
Dartmouth College
Hanover, NH

HONORS THESIS

Paula X. Chen

Neural Spike Sorting Algorithms
for Overlapping Spikes

Department of Mathematics

Professor Alexander H. Barnett, advisor
Submitted in partial fulfillment of a Bachelor of Arts in Mathematics

May 2017

Acknowledgments

I extend my deepest gratitude to my advisor, Professor Alexander H. Barnett, for his
endless expertise, guidance, and patience. His flexibility and constant communication
demonstrate his dedication to teaching and that collaboration is not bounded by state
(or at times, international) lines. Needless to say, without him, this thesis would not
have been completed. Additionally, I thank my family for their lifelong support and
for inspiring me to be passionate about math, even when it wasn’t my strong suit; my
friends for enduring a year of me geeking out about formatting, MATLAB, and math-
related stories that probablyweren’t as amusing as I found them to be; and theKaminsky
Family Fund Award for allowing me to travel to the Simons Foundation in New York
and get a taste of life working in the math industry.

i

Title: Neural Spike Sorting Algorithms for Overlapping Spikes

Author: Paula X. Chen

Department: Department of Mathematics, Dartmouth College

Thesis Advisor: Alexander H. Barnett, Associate Professor of Mathematics

Abstract: One of the key, unsolved problems in spike sorting is that of overlapping
spikes. This project explores different variants of greedy algorithms for spike sort-
ing to address this problem. In particular, this project defines simple greedy, forward-
backward greedy, and greedy with pairs algorithms for sorting overlapping spikes. Us-
ing toy models, we ultimately show that greedy with pairs is the most promising of
the introduced algorithms and represents a reasonable compromise between sorting ac-
curacy and computational efficiency. We also test our algorithms on real signals and
discuss the issues in assessing sorting accuracy when no ground truth is available for
comparison.

Keywords: spike sorting, overlapping spikes, greedy algorithms

ii

List of Symbols and Abbreviations

Symbol/
Abbreviation Description

k number of known spike types
ns number of time shifts
N number of time samples per clip
T firing time, center of the spike
t any sample time within a clip
� noise level, 1=SNR

SNR signal-to-noise ratio
H N -component noise vector, � N (0; �2IN)
fi N -component vector, known (synthetic) spike shape i
gi N -component vector, real spike shape i
i probability of fi appearing in a clip/

expected firing rate of neuron i
y N -component signal vector
�i penalty for detecting spike shape i

iii

Contents

Acknowledgments i

Abstract ii

List of Symbols and Abbreviations iii

1 Introduction 1
1.1 Model Assumptions and Simpli�cations 2
1.2 Error Analysis . 3

2 Basic Spike Detection 5

3 The Greedy Algorithm for Spike Sorting 9
3.1 De�ning the Simple Forward Greedy Algorithm 9
3.2 Brute-Force Fitting . 10
3.3 Decision Boundaries in the Two-Spike Case 10
3.4 Results (No Time Shifts) . 14

4 The Forward-Backward Greedy Algorithm 16
4.1 The Backward Greedy Algorithm . 17

4.1.1 Decision Boundaries in the Two-Spike Case 18
4.2 De�ning the Forward-Backward Greedy Algorithm 19
4.3 Results . 21

5 Time-Shifted Spikes 23
5.1 Brute-Force Fitting with Time Shifts 23
5.2 The Forward Greedy Algorithm with Pairs 24
5.3 Results for Time-Shifted Spikes . 24
5.4 Penalty for Detecting Multiple Spikes 26
5.5 Results with Penalty . 28

6 Real Data 31
6.1 Sorting Synthesized Clips using Real Spike Shapes 32
6.2 Sorting Real Clips . 34

v

6.2.1 Results: Comparing to Patch Clamp Recordings 34
6.2.2 Results: Comparative Algorithm Performance 35

7 Further Work 37

8 Conclusions 38

References 40

vi

Chapter 1

Introduction

In order to understand how the brain works, we begin by studying the �ring of individual
neurons. The most common method for measuring neural �ring is direct electrical
recording, which uses electrodes to record the voltage patterns of nearby neurons [1].
Each neuron yields a characteristic electrical signal, known as a spike. Thus, spike
sorting, the grouping of spikes by shape, can be used to match measured signals to
their generating neurons. More precisely, spike sorting extracts the �ring times and
corresponding neuron labels of noisy electrophysiological recordings. In practice, spike
sorting has been used to study retinal function as well as learning and memory in the
hippocampus.

One of the major problems in spike sorting is that of overlapping spikes. When nearby
neurons �re at similar times, their corresponding spike signals overlap. If two nearby
spikes consistently �re synchronously, we would suspect that such neurons are function-
ally related. The primary challenges of overlapping spikes are that one, it can be di�cult
to determine whether a signal is the result of overlapping spikes or some unique single
spike; and two, once a single-spike explanation is ruled out, there is no clear method
for determining which spikes are present [6].

Additionally, the problem very quickly becomes computationally-intensive. Givenk
spike types, there are2k possible combinations. But the �ring times of the overlapping
spikes are not necessarily known. Thus, in testingns time shifts, the problem di�culty
increases to maximallyO(2kn s). It is clear that in addressing overlapping spikes with
time shifts, we need a method that is not only accurate, but e�cient, as well.

The outline for our project is as follows. Before we actually sort spikes, we �rst address
the question of how to determine whether or not a clip contains a spike. Once we
answer that question, we then develop algorithms for sorting spikes. First, we develop
a basic greedy algorithm for spike sorting and compare its performance to a brute-force
method, which represents the globally optimal �t. We then show that while the greedy
algorithm is markedly more e�cient than brute-force �tting, it is not as accurate as
brute-force �tting, especially when time shifts are introduced. After discussing a few
modi�cations and variants, we ultimately propose that the greedy algorithm with pairs

1

Figure 1.1: Sample clip containing overlapping spikes with and without normally-
distributed iid noise (� = 0:4 or � = 0, respectively). This sample depicts the overlap
of spikesf1 (T = 9) andf4 (T = 5).

is a viable solution for sorting overlapping spikes with time shifts. Finally, we test our
algorithms on real spikes and discuss how to assess sorting accuracy in the absence of
a ground truth.

1.1 Model Assumptions and Simpli�cations

In practice, signals are recorded using multichannel (i.e. multielectrode) arrays. For
simplicity, we consider only one channel of data at a time. We also reduce the signal
to clips, or small time windows of lengthN . Clips are assumed to be chosen (by algo-
rithms not discussed here) such that suspected spikes are more or less centered within
the clip. We de�ne the center of the spike to be the �ring timeT of the spike. Note that
we useT speci�cally to denote the �ring time, andt to denote any sample time within
a clip.

In practice, the number of spike typesk is an unknown value. Here, we assume that
we havek known spike type templates. Unless otherwise stated, we run our algorithms
on synthetic spikes (Figure 1.2). These spike shapes are generated as either Gaussians
or Gaussian derivatives. In general, assuming a Gaussian distribution is a reasonable
and commonly used approach for spike sorting algorithms [6]; notably, this assumption
also allows for simpler probabilistic analysis and models for the data. In practice, these
spike type templates are extracted as the mean voltage waveforms.

Additionally, we also assume iid, Gaussian noise. Noise vectorsH are generated such
thatH � N (0; � 2I N) and are additive to the true spike shapes. Realistically, we would
not expect noise to be iid and uncorrelated since background noise generally consists
of the signals of spikes further away from the electrodes [6]. We make this assumption
in order to allow for Bayesian among other probabilistic models, noting that this as-
sumption is not uncommon among others using similar approaches [3, 4]. In practice,

2

Figure 1.2: Synthetic spike types used.Figure 1.3: Sample error fraction bars.

noise levels can be extrapolated using band pass (i.e. amplitude) �ltering or from clips
determined to contain no spikes. Since we use spike amplitudes that are maximally 1
and minimally� 1, we interpret the noise level� as corresponding to1=SNR, where
SNR is the the signal-to-noise level. Note that this interpretation is also only possible
when noise is assumed to be Gaussian.

Neurons vary in �ring rates, usually ranging from from 1 to 100 Hz. We use expected
�ring rates that range from = 0:5 (i.e. a frequently �ring neuron) to = 0:05(i.e. an
infrequently �ring neuron) in order to model these variations. This parameter could
also be easily extrapolated experimentally.

Neural �ring includes a refractory period; after a neuron has �red, there is a short period
of time during which the neuron cannot �re again. Refractory periods usually last about
2 ms. Typically, samples are recorded at a rate of 10-30 kHz. Thus, a refractory period
of 2 ms is equivalent to approximately 20-60 time samples. Since we useN = 20, we
can assume that no spike type can appear more than once per clip.

1.2 Error Analysis

As a measure of algorithm performance, we use error fractions for actual and detected
spikes (Figure 1.3). For both actual and detected spikes, we interpret the correct rates
to be the fraction of spikes that are both present and detected correctly. The fraction of
actual spikes that is correct is also referred to as the sensitivity; the fraction of detected
spikes that is correct is also referred to as the precision. For both actual and detected
spikes, the wrong rates represent spikes that are present but are incorrectly identi�ed.
The miss rate (type II error) represents the fraction of actual spikes that are not detected.
The false positive rate (type I error) represents the fraction of detected spikes that are
not actually present.

We represent these error fractions via bar graphs (see Figure 1.3). For all experiments
using our synthesized spike types, the error bars of these bar graphs represent the stan-
dard deviation of 5 trials of 200 runs each. We calculate the standard deviations as

3

follows:

s =

s P 5
i =1 (x i � �x)2

5
;

where thex i 's represent the observed values and�x is the mean value. Note that we
divide by

p
5, instead of

p
4, since our estimation of the sample standard deviation

involves all 1000 samples used.

4

Chapter 2

Basic Spike Detection

In this chapter, we consider the detection of single spikes. Namely, we need to be able
to distinguish between0 and any known spikef given iid, Gaussian noise. Thus, (in
this chapter only) we use the following error matrix:

Table 2.1: Error Matrix for Single Spike Detection

Consider a signal vectory. In this binary case, our generative model fory is given by

y =

(
0 + H for 0 spikes

f + H for 1 spike,

whereH � N (0; � 2I N) is a random noise vector. Since the elements ofH are iid and
normally distributed, we have that

p(H) =
NY

j =1

1
p

2�� 2
e�

H 2
j

2� 2 =
1

p
2�� 2

e� kH k2

2� 2 :

Thus, with the addition of noise, signals containing no spike form a Gaussian blob
centered at0, and signals containingf form a Gaussian blob centered atf (Figure 2.1).
We then determine whether or noty contains a spike using linear classi�ers. We do this
by setting a threshold
 and de�ning a detection vector (i.e. linear classi�er)! , such

5

Figure 2.1: Gaussian blobs of signals containing either0 or f plus iid, Gaussian noise.
The dotted line represents the decision hyperplane.

Figure 2.2: Diagram of spike detection via linear classi�ers.

that if ! T y �
 , then we conclude thatf is present; if! T y <
 , then we conclude that
no spike is present. We refer to	 = ! T y as the detection parameter.

Proposition 1. ! = cf is the optimal detection vector.

Proof. Note that the detection parameter can be written as

	 = ! T y =

(
! T H for 0 spikes

! T (f + H) for 1 spike.

Thus, the expected value of	 is

E() =

(
E(! T H) = 0 for 0 spikes

E(! T f + ! T H) = E(! T f) + E(! T H) = ! T f for 1 spike.

6

(a)
 = 0 :8 (b)
 =
 opt � 1:2660

Figure 2.3: Error fractions for detecting spikes using linear classi�ers. Error fractions
are calculated as the column-normalized values of Table 2.1. The solid lines represent
the theoretical curves.

The variance of	 is

V() =

(
V(! T H) = ! 2

1� 2 + � � � + ! 2
N � 2 = k! k2� 2 for 0 spikes

V(! T f) + V(! T H) = 0 + k! k2� 2 = k! k2� 2 for 1 spike.

Let � = k! k� . Then, the pdf for	 is

p() =

8
<

:

1p
2�� 2 e� 	 2

2� 2 for 0 spikes

1p
2�� 2 e� (� ! T f) 2

2� 2 for 1 spike.

Note that the pdf for the 0-spike case overlaps with that for the 1-spike case at	 opt =
1
2 ! T f . The optimal! should minimize this overlap, i.e. maximize	 opt = 1

2 ! T f (Figure
2.2).

Using Lagrange multipliers and the constraintk! k2 = 1, we have the following system
of equations

r 	 opt = � rk ! k2

k! k2 = 1:

Solving this system of equations, we get that! = 1
4� f ; where� = � 4

kf k : By de�ning

c = kf k
16 , we get the desired result.

Note that the above proof also shows that the optimal threshold is

 opt = 	 opt =
1
2

! T f =
1
2

kf k:

7

This application of linear classi�ers demonstrates that spike detection is essentially just
a maximum likelihood problem.

Figure 2.3 shows the error fractions for detecting spikes using the linear classi�er! = f
and various thresholds. The theoretical curves are calculated as follows:

True Negative=
1
2

+
1
2

erf
�

�
p

2

�
; False Positive=

1
2

�
1
2

erf
�

�
p

2

�

Missed=
1
2

+
1
2

erf
�

 �
 opt

�
p

2

�
; Correct=

1
2

�
1
2

erf
�

 �
 opt

�
p

2

�
:

As expected, the experimental error fractions match the theoretical values. Note that as
SNR = 1=� approaches 0, all the error fractions approach1=2. This result corresponds
to the fact that when noise levels are very high, spike detection is essentially equivalent
to the �ip of a coin. We also note that as� = 1=SNR approaches 0, the correct and
true negative rates approach 1, while the false positive and miss rates approach 0. This
result corresponds to the fact that as noise levels approach 0, spike detection performs
increasingly more accurately.

8

Chapter 3

The Greedy Algorithm for Spike Sorting

The greedy algorithm is a well-established method for solving computationally expen-
sive (i.e. NP-hard or exponentially-hard) problems. The greedy algorithm approxi-
mates the globally optimal solution by making the locally optimal choice at each step.
The greedy algorithm is unidirectional, meaning that it cannot undo any of its past
choices. Thus, if the locally optimal choices lead the wrong path, the greedy algorithm
will fail to �nd the globally optimal solution.

In this chapter, we establish a simple forward greedy algorithm for spike sorting. For
comparison, we also create a brute-force algorithm, which takes an exhaustive ap-
proach, to represent globally optimal �tting. In the following chapters, we introduce
variations of greedy aimed at improving the algorithm accuracy. Note that in this chap-
ter, we de�ne and test our algorithms on spikeswithout time shifts.

3.1 De�ning the Simple Forward Greedy Algorithm

We de�ne the simple forward greedy algorithm as beginning with no spikes detected
and then detecting optimal spikes, one-by-one. Note that we speci�cally use the term
"forward" to distinguish this algorithm from a later variant (namely, the backward
greedy algorithm). Throughout the remainder of this paper, we will use the terms "sim-
ple greedy", "simple forward greedy", and "forward greedy" interchangeably to refer to
the algorithm we de�ne here.

Consider a signal vectory. Let f1; f2; :::; fk representk known spike shapes, and letF
be an index set for the set of detected spikes. Then, we de�ne the optimal spike to be
the spike shapef I that minimizes the least squared residual. This spike is given by the
index

I = argmin
i 2f 1;2;:::;k g� F

ky � f i k2
2; (3.1)

provided that

9

ky � f I kj2 � k yk2 (3.2)

Thus, if the above condition is satis�ed, we accept (detect) spike shapef I as present in
the signal vector, we update the signal vector (y = y � f I), and the algorithm contin-
ues. Conversely, iff I fails to satisfy this condition, then we conclude that there is no
optimal spike, and the algorithm terminates. Pseudocode for simple greedy is outlined
in Algorithm 1 below. The computational e�ort for simple greedy isO(k).

3.2 Brute-Force Fitting

Throughout this paper, we de�ne brute-force �tting algorithms as testing every possible
combination of spikes. We consider the results of brute-force �tting to represent the
globally optimal solution. Because brute-force �tting takes an exhaustive approach, it
is notably ine�cient. Without time shifts, the brute-force algorithm always requires2k

steps. Thus, we consider an ideal algorithm as matching the accuracy of brute-force
�tting but signi�cantly more e�cient.

3.3 Decision Boundaries in the Two-Spike Case

Consider thek = 2 case. Lety be the signal vector, andf1; f2 be the two known spike
shapes. Then, we can predict the performance of the simple forward greedy algorithm
by deriving the decision boundaries for the four possible spike combinations:0; f1; f2;
andf1+2 . These decision boundaries exist inRN and represent the regions of points
closest to each combination.

Lemma 2. If kf1 � f2k � k f1 + f2k, then the simple forward greedy algorithm yields
the globally optimal solution.

Algorithm 1: Simple Forward Greedy
Inputs : y = input signal vector,f1; :::; fk = known spike types
Output : F = indices of detected spikes

s = 0;
while s = 0 do

I = argmin
i 2f 1;:::;k g� F

ky � f i k2 # detecting spike typeI minimizes LSE;

� f = kyk2 � k y � f I k2 # improvement;

if � f � 0 then
F F [f I g;
y y � f I ;

else
s = 1;

end
end

10

Proof. Simple forward greedy �tting begins with no spikes detected. To prove the
desired result, we consider two cases.

Case 1:ky � f1k2 < ky � f2k2

In this case, we clearly have that

1 = argmin
i 2f 1;2g

jj y � f i jj
2
2 :

Therefore, the �rst step of greedy �tting detects spike typef1 (Figure 3.1a). Next, the
algorithm decides whether or not to addf2, which creates a decision boundary between
f1 andf1 + f2 (Figure 3.1b).

Case 2:ky � f1k2 > ky � f2k2

In this case, we clearly have that

2 = argmin
i 2f 1;2g

jj y � f i jj
2
2 :

Therefore, the �rst step of �tting detects spike typef2 (Figure 3.2a). Next, the algorithm
decides whether or not to addf1, which creates a decision boundary betweenf2 and
f1 + f2 (Figure 3.2b).

Combining the decision boundaries we found in Cases 1 and 2, we see that we recover
those for brute-force �tting, i.e. those for globally optimal �tting (Figure 3.3).

(a) Detectf1 (b) Detectf1 + f2 (c) Final Boundaries

Figure 3.1: Decision Boundaries for Simple Greedy in Case 1:ky � f1k2 < ky � f2k2.

(a) Detectf2 (b) Detectf2 (c) Final Boundaries

Figure 3.2: Decision Boundaries for Simple Greedy in Case 2:ky � f1k2 > ky � f2k2.

11

	Acknowledgments
	Abstract
	List of Symbols and Abbreviations
	Introduction
	Model Assumptions and Simplifications
	Error Analysis

	Basic Spike Detection
	The Greedy Algorithm for Spike Sorting
	Defining the Simple Forward Greedy Algorithm
	Brute-Force Fitting
	Decision Boundaries in the Two-Spike Case
	Results (No Time Shifts)

	The Forward-Backward Greedy Algorithm
	The Backward Greedy Algorithm
	Decision Boundaries in the Two-Spike Case

	Defining the Forward-Backward Greedy Algorithm
	Results

	Time-Shifted Spikes
	Brute-Force Fitting with Time Shifts
	The Forward Greedy Algorithm with Pairs
	Results for Time-Shifted Spikes
	Penalty for Detecting Multiple Spikes
	Results with Penalty

	Real Data
	Sorting Synthesized Clips using Real Spike Shapes
	Sorting Real Clips
	Results: Comparing to Patch Clamp Recordings
	Results: Comparative Algorithm Performance

	Further Work
	Conclusions
	References

