figure 4.2 depicts two trees with 5 vertices that have the same 2-chromatic

symmetric function m3,2.
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Figure 4.2: Bicoloring of Trees with 5 vertices

Figure 4.3: Bicoloring of Trees with 6 vertices

In fact, for n ≥ 5, there are many trees sharing the same 2-chromatic symmetric

functions. Among 6 trees with n = 6 vertices, there are two trees with 2-CSF m4,2

and three with 2-CSF 2m3,3. Figure 4.3 describes trees with 2m3,3. For trees with

n = 7 vertices, there are 7 trees with 2-CSF m4,3 and 3 trees with 2-CSF m5,2. For

trees with n = 8 vertices, there are 9 trees with 2-CSF 2m4,4, 10 trees with 2-CSF

m5,3, and 3 trees with 2-CSF m6,2, consistent with Table 3.1. The next remark is

another observation that leads to a difference between 2− and 3−chromatic symmetric

functions.

Remark 2. The only trees with 2-chromatic symmetric functions with a coefficient
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not 1 are equicolorable trees.

Equicolorable trees can have 2−chromatic symmetric functions with coefficient

2. For trees with n = 2m vertices, if one of the colors used is used m times, the

other color is also used m times. Therefore, swapping the two colors yields the same

2−chromatic symmetric function, making the coefficient 2.

Generally, 2-CSF cannot distinguish trees with n vertices. For example, there are

450 trees with 17 vertices where c1 = 4. This means that there are 450 trees with the

2−chromatic symmetric function m13,4.

Proposition 12. 2-chromatic symmetric functions cannot distinguish trees with n

vertices that are not stars.

This proposition follows from observing Table 3.1 in Chapter 3.

4.2.2 Distinguishing Trees with Identical 2-Chromatic Sym-

metric Functions

In this section, we will discuss that it is possible to distinguish trees with identi-

cal 2−CSF using other k−CSFs. In order to approach the question, we outline an

observation in Lemma 3.

Lemma 3. Trees with n vertices are not distinguishable by n-chromatic symmetric

functions or (n− 1)-chromatic symmetric functions.

Proof. First, trees with n vertices are not distinguishable by n- coloring chromatic

symmetric functions because in every tree with n vertices, every vertex must be

colored a different color in order for an n-coloring. The colors can permute, creating

the coefficient of n! for every tree with n vertices and arriving at the n- coloring

chromatic symmetric function of n!m1n .
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Such trees are also not distinguishable by (n− 1)−coloring chromatic symmetric

functions. In every tree with n vertices, two (non-adjacent) vertices can share the

same color, and every other vertex must be colored differently. We can choose the

color that can be used twice as well as the two vertices that are to be colored in this

color in
(
n−1
2

)
ways. Then, we have n − 2 colors that can permute. Combining the

two, we have the formula (
n− 1

2

)
(n− 2)!

for the coefficient of (n − 1)−coloring chromatic symmetric functions of every tree

with n vertices. Checking this formula for n = 5, 6, 7, we get

(
4

2

)
3! = 36,

(
5

2

)
4! = 240,

and (
6

2

)
5! = 1800,

consistent with the calculation on sagemath.

Now that we are aware trees cannot be distinguished by their 2−chromatic sym-

metric functions, we turn our attention to k-chromatic symmetric functions of trees

where k ≥ 3. We will first consider bicolorable trees with c1 = 2, which are bi-

colorable trees that have the 2−chromatic symmetric function of mn−2,2.Table 4.1

describes how trees with 5 vertices with identical 2−CSF may be distinguished by

other k-coloring chromatic symmetric functions.

In the table, those trees with 5 vertices have the identical bicoloring, 4-coloring,

and 5-coloring chromatic symmetric functions. However, they are distinguished by
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Table 4.1: Distinguishing trees with n = 5 vertices

Tree with n = 5 vertices Bicoloring Tricoloring 4-coloring 5-coloring

m3,2 12m2,2,1 + 2m3,1,1 36m2,1,1,1 120m15

m3,2 10m2,2,1 + 4m3,1,1 36m2,1,1,1 120m15

the coefficients of their tricoloring chromatic symmetric functions.

Now, we consider trees with 6 vertices. Excluding the star, there are two 2−chromatic

symmetric functions for trees with 6 vertices, m4,2 and 2m3,3, as described in Table

4.2. From the table, we again first consider trees with 2−chromatic symmetric func-

tion m4,2. It seems that again, the trees are distinguished by 3−chromatic symmetric

functions. Let us hypothesize that bicolorable trees with 2−CSF mn−2,2 are distin-

guishable by their 3−CSF and prove it.

Theorem 9. Trees with n vertices that have 2−CSF mn−2,2 can be distinguished

by their 3−CSF. Moreover, they are distinguished by the coefficient of the "most

balanced" term in their 3-CSF.

Before proving the theorem, we will define the "most balanced" term. The "most

balanced" term of a 3-chromatic symmetric function (for a tree with n vertices)

refers to the partition where we first divide n by 3 such that we have a partition

(⌊n/3⌋, ⌊n/3⌋, ⌊n/3⌋) Then, we "fill" the remainder by adding to the partition starting

from the first part while maintaining the balance. For instance, if we have n = 7,

then we first have (2, 2, 2) as the partition. However, since 2 + 2 + 2 = 6, we add 1

to the first part, making our most balanced partition (3, 2, 2). Similarly, if we have
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n = 8, we also have 2, 2, 2 as the partition, but we need to add 1 to the first two parts

so that 3 + 3 + 2 = 8. Thus, our most balanced partition for 8 is (3, 3, 2).

Proof. Bicolorable trees with n vertices with 2−CSF of mn−2,2 have a minimal unit,

which is a spine with three vertices

Figure 4.4: Minimal Unit for c1 = 2

We want to count the partition that corresponds to the most balanced term in

the 3−chromatic symmetric function of the tree. Since we have three colors now, we

can have two different ways to color Figure 4.4.

1. Case 1: All three vertices colored differently

2. Case 2: Two end vertices colored same

Among those two cases, Case 1 is of our interest as it shows why the coefficients

are distinguishable. Every tree in the block c1 = 2 has a one-to-one correspondence

with a partition of n − 3 into at most two parts as we defined in Chapter 3. If we

have a partition of n− 3 into one part, meaning the partition is (n− 3, 0) with 0 as a

padding, we cannot have any Case 1 balanced partition. Either the red vertex or the

yellow vertex has degree n − 2, and the color can only be used once. For example,

Figure 4.5 represents a tree with 6 vertices with the corresponding partition (3, 0).

After fixing the three colors of the spine, we cannot add any more red vertices. This

means that we cannot have the most balanced partition, which is (2, 2, 2).
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Figure 4.5: Cannot have a balanced partition

If we have a partition (n−4, 1), then we have exactly one choice for the yellow/red

degree n − 3 vertex. It is the vertex that corresponds to the second part of this

partition. Likewise, for each tree in the block c1 = 2, the partition that corresponds

to the tree determines the number of possible Case 1 most-balanced partitions.

Thus, the number of Case 1 most-balanced partitions depends on the partitions

of n− 3 into at most two parts, which decides the shape of trees in the c1 = 2 block.

Since every tree in this block corresponds to a different partition of n − 3 into at

most two parts, the number of Case 1 most-balanced partitions is different for each

tree in the c1 = 2 block. This makes the coefficients of the most balanced partition

distinguishable.

Now that we have a distinguishing number for bicolorable trees with 2−CSF

mn−2,2, the next step would be to expand and derive distinguishing numbers for

bicolorable trees with other 2-CSF. I will elaborate on those in Chapter 5 Open

questions.
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Chapter 5

Open Questions

In this thesis, we showed that we can classify trees with n vertices using bicoloring.

We also showed that trees with n vertices are not distinguishable by 2−chromatic

symmetric functions, except for stars with n vertices. Thus, in Chapter 4, we showed

that the trees with 2−chromatic symmetric function mn−2,2 can be distinguished by

their 3− CSF . Continuing from the previous chapter, the main next step would be

to continue and find ways to distinguish trees that belong to other blocks. That is,

to find a distinguishing number for all trees with n vertices that are partitioned by

bicolorings.

Moreover, there are some other unanswered questions. In Chapter 3, we showed

that there are minimal units corresponding to every c1 = k value, or every 2−chromatic

symmetric function mn−k.k. As the number of minimal units explode from the case

c1 = 7, we were unable to investigate whether there is a significance to the sequence

of the number of minimal units. We know that the 22 minimal units partition trees

with 13 or more vertices where c1 = 6, and 62 minimal units partition the trees with

15 or more vertices where c1 = 7. Examining whether the number of minimal units

for higher c1 values will be interesting.
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