
The chromatic symmetric function
in the star basis

By

Michael Gonzalez

SENIOR HONORS THESIS
ROSA C. ORELLANA, ADVISOR

DEPARTMENT OF MATHEMATICS
DARTMOUTH COLLEGE

JUNE, 2023

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

2 Preliminaries 3

2.1 Forests . 3

2.2 Rooted Trees . 9

2.3 Symmetric Functions . 10

3 Deletion-Near-Contraction 14

3.1 DNC Relation . 14

3.2 Star-Expansion and Path-Counting 18

4 Leading Term 22

4.1 DNC operations and λlead . 23

4.2 The Leading Term and λlead . 28

5 Chromatic Subspace and Basis 37

6 Code and Data 45

ii

7 Open Questions 56

Bibliography 58

iii

Acknowledgements
I would like to thank Professor Orellana for the time she put into working with

me on this project and for the passion for mathematics that she has displayed as a

teacher and mentor. She helped me undertand what math is during my first year

at Dartmouth, when I took Math 28 Introduction to Combinatorics with her. Since

then, I’ve had an amazing journey learning and teaching math to others. Along

this journey, I’ve met some other incredible professors who have helped to propel

me further and seek out the beauties that math has to offer. Professor Jayanti and

Professor Chakrabarti have been two such professors, who I thank greatly.

I would also like to thank Mario (’25), who has motivated and inspired me to

think about this project. My discussions with him have led to many insights, some

of which are presented in this thesis.

I would also like to thank my parents, sister, and grandma, whose endless sacrifices

and support have allowed me to graduate from Dartmouth College and to write this

thesis. Finally, thank you to my friends who helped me build a home away from

home. I love you all.

iv

Abstract
This thesis approaches Stanley’s tree isomorphism conjecture by determining prop-

erties of a tree that are recoverable from its chromatic symmetric function (CSF)

in the star basis. First, we explore and modify a recursive relation introduced in a

recent paper to compute the CSF and specify two algorithms that relate the relation

to CSF calculations. We use these algorithms to prove some simple yet insightful

results about coefficients in the CSF. We then show that the leading term of the CSF

in the star basis is completely determined by properties of the tree, allowing us to

distinguish large classes of trees. We then consider a matrix representation of the

chromatic symmetric functions of trees on n vertices and show that the subspace of

Λk spanned by these vectors has dimension p(n)−n+1. We also give a construction

for a basis for this space, which permit us to write CSFs of trees in terms of CSFs of

these basis elements, an area for future study.

v

Chapter 1

Introduction

Graphs are ubiquitous in mathematics and computer science. They model relation-

ships in solutions to various mapping and scheduling problems. Beyond their utility,

they are beautiful mathematical objects to study. They have very interesting proper-

ties and a satisfying visual representation. In 1995, Stanley introduced the chromatic

symmetric function, a generalization of a graph’s chromatic polynomial [St1]. Un-

like the chromatic polynomial, however, the chromatic symmetric function does not

satisfy a deletion-contraction recurrence.

In [St1], Stanley expresses the chromatic symmetric function in terms of different

bases for symmetric functions. An interesting open problem (and the focus of this

thesis) is whether the chromatic symmetric function determines trees. That is, for

any two trees, are their chromatic symmetric functions distinct? In [?, ?, bHJ] Heil

shows that this question can be answered in the affirmative for trees having up to 29

vertices. Given that there are 8 billion trees with at most 29 vertices, this evidence

is quite convincing. That said, a more generalize argument is necessary.

In 2016, Cho in [CvW] introduces a new basis for the algebra of symmetric func-

tions constructed from star graphs, called the star-basis. Though the chromatic sym-

1

metric function does not satisfy a deletion-contraction formula, in 2022 Aliste-Prieto,

de Mier, Orellana, and Zamora showed that, when expressed in terms of the star-basis,

it does satisfy a modified variation of this relation called the deletion-near-contraction

relation [AMOZ].

The main objective of this thesis is to use the deletion-near-contraction relation

to study the properties of a tree that can be determined from the coefficients of its

chromatic symmetric function. I start my thesis by connecting a derivation of the

chromatic symmetric function of a tree with ternary trees and explain how this process

may be useful in the context of Stanley’s conjecture. Then, in Chapters 4 and 5 I go

on to describe two major results that follow using these techniques and discuss how

these results allow us to distinguish classes of trees. The thesis ends with a Python

implementation of the deletion-near-contraction relation and data tables that have

been useful in this work.

2

Chapter 2

Preliminaries

2.1 Forests

In this section, we review some fundamental definitions and statements about forests,

a special kind of graph. Most of these terms can be found in any introductory graph

theory textbook like [West]. Some possibly new terms like “leaf edge” and “internal

edge” are defined here.

Definition 1. A simple graph G is a pair (V (G), E(G)), where V (G) is a nonempty,

finite set of elements called vertices and E(G) ⊆ {{u, v}|u, v ∈ V, u ̸= v}. The el-

ements of E(G) are called edges. A graph with no edges and exactly one vertex is

called the trivial graph.

In this thesis we use uv (or, equivalently, vu) to denote the edge {u, v}.

Above is an example of a graph. Observe that the graph is unlabeled, i.e., the

vertices do not have any labels. In fact, all of the graphs we consider in this thesis are

3

unlabeled. This may be counterintuitive as a graph’s vertex set is defined as a set of

labels. As a convention, when we refer to a vertex in an unlabeled graph, we assume

an arbitrary, temporary labeling of the vertex set that “expires” once the discussion

of said vertex is complete.

There are more general types of graphs that involve multiple edges between pairs

of vertices and edges between a single vertex. We won’t consider such graphs as they

lack relevance in the domain of proper coloring, the underlying theme of this thesis.

Definition 2. Two graphs G and H are isomorphic, denoted G ∼= H, if there exists

a bijection ϕ : V (G)→ V (H) such that for all u, v ∈ V (G), uv ∈ E(G) if and only if

ϕ(u)ϕ(v) ∈ E(H).

Essentially, two graphs are isomorphic if one can be obtained from the other by a

relabeling of vertices.

∼=

G H

The above two graphs are isomorphic. Though visually we can convince ourselves

this is true, formally G ∼= H since for an arbitrary vertex labeling of V (G) and V (H),

Definition 2 is satisfied.

For convenience, we define here some commonly used terminology in graph theory

that will be used throughout the thesis. Two vertices u, v ∈ V (G) are adjacent if

uv ∈ E(G). We say an edge uv is incident to its endpoints: u and v. An edge e is

incident to an edge e′ if e and e′ share exactly one endpoint. The degree of a vertex

4

u, denoted deg(u), is the number of edges incident to u. The neighborhood of a

vertex u, denoted N(u), is the set of vertices adjacent to u. A vertex is isolated if

deg(u) = 0, and a vertex u is a leaf if deg(u) = 1. Otherwise, i.e., if deg(u) ≥ 2, we

call u an internal vertex.

In this thesis, it will be useful to consider edges whose endpoints are internal

vertices. To distinguish these edges from all other edges in a graph, we introduce the

following vocabulary.

Definition 3. A leaf edge is any edge incident to a leaf. An internal edge is any

edge uv, where deg(u), deg(v) > 1. We denote the set of leaf edges of a graph G by

L(G) and the set of internal edges of G by I(G).

In the graph G above, the leaf edges are colored green and internal edges are

colored red. By definition, it follows that every edge in a graph is either a leaf edge

or an internal edge.

It will also be useful to distinguish internal vertices that have no leaves in their

neighborhoods.

Definition 4. A deep vertex is an internal vertex whose neighborhood contains only

internal vertices.

In the following graph the deep vertices are colored red:

5

Definition 5. In a graph G, deletion of edge e = uv is simply the removal of uv

from E(G). The resulting graph is denoted G\e.

=⇒e G\e

More generally, given a graph G and a subset of edges E ′ ⊆ E(G), we define G\E ′

to be the graph obtained by deleting every edge of G in E ′. For example, letting G

be the graph from Definition 3, G\I(G) is the following graph:

Definition 6. A path in G is a finite sequence of distinct edges v0v1, v1v2, . . . vm−1vm,

where v0, . . . , vm−1 are distinct vertices in G. A cycle is a nonempty path where

v0 = vm.

Definition 7. A graph G is acyclic if there are no cycles in G. Otherwise, G is

cyclic. We say G is connected if for every u, v ∈ V (G), there exists a path in G

from u to v. Otherwise, G is disconnected.

6

The following graph is acyclic and connected:

The graph below is cyclic and disconnected:

Definition 8. A subgraph of G is any graph G′ for which V (G′) ⊆ V (G) and

E(G′) ⊆ E(G). A connected component of G is a maximal, connected subgraph

of G.

For example, the cyclic and disconnected graph in the preceding example consists

of two connected components.

In this thesis, we consider a special class of simple graphs called forests.

Definition 9. A forest is an acyclic graph. A tree is a connected, acyclic graph.

The union of graphs G1, G2, . . . , Gk, denoted
k⋃

i=1

Gi, is the graph consisting of

connected components G1, G2, . . . , Gk. Thus, a forest can be equivalently defined as

a union of one or more trees.

We will frequently refer to a special type of tree called a “star graph”, as well as

the forest equivalent, a “star forest”.

Definition 10. The star graph on n vertices, denoted Stn, is the tree on n vertices

with no internal edges. A star forest is a union of one or more star graphs.

The star forest St5∪St4∪St1 is drawn below as an example. Note that St1 is, by

definition, the trivial graph since this is the only tree with 1 vertex and no internal

edges.

7

Drawn below is an example of a proper forest. Observe that there are four con-

nected components, each of which is a proper tree. The internal vertices are shaded

grey.

Definition 11. A proper tree is a tree T such that for any internal vertex u ∈ V (T),

there is a leaf in N(u). A proper forest is a union of one or more proper trees.

So far, we have colored vertices to showcase certain properties of a graph. In fact,

vertex coloring is an important area of study in graph theory and underlies all of the

work in this thesis.

Definition 12. A coloring of a graph G with k colors is a function κ : [k]→ V (G).

A coloring κ of G with k colors is proper if for all uv ∈ E(G), κ(u) ̸= κ(v).

Note that in this thesis, we use the shorthand [k] = {1, 2, . . . , k} for any k ≥ 0.

Below is a proper coloring of a graph:

The following, however, would not be a proper coloring of the graph since there

exists an edge whose endpoints are assigned the same color:

8

2.2 Rooted Trees

A binary tree, a type of rooted tree wherein each node has at most two children, is

a ubiquitous data structure in computer science. In this thesis, we make use of full

ternary trees, a relative of the familiar binary tree.

Definition 13. A full ternary tree is a rooted tree, wherein every node has either

0 or 3 children and stores some data.

Let T denote the following ternary tree, which will be referenced in the remainder

of this section:

Definition 14. A node in a full ternary tree is a string of Ls (left-steps), Ms (middle-

steps), and Rs (right-steps), encoding the path from the root to the node. The root is

denoted by ϵ.

In the ternary tree above, the vertex storing data 3 is MR.

Definition 15. Given two vertices u, v in T , we say (u, v) is an edge in T if uL = v,

uM = v, or uR = v.

In T , (M,MR) and (ϵ, L) are edges. We can generalize the notion of edges by

considering paths between vertices.

9

Definition 16. Given two vertices u, v in T , if uw = v for some string w of Ls, Ms,

and Rs, we say there is a path from u to v in T , namely w.

In T above, ML is the path from M to MML.

The relevance of this discussion will be made clear in Section 3, when we describe

the Star-Expansion algorithm, which constructs full ternary trees, wherein the data

being stored are unlabeled forests.

2.3 Symmetric Functions

In this thesis, we study the chromatic symmetric functions of graphs in the star basis.

In this section, we define symmetric functions, including the chromatic symmetric

function of a graph. Before this, we define integer partitions, which function as

indices of symmetric functions.

Definition 17. Given a positive integer n, a partition λ of n is a nonincreasing list

of positive integers, called parts, that sum to n. If λ = (λ1, λ2, . . . , λk) is a partition

of n, we write λ ⊢ n and define the length of λ, denoted ℓ(λ), to be the number of

parts of λ. Furthermore, we define p(n) to be the number of partitions of n.

For example, (4, 3, 3, 1) and (3, 3, 3, 1, 1) are partitions of 11. As shorthand, we

can condense repeated parts, equivalently expressing these partitions as (4, 32, 1) and

(33, 12), respectively.

Definition 18. For any n, the hook partitions of n are {(m, 1n−m) : m ∈ [n− 1]}.

For example, (7, 1) and (5, 13) are hook partitions of 8, while (4, 2, 1, 1, 1, 1) is not

a hook partition. We will now proceed with our discussion of functions.

Definition 19. A polynomial f(x1, x2, . . . , xn) in which every term has total degree

exactly k is homogeneous of degree k.

10

The polynomial x1x
3
3 + x2

2x
2
4, for example, is homogeneous of degree 4.

Definition 20. Let X = {xj}∞j=1 be a set of variables and f be a function of X.

We say f is a symmetric function in X if, for all n ≥ 1 and all permutations

σ : [n]→ [n], we have f(xσ(1), xσ(2), . . .) = f(x1, x2, . . .).

For example, consider the function

f(x1, x2, . . .) =
∑
i≥1

x2
i = x2

1 + x2
2 + x2

3 + · · ·

We observe that for any n ≥ 1 and any permutation σ of [n], f(xσ(1), xσ(2), . . .) =

f(x1, x2, . . .) and so f is a symmetric function.

Definition 21. We write Λk to denote the set of all symmetric polynomials in

x1, x2, x3, . . . which are homogeneous of degree k.

Λk is a vector space with many bases. One such basis is the power-sum basis,

which we now introduce.

Definition 22. Let pk =
∞∑
j=1

xk
j . The power sum symmetric function pλ indexed

by a partition λ is defined as follows:

pλ =

ℓ(λ)∏
j=1

pλj

Theorem 23. For all k ≥ 1, the set {pλ|λ ⊢ k} is a basis for Λk. We call this basis

the power-sum basis.

Now, the chromatic symmetric function is a symmetric function that is generated

from proper colorings of graphs.

11

Definition 24. The chromatic symmetric function of a graph G, written XG is de-

fined over a set of variables X = {xj}∞j=1 as follows:

XG =
∑
κ

∏
v∈V

xκ(v),

where the sum is over all proper colorings of G, with any number of colors.

Observe that for every proper coloring κ of G, a term with coefficient 1 is added

to XG. The following remark follows:

Remark. XG(x1 = 1, x2 = 1, . . . , xk = 1, 0, 0, 0 . . .) = χG(k), the number of proper

colorings of G using k colors.

We can better describe and understand symmetric functions by expanding them in

different bases. In [St1], Stanley describes how to write XG in terms of the power-sum

basis:

Theorem 25.

XG =
∑

S⊆E(G)

(−1)|S|pπ(S),

where π(S) is the partition of |V (G)| consisting of the number of vertices in each

connected component of (V (G), S) as parts.

We can use Theorem 25 to expand XG in the power-sum basis for small graphs.

For example consider G = St5, the star graph on 5 vertices drawn below.

12

Note that if 0 ≤ k ≤ 4, for any k-element subset of E(St5), pπ(S) = (5 − k, 1k).

From this observation, we have the following chain of equalities:

XSt5 =
∑

S⊆E(St5)

(−1)|S|pπ(S)

= (−1)0p(5) +
(
4

1

)
(−1)1p(4,1) +

(
4

2

)
(−1)2p(3,12) +

(
4

3

)
(−1)3p(2,13) + (−1)4p(15)

= p5 − 4p(4,1) + 6p(3,12) − 4p(2,13) + p(15)

In fact, in [CvW], Cho writes a general formula forXStn in terms of the power-sum

basis:

Theorem 26. If Stn is the star graph on n vertices, then

XStn =
n−1∑
r=0

(
n− 1

r

)
p(r+1,1(n−1)−r)

Theorem 27. Let λ = (λ1, λ2, . . . , λk). For any k ≥ 1, define stk = XStk . Then,

define stλ = stλ1stλ2 · · · stλk
. For all k ≥ 1, the set {stλ|λ ⊢ k} is a basis for Λk. We

call this basis the star basis.

In the following chapters, we will use the star basis to expand the chromatic

symmetric function of trees and discover properties that can be determined from the

coefficients. By this approach, we can conclude that certain trees are determined by

their chromatic symmetric functions. As we can predict from the small example for

St5, for very large trees it will become very burdensome to compute the chromatic

symmetric by hand. That said, in the next chapter we will study a novel approach

introduced in [AMOZ] to compute the chromatic symmetric function of a graph in

the star-basis.

13

Chapter 3

Deletion-Near-Contraction

In this chapter, we will study the deletion-near-contraction relation as introduced by

Aliste-Prieto, de Mier, Orellana, and Zamora. This powerful relation serves as a new

tool to compute the chromatic symmetric function of trees in the star basis efficiently.

First, we describe this relation and then we apply it to compute chromatic symmetric

functions. Finally, we determine some coefficients of the chromatic symmetric func-

tion of a tree by using inferences about how deletion-near-contraction is applied in

the derivation of the CSF.

3.1 DNC Relation

The chromatic symmetric function of a graph is tied to its chromatic polynomial. We

will start this section by reviewing properties of the chromatic polynomial of a graph

and then considering the deletion-near-contraction relation in parallel.

Definition 28. The chromatic polynomial of a graph G is a function χG : N ∪

{0} → N∪{0} such that χG(k) is the number of proper colorings of G using k colors.

For example, consider the graph G drawn below with chromatic polynomial

14

χG(k) = k(k − 1)2(k − 2).

χG(2) = 0, so G cannot be properly colored with just 2 colors. χG(3) = 12, so

there are 12 ways to properly color the vertices of G with 3 colors, and so on.

Definition 29. In a graph G, contraction of edge e = uv is the replacement of u

and v with a single vertex whose incident edges are the edges other than e that were

incident to u or v. The resulting graph G · e has one less edge than G.

=⇒e G · e

Theorem 30. For any graph G with edge e, χG(k) = χG\e(k)− χG/e(k).

Let’s apply this to G above. By a simple counting argument, we observe that

χG\e(k) = k(k − 1)(k − 2) · k(k − 1)2 and χG·e(k) = k(k − 1)3(k − 2). Thus, by

Theorem 30, χG(k) = k2(k − 1)3(k − 2)− k(k − 1)3(k − 2) = k(k − 1)4(k − 2).

This relation can’t possibly hold for the chromatic symmetric function since the

CSF is homogeneous of degree |V (G)| and performing contraction decreases the num-

15

ber of vertices. That said, in [AMOZ] a modified reccurence relation is proven, which

we now introduce.

Definition 31. In a graph G, near-contraction of edge e = uv is the contraction of

e, where u and v are replaced with u′, followed by the insertion of a vertex v′ and an

edge u′v′. The resulting graph is denoted G⊙ e.

=⇒e G⊙ e u′ v′

Definition 32. In a graph G, dot-contraction of edge e = uv is the near-contraction

of e, followed by deletion of the introduced edge u′v′. The resulting graph is denoted

(G⊙ e)\ℓe.

=⇒e (G⊙ e)\ℓe u′ v′

Lemma 1. For any simple graph G having internal edge e, G ⊙ e and (G ⊙ e)\ℓe

each has exactly one fewer internal edge than G.

Proof. Assume we label the vertices of G and apply leaf-contraction to an internal

edge uv, replacing u and v with u′. Then, every internal edge of G of the form ux

appears as u′x in G⊙ e, and every internal edge of G of the form vx appears as u′x

in G ⊙ e. Every other internal edge in G, i.e. every internal edge not incident to e,

remains an internal edge in G⊙ e. Leaf-contraction does not increase the number of

internal edges and so the edge uv in G does not map to any internal edge in G ⊙ e.

By a symmetric argument for dot-contraction, the lemma holds.

16

We are now ready to see the deletion-near-contraction relation. From here forward,

let XG denote the chromatic symmetric function of a simple graph G in the star-basis.

Theorem 33. For any simple graph G with edge e,

XG = XG\e −X(G⊙e)\ℓe +XG⊙e

Letting G be the graph in the above example, we can write:

∼e − +

If we replace each graph separated by + or −, then ∼ can be rewritten as an

equality. That is, the chromatic symmetric function of the graph on the left-hand

side can be expressed in terms of the chromatic symmetric functions of the three

graphs on the right-hand side. Note that all of the graphs on the right-hand side are

star graphs and so we have successfully expressed XG in terms of star graphs. That

is, XG = st(3,3) − st(5,1) + st(6).

Suppose, instead, we tried to apply the relation to a leaf edge:

∼
e

− +

As depicted in this picture, performing deletion-near-contraction on a leaf-edge

gives us no information. In the next section, we will see how to apply the relation

more generally to determine XG.

17

3.2 Star-Expansion and Path-Counting

Toward the end of the previous section, we saw an example of using the deletion-

near-contraction (DNC) relation to express the chromatic symmetric function (CSF)

of a graph in the star basis. In that example, the cardinality of the internal edge

set |I(G)| = 1 and so (as long as we operate on this internal edge), the derivation

of XG is very simple. More generally, given a graph G, we apply a variant of the

star-expansion algorithm discussed in [AMOZ] to produce a ternary tree from which

we compute XT .

Definition 34. Given a graph G, a DNC-tree for XG is the output of a Star-

Expansion algorithm.

Algorithm 1: Star-Expansion (Iterative)

input : a forest F , a permutation σ of I(F)
output: visualization of a ternary tree D for XF with leaves labeled by star

forests
draw a ternary tree with root F and no children.
for e ∈ σ (in order) do

for each leaf node F ′ in D do
if e ∈ E(F ′) then

draw F ′’s left-child F ′\e, inserting + along the edge
draw F ′’s middle-child (F ′ ⊙ e)\ℓe, inserting − along the edge
draw F ′’s right-child F ′ ⊙ e, inserting + along the edge

end

end

As written, these algorithms require a permutation of the set of internal edges of

the input forest. That said, as described in [AMOZ], one could avoid this by searching

for an arbitrary internal edge at every step. On the following page is an example of a

ternary tree that is returned by the above algorithms with input G and permutation

(e2, e1).

18

Algorithm 2: Star-Expansion (Recursive)

input : a forest F , a permutation σ of I(F)
output: a ternary tree D for XF with leaves labeled by star forests
if σ is empty then

return (F, λ, λ, λ)
else

let σ = e1, e2, . . . , e|I(F)|
let i be smallest int s.t. ei ∈ E(F).
let j > i be smallest int s.t. ej ∈ E(F\ei).
D1 ← Star-Expansion(F\ei, (ej, . . . e|I(F)|))
D2 ← Star-Expansion((F ⊙ ei)\ℓei , (ei+1, . . . , e|I(F)|))
D3 ← Star-Expansion(F ⊙ ei, (ei+1, . . . , e|I(F)|))
return (F,D1,D2,D3)

e1 e2

e1 e1

+ − +

+ − + + − +

XG = −st(4,2,1) + st(4,3) + st(5,1,1) + st(5,2) − 2st(6,1) + st(7)

The vertices of D in the example abovee are L,ML,MM,MR,RL,RM,RR. The

corresponding data stored at each of these vertices is St5 ∪ St2, St4 ∪ St2 ∪ St1,

St5 ∪ St1 ∪ St1, and so on, respectively.

Definition 35. Given a star forest F , define λ(F) to be the partition of |V (F)|

whose parts are the orders of the connected components of F . Given a partition

19

λ = (λ1, . . . , λk), define F (λ) to be the star forest Stλ1 ∪ · · · ∪ Stλk
.

Given D above, we compute XG by taking the sum of stλ(F) over each label of

each leaf of D. XG is given right below D.

Theorem 36. There are no cancellations in the star-expansion of the chromatic

symmetric function of a simple graph.

The above fact implies that the coefficients store a lot of information about the

input tree. In particular, we have that for any forest F be with DNC-tree D and

XF =
∑

λ⊢|V (F)|
cλstλ, for any λ ⊢ |V (F)|, |cλ| is the number of paths from the root F

to vertices labeled F (λ). Furthermore, sign(cλ) = (−1)m1 , where x is the multiplicity

of 1 in λ.

The order that internal edges are considered may greatly impact the specific DNC-

tree obtained, as demonstrated in the following two examples. This fact will become

relevant as we begin to count paths in DNC-trees. Consider the following tree T1:

e1 e2

When producing the DNC-tree for T1, D, if edges are operated in the order (e1, e2),

then the left-child of the root will be St3 ∪ St5. If edges are instead operated in the

order (e2, e1), the the left-child of the root will be St4 ∪ St4. Since the algorithm in

[AMOZ] has no restriction on the order of internal edges considered, both DNC-trees

are correct in the sense that their leaves will yield a correct star-expansion of T1.

That said, we should be aware that vertex labels of D will differ in each case.

Consider the following tree T2:

20

e1 e2 e3

In the DNC-tree for XT , the graph below on the left is the left-child of the root if

the first internal edge considered is e1. The graph on the right is the left-child of the

root if the first internal edge is e2.

e2 e3 e1 e3

Note that the graph on the left has an internal edge while the graph on the right

does not; thus, the DNC-trees in each of these cases will be structurally different

(beyond just different edge labels). Hence, when arguing about paths in DNC-trees,

we need to be careful about the ordering of internal edges.

21

Chapter 4

Leading Term

The discussion of lexicographic ordering in Section 2.3 equips us to consider the

“leading term” of a chromatic symmetric function. In particular, we will show that

the leading term of XT is completely determined by characteristics of T . At the end

of this chapter, we will see how this enables us to distinguish classes of trees.

Definition 1. Let F be a forest on n vertices. The leading partition of XF =
∑
λ⊢n

cλstλ

is the lexicographically smallest partition λ such that cλ ̸= 0. The leading coefficient

is cλ and the leading term is cλstλ.

Recall that a star forest F̃ is a forest with no internal edges, and λ(F̃) is the

partition obtained by listing the sizes of the connected components in nonincreasing

order. We refer to the connected components of F\I(F) as the leaf components of

F , and we denote by λlead(F) the partition obtained by listing the orders of the leaf

components of F\I(F) in nonincreasing order:

λlead(F) := λ(F\I(F)).

For example, consider the following forest F with leaf components St4, St2, St1

22

and λlead(F) = (4, 2, 1):

−→

T T\I(T)

We will soon relate λlead(F) to the leading partition of XF . First, we will study

the relationship between the deletion-near-contraction relations and λlead(F) by con-

sidering how deletion, dot-contraction, and leaf-contraction affect leaf components.

4.1 DNC operations and λlead

We will consider six cases to fully characterize how the DNC operations change λlead.

First, consider T1 drawn below.

t u v t u v t u v

e

T1

−→ −→

T1\e (T1\e)\I(T1\e)

Note that λlead(T1) = (4, 2, 1) < λlead(T1\e) = (5, 2). For this example, deleting e

decreases the number of singleton leaf components by 1 and increases the order of the

leaf component containing u’s neighbor t by 1. We formalize this observation with

the following lemma:

Lemma 2. Suppose T has an internal edge e = uv, where u is a degree-2 deep vertex

with N(u) = {t, v} and v is not a degree-2 deep vertex. If λlead(T) = (k1, . . . , ki, . . . , km),

23

where ki is the order of the leaf component that t belongs to, then λlead(T\e) =

sort(k1, . . . , ki−1, ki + 1, ki+1, . . . , km−1).

Proof. Recall that, by definition, the leaf components of T are the connected compo-

nents of T\I(T) having orders k1 ≥ · · · ≥ km. Note that km = 1 since u is a connected

component in T\I(T). In T\e, the leaf component that t belongs to has order ki + 1

since there is an additional leaf u in N(t). Since u is not a leaf component in T\e,

km does not appear in λlead(T\e).

In T , v is an internal vertex that is not a degree-2 deep vertex, so it has a leaf in

its neighborhood or has degree at least 3. Either way, the order of the leaf component

that v belongs to doesn’t change in T\e since v remains an internal vertex with the

same leaves adjacent.

All other leaf components have the same order in T as in T\e. The lemma

follows.

Now, consider T2 drawn below with λlead(T2) = (4, 2, 1, 1). Observe that λlead(T2\e) =

(5, 3).

t u v w t u v w

e

T2

−→

(T2\e)− I(T2\e)

We observe that in this example, deleting e decreases the number of 1s in the

leading partition by 2 and increases the parts of λlead(F) corresponding to the leaf

components of neighboring vertices by 1. This is formalized in Lemma 3 below:

24

Lemma 3. Suppose T has an internal edge e = uv, where u and v are degree-2 deep

vertices with N(u) = {t, v} and N(v) = {u,w}. If λlead(T) = (k1, . . . , ki, . . . , kj, . . . , km),

where ki and kj are the orders of the leaf components that t and w belong to, then

λlead(T\e) = sort(k1, . . . , ki−1, ki + 1, ki+1, . . . , kj−1, kj + 1, kj+1, . . . , km−2).

Proof. The leaf components of T have orders k1 ≥ · · · ≥ km. Note that km = km−1 = 1

since u and v are each connected components in T\I(T). If in T the leaf components

that t and w belong to have orders ki and kj, respectively, then in T\e, the leaf

components that t and w belong to have orders ki + 1 and kj + 1, respectively, since

u and v are now leaves. Since u and v are not leaf components in T\e, km and km−1

do not appear in λlead(T\e).

All other leaf components have the same order in T as in T\e.

We have considered the cases when the deleted internal edge has one or two

endpoints that are degree-2 deep vertices. Now, consider the final case for T3 below:

u v u v u v

e

T3

−→ −→

T3\e (T3\e)\I(T3\e)

We observe that in this example, deleting e does not change the leading partition

at all, guiding us to the following lemma.

Lemma 4. Let e = uv be an internal edge in T such that neither u nor v is a degree-2

deep vertex. Then, λlead(T) = λlead(T\e).

25

Proof. The leaf components of T have orders k1 ≥ · · · ≥ km. The leaf components

that u and v belong to have the same order in T as in T\e since these vertices remain

internal with the same leaves adjacent.

All other leaf components have the same order in T as in T\e.

We have fully specified how λlead is affected by deletion of an internal edge. Now

we consider the dot-contraction operation. First, think about the following process:

u v

e

T4

−→ −→

T ′
4 = (T4 ⊙ e)\ℓe (T ′

4\e)\I(T ′
4\e)

In this example, λlead(T4) = (4, 2, 2), and λlead((T4 ⊙ e)\ℓe) = (4, 3, 1). Thus,

performing dot-contraction on e in T4 appears to merge two leaf components and add

a singleton leaf component. We now formalize and generalize this notion.

Lemma 5. Suppose F has an internal edge e = uv. If λlead(F) = (k1, . . . , ki, . . . , kj,

. . . , km), where ki and kj are the orders of the leaf components that u and v belong to,

then λlead((F ⊙ e)\ℓe) = sort(k1, . . . , ki−1, ki+1, ki+2, . . . , kj−1, kj+1, kj+2, . . . , km, ki +

kj − 1, 1).

Proof. The leaf components of F have orders k1, . . . , km. After dot-contraction of e,

the adjacent leaf components merge into a single leaf component of order ki + kj − 1,

following by definition of the dot-contraction operation. A singleton is also produced,

adding a 1 to λlead.

All other leaf components have the same order in T as in (T ⊙ e)\ℓe and so the

claim follows.

26

Finally, consider the following example for leaf-contraction:

u v

e

T5

−→ −→

T ′
5 = T5 ⊙ e (T ′

5\e)\I(T ′
5\e)

Again, it appears two leaf components merge in the process of dot-contraction,

which we formalize now.

Lemma 6. Suppose F has an internal edge e = uv. If λlead(F) = (k1, . . . , ki, . . . , kj,

. . . , km), where ki and kj are the orders of leaf components that u and v belong to,

then λlead(F ⊙ e) = sort(k1, . . . , ki−1, ki+1, ki+2, . . . kj−1, kj+1, kj+2, . . . , km, ki + kj).

Proof. By definition, leaf-contraction of e merges the two components into a single

component of order ki + kj, and all other leaf components stay the same. Hence, the

lemma follows.

We have reinterpreted the deletion-near-contraction operations in terms of how

they change leaf components of a forest. Now, we summarize and modify these results

to make them useful for a future theorem.

Theorem 37. For any internal edge e = uv in a forest F :

1. If either u or v is a degree-2 deep vertex, then λlead(F) < λlead(F\e).

2. If neither u nor v is a degree-2 deep vertex, then λlead(F) = λlead(F\e).

3. If both u and v have leaves in their neighborhoods, then λlead(F) < λlead((F ⊙

e)\ℓe).

4. If either u or v has no leaf in its neighborhood, then λlead(F) = λlead((F⊙e)\ℓe).

27

5. λlead(F) < λlead(F ⊙ e).

Proof. 1 and 2 follow immediately from the arguments in Lemmas 4.1-4 above.

For 3, observe that if u and v both have leaves in their neighborhoods and belong

to leaf components of orders ki and kj, then ki, kj ≥ 2 and so the order of the

leaf component containing the contracted vertex will be ki + kj − 1 ≥ 3. Since

ki + kj − 1 > ki, kj it follows that λlead((F ⊙ e)\ℓe) > λlead(F).

On the other hand, for 4, suppose (WLOG) that u has no leaf in its neighborhood

(so it belongs to a leaf component of order 1), and suppose v belongs to a leaf

component of order kj. Then, ki+kj−1 = kj and so it follows that λlead((F⊙e)\ℓe) =

λlead(F).

For 5, if u and v belong to leaf components of orders ki and kj, then the order

of the leaf component containing the contracted vertex will be ki + kj > ki, kj since

ki, kj ≥ 1. It follows that λlead(F ⊙ e) > λlead(F).

4.2 The Leading Term and λlead

We observe trivially that for any edge e = uv, exactly one of the premises in Theorem

37.1 and Theorem 37.2 holds, and exactly one of the premises in Theorem 37.3 and

Theorem 37.4 holds. That is, for any internal edge e, λlead(F) ≤ λlead(F\e), λlead((F⊙

e)\ℓe), λlead(F ⊙ e). The following lemma holds immediately.

Lemma 7. Let λ denote the leading partition of XF . Then, λ ≥ λlead(F).

Proof. In any DNC-tree, every leaf node will consist of star graphs F̃ for which

λlead(F) ≤ λ(F̃) since DNC operations do not decrease λlead.

28

We have just established a lower bound on the leading partition ofXF. To conclude

that λlead(F) is, in fact, the leading partition of XF, we must show that there exists

a path in any DNC-tree of F from the root F to the star-forest F\I(F). This follows

almost immediately from the following lemma.

Lemma 8. Any internal edge uv satisfies at least one of the following: (1) neither u

nor v is a degree-2 deep vertex, (2) either u or v has no leaf in its neighborhood.

Proof. Let uv be an internal edge in F . That is, deg(u), deg(v) ≥ 2. Assume, to the

contrary, and without loss of generality that u is a degree-2 deep vertex and that u

and v both have leaves in their neighborhoods. That is, the vertex u is a deep vertex

with a leaf in its neighborhood, a contradiction by definition of deep vertex. Hence,

we have the lemma.

As stated previously, the proof of the following theorem follows simply from the

previous results.

Theorem 38. The leading partition of XF is λlead(F).

Proof. Given a forest F , by Corollary 1 we have for all λ ⊢ |V (F)| with λ < λlead(F)

that cλ = 0. On the other hand letting D denote a fixed DNC-tree of F , we observe

that at any level k of D, there exists an edge (corresponding to deletion or dot-

contraction) between a forest at level k, Fk, and forest at level k+1, Fk+1, for which

λlead(Fk) = λlead(Fk+1). It follows that there exists a path in D from F to a star-forest

F̃ such that λlead(F) = λlead(F̃) = λ(F̃). That is cλlead(F) ̸= 0. It follows by Lemma

[?] that λlead(F) is the leading partition of XF.

Let T denote the tree below.

29

By definition, we have that λlead(T) = (2, 2, 2, 1). By Theorem 35, then, we have that

the leading partition of XT is (2, 2, 2, 1).

Given any tree T , we can now determine the leading partition of XT based on

properties of the tree T itself. This allows us to distinguish certain trees as explained

in the following theorem:

Theorem 39. If T1 and T2 are trees with T1 − I(T1) ̸= T2 − I(T2), then XT1 ̸= XT2.

Equivalently, if λlead(T1) ̸= λlead(T2), then XT1 ̸= XT2.

Proof. This follows trivially since if two trees have the same chromatic symmetric

function then the same terms must appear in each function. In particular, their

leading terms must be equal and so their leading partitions must be equal.

We apply Theorem 39 directly in the following example.

Example 1. Consider the two trees below. Let T1 denote the tree on the left and T2

the tree on the right.

By Theorem 39, we can conclude that XT1 ̸= XT2 since λlead(T1) = (4, 4, 2) while

λlead(T2) = (4, 3, 3).

30

Corollary 1. For any nontrivial tree T , the multiplicity of 1 in λlead(T) is the number

of deep vertices of T .

Proof. By definition, λlead(T) = λ(T\I(T)). Since T is nontrivial, every singleton

component in T\I(T) must arise after deletion of all edges incident to an internal

vertex in T and all of these edges are internal. That is, there is a natural correspon-

dence between 1’s in λlead(T) and deep vertices since these vertices are exactly those

that are surrounded by internal edges in T .

Example 2. In the tree below, the three deep vertices are colored blue.

Observe that the leading partition of this tree is (3, 2, 2, 1, 1, 1). As expected, the

number of 1’s equals the number of deep vertices in T .

Corollary 2. For any nontrivial tree T , the multiplicity of 1 in λlead(T) is 0 if and

only if T is a proper tree.

Proof. Let T be a nontrivial tree. If the multiplicity of 1 in λlead(T) = 0, then there

are no deep vertices in T . By a previous result, this is equivalent to the tree being

proper. If T is a nontrivial proper tree, then every component in T\I(T) has order

at least 2.

Definition 2. A bi-star is a tree consisting of two star graphs separated by an internal

edge. An extended bi-star is a tree consisting of two star graphs separated by two or

more internal edges.

31

Corollary 3. For some tree T , λlead(T) = (i, j, 1|V (T)|−i−j) for some i, j > 1 if and

only if T is a bi-star or extended bi-star with leaf-stars Sti and Stj separated by

|V (T)| − i− j internal vertices.

Proof. Let T be a tree with λlead(T) = (i, j, 1|V (T)−i−j) for some i, j > 1. It follows

that the connected components of T\I(T) are Sti, Stj, and |V (T)|−i−j components

of order 1. Since these order-1 components cannot be leaves of T and deep vertices,

it follows that Sti and Stj are at the ends of T , and the St1 graphs are connected

by a path in between these larger star graphs. The converse follows simply by an

application of the previous theorem.

Corollary 4. Bi-stars and extended bi-stars are distinguished by their chromatic sym-

metric functions.

Proof. As shown in the previous result, given a tree T , we can determine whether

it’s a bi-star/extended bi-star based on its leading partition. Using the values of the

leading partition, we can fully reconstruct T .

A natural direction to follow in the study of Stanley’s conjecture is to try and

distinguish trees T1, T2 satisfying T1 − I(T1) = T2 − I(T2). To this end, we will

strengthen our result about the leading partition. In particular, we will show that

the leading coefficient is fully determined by properties of the input tree thus allowing

us to distinguish more types of trees.

Example 3. Consider the two trees drawn below.

32

Based on our work so far, we cannot conclude that these two trees have distinct chro-

matic symmetric functions without computing the respective CSFs since the leading

partitions of both trees are the same. We will now prove a result that allows us to

conclude that these two trees do, in fact, have differents CSFs.

Recall from the discussion in Chapter 3 for any λ ⊢ n that |cλ| is equal to the

number of paths in a DNC-tree for XT from the root T to
∗
F (λ). In particular,

|cλlead(T)| is the number of paths in a DNC-tree for XT from T to
∗
F (λlead(T)).

Lemma 9. Let T1, . . . , Tk be trees, and let F be the forest consisting of these trees.

That is, F =
k⋃

i=1

Ti. Then, cλlead(F) =
k∏

i=1

cλlead(Ti).

Proof. (direct)

Let D be the DNC-tree obtained by operating on all edges in I(T1), followed by

all edges in I(T2), . . . , followed by all edges in I(Tk). Since I(F) =
k⋃

i=1

I(Ti), observe

that D is, in fact, a DNC-tree for XF.

Let R denote the set of paths in D from F to F\I(F). For any j ∈ [k], let Sj

denote the set of paths in D from F−
j−1⋃
i=1

I(Tj) to F−
j⋃

i=1

I(Tj). Let S = S1◦S2◦· · ·◦Sk.

It follows that S = T and so the lemma holds.

Lemma 10. If T is a tree with no deep vertices, then cλlead(T) = 1.

Proof. (direct)

Let T be an arbitrary tree with no deep vertices, and suppose we fix a DNC-tree

D for XT. We will show that there is exactly one path from T to T\I(T) in D.

Since F has no deep vertices, every internal vertex in F has a leaf in its neighbor-

hood. Let ei be the i-th internal edge operated on in F . We must begin the path with

a deletion of e1 since any other operation results in a forest with greater leading par-

tition than F . Let k ≥ 1 be arbitrary and assume we have deleted e1, . . . , ek. Since

33

deleting internal edges does not remove leaves from the neighborhoods of internal

vertices, it follows that ek+1 must be deleted as well. It follows by induction that the

only path from F to F\I(F) is the path of repeated deletions. Thus, |clead(F)| = 1.

Since the number of 1s in λlead(F) is equal to the number of deep vertices in F ,

cλlead(T) = (−1)0 · 1. Hence, we have the claim.

Lemma 11. If F is a forest with a deep vertex, then there exists a deep vertex in F

with at most one deep vertex in its neighborhood.

Proof. Let F be s forest with a deep vertex and assume, to the contrary, that each

vertex in F has at least two deep vertices in its neighborhood. Since F is finite, it

follows that F has a cycle consisting of deep vertices, a contradiction. Hence, the

Lemma follows.

Define a predicate P (m), over Z, as follows: P (m) ≡ for all forests F with exactly m

deep vertices, the number of paths from F to F\I(F) in any DNC-tree for XF is

m∏
i=1

(deg(ui)− 1) ,

where u1, . . . , um are the deep vertices of F .

Claim: ∀m ≥ 0 : P (m).

Proof. (by induction on m)

Base Rule (P (0)):

Let F denote an arbitrary forest with no deep vertices consisting of trees T1, . . . , Tk.

By Lemma 17, we have that cλlead(Ti) = 1 for every 1 ≤ i ≤ k. Then, by Lemma 14

above cλlead(F) = 1. Hence, P (0) holds.

Inductive Step (∀k ≥ 0 : P (k) =⇒ P (k + 1)):

34

Let k ≥ 0 be arbitrary, and assume P (k). Let F be an arbitrary forest with

exactly k + 1 deep vertices, call them u1, . . . , uk+1. Since k + 1 ≥ 1, it follows by

Lemma 18 that there exist a deep vertex in F , say u1 (WLOG), such that u1 has at

most one deep vertex in its neighborhood. Suppose we fix a DNC-tree D for XF that

starts by performing the deletion-near-contraction relation on deg(u1) − 1 edges of

the form u1v, where v is not a deep vertex.

Fix an arbitrary path from F to F\I(F) in D, and consider the first deg(u1)− 1

steps along this path, x1, x2, . . . , xdeg(u1)−1. Since leaf-contractions result in forests

with greater leading partitions, each of these steps must be deletions (D) or dot-

contractions (DC). Furthermore, if all of these steps were deletions, then the final

deletion will occur on an edge u1v, where u1 is a degree-2 deep vertex. By Corollary

1, the resulting forest has a greater leading partition than F and so for some smallest

i ∈ [deg(u1)− 1], xi = DC.

Let u1vi denote the edge that is dot-contracted at step i. Since vi is an internal

vertex that is not a deep vertex, it must have a leaf in its neighborhood. Then, after

step xi, u1 has a leaf in its neighborhood and so for all j ∈ {i + 1, . . . , deg(u1)− 1},

xj ̸= DC by Corollary 1. That is, for all j ∈ {i+ 1, . . . , deg(u1)− 1}, xj = D.

For any i ∈ [deg(u1) − 1] performing dot-contraction will result in a forest with

the same leading partition as F by Corollary 1 since, at this step, u has no leaf in its

neighborhood. Thus, we have shown that the set of prefixes of length deg(u1)− 1 of

paths from F to F\I(F) is given by:

S = {Di−1, DC,Ddeg(u1)−1−i : i ∈ [deg(u1)− 1]}.

Let F ′ denote the forest at the end of some arbitrary sequence from S. Note that

in F ′, u1 is no longer a deep vertex since a leaf was added to its neighborhood after

35

the dot-contraction is performed, and every other deep vertex present in F appears

in F ′ with same degree as in F . Then, by the Induction Hypothesis, there are
m−1∏
i=2

(deg(ui)−1) paths from F ′ to F ′− I(F ′) in any DNC-tree for XF′ , reusing vertex

labels. Since there are deg(u1) − 1 possibilities for F ′, it follows that the number of

paths from F to F\I(F) in any DNC-tree for XF is (deg(u1)− 1) ·
m−1∏
i=2

(deg(ui)− 1),

by the product principle. Hence, we have the claim.

Corollary 5. For some tree T , if |cλlead(T)| = 1, then each internal vertex of T has a

leaf in its neighborhood or is a degree-2 deep vertex.

Proof. Let T be a tree with |λlead(T)| = 1. Assume, to the contrary, that there exists

some internal vertex u ∈ V (T) such that u has no leaf in its neighborhood and is not

a degree-2 deep vertex. Then u must be a deep vertex of degree at least 3. It follows

by the previous theorem that |cλlead(T)| ≥ 2, a contradiction.

We now apply λlead to show an interesting result for proper trees, which will be

useful in a following theorem.

Lemma 12. If T is a proper tree, then in XT , cλlead
= 1.

Proof. Let T be an arbitrary proper tree, and fix a DNC-tree D. Recall from Chapter

2 that all nodes in D are proper forests. That is, for every node F in D, the endpoints

of every internal edge of F has a leaf in its neighborhood. It follows that the only

path in D from F to F\I(F) consists of repeated deletions. Thus, cλlead(F) = 1

Lemma 13. For any non-star tree T , the leading partition of XT is never a hook

partition.

36

Chapter 5

Chromatic Subspace and Basis

Let n be an integer and λ1 < λ2 < · · · < λk be the partitions of n in increasing order.

For example, if n = 4, λ1 = (1, 1, 1, 1), λ2 = (2, 1, 1), λ3 = (2, 2), λ4 = (3, 1), λ5 = (4).

For any tree T on n vertices, we have XT =
k∑

j=1

cλjstλj for some integers cλ1 , . . . , cλk .

Using vector notation, we have:

XT =

[
cλ1 cλ2 · · · cλk

]


stλ1

stλ2

...

stλk


.

We define the vector form of the chromatic symmetric function of T in the star-

basis to be the vector [cλ1 cλ2 · · · cλk] above. We will refer to this vector as the CSF

vector of T .

Let T1, T2, . . . , Tq be the trees on n vertices. Then, as above, we have for any

1 ≤ i ≤ q that XTi
=

k∑
j=1

cλi,jstλj for some integers cλi,1 , . . . , cλi,k . Using matrix

notation, we have the following:

37



XT1

XT2

...

XTq


=



cλ1,1 cλ1,2 · · · cλ1,k

cλ2,1 cλ2,2 · · · cλ2,k

...
...

. . .
...

cλq,1 cλq,2 · · · cλq,k





stλ1

stλ2

...

stλk


.

We define a matrix form of the chromatic symmetric functions of trees on n vertices

to be any matrix equivalent to the q× k matrix above, up to row interchange so that

the order of the trees doesn’t matter. We will refer to any such matrix as an n-CSF

matrix.

Recall that λ = (λ1, λ2, . . . , λℓ) ⊢ n is a non-hook partition if ℓ = 1 or λ2 > 1.

Recall also that F (λ) is the star forest consisting of the star graphs Stλ1 , · · · , Stλℓ
.

Let λ ⊢ n be a non-hook partition, and consider F (λ). There are the following two

possibilities:

Case I: ℓ = 1. Then, F = Stn.

Case II: ℓ > 1 and λ2 > 1. Then, we can visualize F as the following star forest:

1

2

3 4

λ1

1

2

3 4

λ2

1

2

3 4

λℓ

The picture is a helpful visual aid, but is somewhat incomplete. In particular,

we must recall that λ2 > 1 and so the first two star graphs are both trees with at

least two vertices. This implies that each of these trees has at least two leaves. We

know nothing about the orders of the remaining star graphs besides that they are

nonempty and in non-increasing order; in particular, the final graph Stλℓ
may be the

38

trivial graph.

F has n vertices and
ℓ∑

i=1

(λi − 1) = n − ℓ edges. It follows that we can convert it

into a tree by inserting exactly ℓ−1 edges without introducing cycles. Suppose we do

these edge insertions by translating the leftmost star graph all the way to the right

of the rightmost star graph and then connecting the centers of the star graphs in a

path as follows:

1

2

3 4

λ2

1

2

3 4

λ3

1

2

3 4

λ4

1

2

3 4

λℓ

1

2

3 4

λ1

Let T denote this newly constructed tree. Observe that the endpoints for each

of the inserted edges (in red) are internal vertices in T . This fact holds trivially for

the inner vertices along the red path; it also holds for the vertices at the endpoints

of the path since these vertices have at least two neighbors: another vertex along

the path (since ℓ > 1) and a leaf (since λ1, λ2 > 1). Furthermore, every other edge

(in black) remains a leaf edge since red edges aren’t inserted between two leaves. It

follows immediately that T\I(T) = F and so λlead(T) = λ(F) = λ.

We have just shown something really cool! For any non-hook partition λ, the

argument above gives us a procedure to construct a tree with leading partition λ. We

call this procedure build-leading-tree and specify it formally on the following page.

39

Algorithm 3: Build-Leading-Tree (BLT)

input : a non-hook partition λ ⊢ n
output: a tree T such that λlead(T) = λ
F ← F (λ)
ℓ← ℓ(λ)
if ℓ = 1 then

return F
else

Let T1, . . . , Tℓ denote the star graphs of F such that
|V (T1)| ≥ · · · ≥ |V (Tℓ)|
for i ∈ {2, 3, . . . , ℓ− 1} do

Let ui and ui+1 be centers of Ti and Ti+1, respectively.
F ← F ∪ uiui+1

end
F ← F ∪ uℓu1

return F
end

The following lemma follows by the previous discussion surrounding Algorithm 3

and the definition of the CSF vector.

Lemma 14. LetM be an n-CSF matrix for some n ≥ 1. Then, rank(M) ≥ p(n)−

n+ 1.

Proof. Fix an n-CSF matrix M. Recall that there are n − 1 hook partitions of n.

For each of the p(n)− n+ 1 remaining (non-hook) partitions λ ⊢ n, there is a tree T

with λlead(T) = λ such that the CSF vector of XT is a row ofM.

Recall that for any n, there are n− 1 hook partitions of n. It follows immediately

that there are p(n) − n + 1 non-hook partitions of n. For each such partition λ, we

can construct a tree with leading partition λ. Since each partition is distinct, each

leading partition will be distinct, which implies the existence of p(n) − n + 1 pivot

columns inM. Thus, we have the lemma.

We have just shown an upper bound on the rank of any n-CSF matrix. We will

40

also provide a lower bound (which happens to be the same as the upper bound!), but

first we need the following lemma.

Let cc(F) denote the number of connected components of a forest F .

Claim 1. For any forest F with chromatic symmetric function XF =
∑

λ⊢n cλstλ, for

all m > cc(F): ∑
λ⊢n,ℓ(λ)=m

cλ = 0.

Proof. We will proceed by induction on the number of internal edges of F .

• Base Case: Let F be an arbitrary star forest. Then, XF = stλ(F). Trivially

ℓ(λ(F)) = cc(F) and so the claim holds vacuously.

• Induction Step: Let k ≥ 0 be arbitrary, and assume the induction hypothesis

holds for forests with at most k internal edges. Let F be an arbitrary forest with

exactly k+1 ≥ 1 internal edges. Selecting an arbitrary internal edge e, we have

by the deletion near-contraction relation that XF = XF−e −X(F⊙e)\ℓe +XF⊙e.

Note that F − e, (F ⊙ e)\ℓe, and F ⊙ e each has at most k internal edges. That

is, the induction hypothesis applies for each of these forests.

If m > cc(F) + 1, by the induction hypothesis the claim holds since the coeffi-

cients indexed by partitions with more than cc(F) + 1 parts in XF\e, X(F⊙e)\ℓe ,

and XF⊙e are all 0.

Otherwise, m = cc(F) + 1. In this case, the induction hypothesis still applies

for F ⊙ e. Let n = |V (F\e)|, and let XF\e =
∑
λ⊢n

cλ,F\estλ and X(F⊙e)\ℓe =∑
λ⊢n

cλ,(F⊙e)\ℓestλ.

Note that cc(F\e) = cc((F ⊙ e)\ℓe) = m. Since deletions and dot contractions

increase the number of connected components, the only path to a star forest of

lengthm is the sequence of repeated leaf contractions in both F\e and (F⊙e)\ℓe.

41

Then, the number of partitions of n of length m is the same in XF⊙e as in

X(F\e)\ℓe .

That is,
∑

λ⊢n,ℓ(λ)=m cλ,F\e =
∑

λ⊢n,ℓ(λ)=m cλ,(F⊙e)\ℓe = 1. SinceXF\e andX(F⊙e)\ℓe

have opposite parities in the DNC relation, this case follows.

By the Principles of Mathematical Induction, the claim holds.

Corollary 6. If T is a tree with XT =
∑

λ⊢n cλstλ, then for all m > 1:

∑
λ⊢n,ℓ(λ)=m

cλ = 0.

Lemma 15. LetM be an n-CSF matrix for some n ≥ 1. Then, rank(M) ≤ p(n)−

n+ 1

Proof. Recall thatM has p(n) columns. Let k ∈ [n−1] be arbitrary, and let hk denote

the hook partition with biggest part k. By Corollary 2, we have that the sum of the

column vectors inM corresponding to partitions of length k is the zero vector. That

is, hk can be expressed as a linear combination of the column vectors corresponding

to non-hook partitions of length k. Thus, we can express n − 1 columns of M as

linear combinations of other columns inM. The claim follows immediately.

Theorem 40. Let M be an n-CSF matrix for some n ≥ 1. Then, rank(M) =

p(n)− n+ 1. Furthermore, we have a simple procedure to explicitly construct a basis

for the row space ofM, referred to as the caterpillar basis for CSFs of trees on n

vertices.

Proof. We have shown that rank(M) ≥ p(n) − n + 1 and rank(M) ≤ p(n) − n + 1.

Iterating over the p(n) − n + 1 non-hook partitions of n and applying the Build-

42

Leading-Tree procedure, we construct p(n)−n+1 linearly independent CSF vectors,

which must form a basis for the row space of n-CSF matrices.

In the following example, we construct the caterpillar basis for CSFs on 6 vertices,

consisting of 6 CSF-vectors.

• non-hook partition: (6)

basis element: [0 0 0 0 0 0 0 0 0 0 1]

tree:

• non-hook partition: (4, 2)

basis element: [0 0 0 0 0 0 0 0 1 -1 1]

tree:

• non-hook partition: (3, 3)

basis element: [0 0 0 0 0 0 1 0 0 -1 1]

tree:

• non-hook partition: (3, 2, 1)

basis element: [0 0 0 0 0 -1 1 1 1 -2 1]

tree:

43

• non-hook partition: (2, 2, 2)

basis element: [0 0 0 1 0 -2 0 1 2 -2 1]

tree:

• non-hook partition: (2, 2, 1, 1)

basis element: [0 0 1 1 -1 -4 1 3 2 -3 1]

tree:

44

Chapter 6

Code and Data

On the following pages, I include code that I wrote with Mario Tomba (’25) to effi-

ciently compute the CSF in the star basis using the deletion-near-contraction relation.

It makes use of dynamic programming (memoization) and is written in Python 3.

After the code, I include screenshots of the data that we constructed. The spread-

sheets contain images of the trees, as well as their chromatic symmetric functions in

the star basis, written in vector form. They are categorized by number of vertices.

from sage.all import *

Deletion on e

def left_operation(F, e):

F.delete_edge(e)

return F

Contraction on e plus singleton

def middle_operation(F, e):

F.contract_edge(e)

45

F.add_vertex()

return F

Contraction on e plus singleton and edge

def right_operation(F, e):

F.contract_edge(e)

F.add_vertex()

F.add_edge(e)

return F

If forest F has an internal edge, it returns one; otherwise, returns None

def get_internal_edge(F):

for e in F.edges(labels=False):

if F.degree(e)[0] > 1 and F.degree(e)[1] > 1:

return e

return None

Returns number of 1’s in an array

def num_singletons(p):

num = 0

for i in p:

if i == 1:

num += 1

return num

Returns the index of a partition p in Partitions(n), assuming

46

lexicographic ordering and zero-indexing

def get_index(p, partitions):

i = 0

for partition in partitions:

if partition == p:

return i

else:

i += 1

Returns number of internal edges in forest F

def num_int_edges(F):

F = F.copy()

i=0

e = get_internal_edge(F)

while (e != None):

i += 1

T = middle_operation(F, e)

e = get_internal_edge(F)

return i

def create_tree(n, edge_list):

G = Graph()

for v in range(1,n+1):

G.add_vertex()

47

for e in edge_list:

G.add_edge(e)

return G

Input: A forest F on n>=2 vertices, a list of forests seen so far

Output: Returns the CSF of F as a vector of length p(n),

in lexicographic order

def CSF_helper(F,n,seen_list):

partitions = Partitions(n)

Base case: F has already been seen

for seen_forest in seen_list:

if seen_forest.is_isomorphic(F):

return seen_list[seen_forest]

CSF = zero_vector(ZZ, len(partitions))

Base case: F has no internal edges

e = get_internal_edge(F)

if e == None:

p = F.connected_components_sizes()

sign = (-1)**num_singletons(p)

index = get_index(p,partitions)

CSF[index] = sign

seen_list[F.copy(immutable=True)] = CSF

return CSF

48

Recursive case: F has not been seen and has an internal edge

else:

F1 = F.copy()

F2 = F.copy()

F3 = F.copy()

CSF = CSF_helper(left_operation(F1,e),n,seen_list) +

CSF_helper(middle_operation(F2,e),n,seen_list) +

CSF_helper(right_operation(F3,e),n,seen_list)

seen_list[F.copy(immutable=True)] = CSF

return CSF

Input: n>=0

Output: prints the CSF of all trees on n vertices

def CSF(n, int_edge_cap = None, print_bool = False, count = False):

CSF_matrix = Matrix(0,len(Partitions(n)))

seen_list = {}

tree_iterator = graphs.trees(n)

if print_bool or count:

i = 0 #helps with plotting

for tree in tree_iterator:

if (int_edge_cap == None) or (num_int_edges(tree) <= int_edge_cap):

if print_bool or count:

i += 1

if print_bool:

tree.plot().show()

49

print(i)

tree = tree.copy()

CSF = CSF_helper(tree, n, seen_list)

print(CSF)

CSF_matrix = CSF_matrix.stack(CSF)

if count:

print(i)

return CSF_matrix

def CSF_tree(n, edge_list):

seen_list = {}

tree = create_tree(n, edge_list)

tree.plot().show()

tree = tree.copy()

CSF_vector = CSF_helper(tree, n, seen_list)

return CSF_vector

print(CSF_tree(3, ((0,1),(1,2))))

50

51

52

53

54

55

Chapter 7

Open Questions

There remain several open questions related to the chromatic symmetric function.

In fact, in this thesis, we have introduced some new questions and new means of

exploring preexisting questions. For example, we have shown various properties that

can be extracted from the CSF using the star-basis. It will likely be useful to consider

other properties that can be extracted using other bases. In particular, is there enough

information that can be extract to reconstruct the graph?

In Chapter 3, we formalize the notion of a DNC-tree and then proceed to prove

results about the chromatic symmetric function using the formalization. Following

the example of the leading term in Chapter 4, can we find other coefficients that

distinguish classes of trees using DNC-trees? What counting arguments can we make,

and how can we use DNC-trees to aid proofs about coefficients of terms in the star

basis?

In Chapter 5, we introduce the Caterpillar Basis, which allows us to express

the chromatic symmetric function of a tree as a linear combination of chromatic

symmetric functions of Caterpillar Basis elements. By finding patterns in the ways

CSFs can be expressed using this basis, we may be able to distinguish large classes

56

of trees.

57

Bibliography

[AMOZ] Aliste-Prieto, J., de Mier, A., Orellana, R., & Zamora, J. (2022). Marked

graphs and the chromatic symmetric function. ArXiv. /abs/2202.11787.

[CvW] Cho, S., & van Willigenburg, S. (2015). Chromatic bases for symmetric func-

tions.

[HJ] Heil, S., & Ji, C. (2018). On an Algorithm for Comparing the Chromatic Sym-

metric Functions of Trees.

[MMA] Martin, J., Morin, M. and Wagner, J. On distinguishing Trees by their Chro-

matic Symmetric Functions, Journal of Combinatorial Theory, Series A 115,

237-253 (2008).

[St1] Stanley, Richard P. A symmetric function generalization of the chromatic poly-

nomial of a graph, Adv. Math. 111 (1995), no. 1, 166–194.

[St2] Stanley, Richard P. Graph colorings and related symmetric functions: ideas

and applications. A description of results, interesting applications, and notable

open problems, Discrete Math. 193 (1998), no. 1-3, 267–286.

[West] West, D. B. (2000). Introduction to Graph Theory. Prentice Hall. ISBN:

0130144002.

58

