Monte Carlo Comparison of Strategies for Blackjack

Author
Atul Vaidyanathan

Advisor
Peter Winkler

Undergraduate Thesis
Department of Mathematics
Dartmouth College

May 23, 2014

Vaidyanathan 1

Abstract

Blackjack, one of gambling’s most prominent card games, has been mathematically
analyzed to derive its Basic Strategy, the optimal strategy for players, given a particular set of
rules. Although this process has been proven to be effective, it begs the question as to whether
one can obtain an optimal strategy from experience. Can a gambler with no experience and no
prior knowledge of Blackjack strategy eventually arrive at a strategy that produces results similar
to those of Basic Strategy? Can a gambler learn this strategy by experiencing wins and losses
through repeated simulations? With the use of the Monte Carlo Method, this paper provides a
comparison between an inexperienced gambler (Simple Strategy), an experienced gambler
(Basic Strategy), a “cheating” gambler (Counting Cards), and a learning gambler (Monte Carlo
Strategy) to ultimately conclude that this learning strategy can produce results close to Basic

Strategy.

Vaidyanathan 2

Introduction

Upon first glance, Blackjack is a card game with simple rules. A player tries to get a
score as close to 21 as possible without overshooting it, while the dealer plays no strategy and
keeps adding cards until reaching a score of at least 17. As long as neither scores above 21, the
higher score wins. But behind this game is a series of strategies that have been developed over
time to ensure maximum success to card players, Often, these tactics are unknown to beginners
and fully appreciated by professionals, They have been combined together to formulate the most
established method of playing Blackjack, known as Basic Strategy'. Although some components
of Basic Strategy have been derived from mathematical reasoning, a majority of its development
can be attributed to the simple method of trial and error, So the question is this: Can a pambler
with no experience and no knowledge of Blackjack learn Basic Strategy over time? In other
words, can a simulation replicate a beginner gaining experience from playing Blackjack and
ultimately arrive at results somewhat resembling Basic Strategy?

To determine whether this is feasible, this paper will first explore the game of Blackjack.
Despite the clear-cut stance that this paper has taken towards reaching the goal of Basic Strategy,
there are caveats to the rules of Blackjack that need to be explained before reaching the strategies
themselves. This section will cover rules, strategy, other approaches to Blackjack, and the
derivation of Basic Strategy.

This will lead into the methodology used to achieve the desired learning algorithm in this
paper, known as the Monte Carlo Method. The Monte Carlo Method makes use of repeated

simulations to obtain a distribution of results from which one can derive the appropriate decision

T Peter A, Griffin. The Theory of Blackjack: The Compleat Card Counter's Guide to the Casino Game of
21, Sixth Edition Indexed. (Las Vegas, NV: Huntington, 1999}, p. 12,

Vaidyanathan 3

for a gambler to make®. By running enough simulations, the results will be similar to a gambler
experiencing wins and losses over time, and learning from his successes and mistakes. This
paper will go on to explain the Monte Carlo Method in more detail, along with its application
within the game of Blackjack.

After explaining the methodology and objective, this paper will explore the simulations
themselves. The simulations have been created to replicate a novice gambler (Simple Strategy),
an experienced gambler (Basic Strategy), a gambler who can perfectly count cards (Counting
Cards), and a gambler who learns from experience (Monte Carlo Method). The expectation is
that by using the Monte Carlo Method, the gambler who learns from experience will have a win
probability that approaches but does not exceed that of the gambler who plays Basic Strategy.

Perhaps the most interesting viewpoint of Blackjack is from a game theory perspective.
Rather than playing against other players on the table, Blackjack is structured such that players
play against the house, The house plays no variant strategy, only adding cards until it reaches a
score of 17 or above. 1f the house overshoots 21, the player wins. As a result, the primary
strategy of interest is that of the player, The scope of this paper will be limited to only one player
against the dealer. Although the introduction of multiple players does not affect gamblers in the
long run, this paper will stick to one player for the sake of simplicity’.

Intreduction to Blackjack

The game of Blackjack was not created by a single individual. The clearest evidence

suggests that Blackjack came from French casinos in 1700, although there are records of a

? Nicholas Metropelis. "The Beginning of the Monte Carlo Method." Los Alamos Science Special ssue
(1987) 127

® Michael Shackieford. "Blackjack - FAQ." The Wizard of Odds (accessed May 21, 2014); available from
http://wizardofodds.com/ask-the-wizard/blackjack/.

Vaidyanathan 4

similar gambling game dating as far back as Ancient Rome”, In France, the game was called
Vingt-et-un, or literally translated “Twenty-One”, and cycled through different variations of the
game until it was brought to the United States®. The game was renamed Blackjack after one of
the variations of the game (involving the Ace of Spades and either the Jack of Clubs or Spades),
although the rules of that variation were discarded®.

The structure of the game of Blackjack is as follows:

Deal One Card

Deal One Card Deal One Card
Shuffie Deck Place Wager fo Player(s) to Dealer (Face ggﬁ;ﬁgg;
(Face Up} ~ Down} Up}
J
L
Deater Hits until
Play:;{:c)ﬂil)ays Reach Score of [eswwsed Ras0lve Wagers
AtLeast 17
-
Yes No =

is thers a deck

Discard Used of cards (or
Cards fess}remaining

in the shoe?

The goal of Blackjack is simple. Players bet on each hand, gambling that they will beat

the dealer. Players want to score as close to 21 as possible without overshooting it. A large deck,
of usually 6 decks’, is shuffled after which players place wagers on the hands that they expect to
play. Cards are then dealt, where the player’s cards are both visible, while only one of the

dealer’s cards can be seen. The player plays his hand, after which the dealer adds cards from the

shoe until he reaches a score of at least 17. Then the wagers are resolved and the cards from the

* Simon Wintle and Adam Wintie. "History of Blackjack." The World of Playing Cards (accessed May 21,
2014}, available from hitp://www . wopc.co.ukihistory/blackjack/blackjack. html.

® Wintle and Wintle

® Wintle and Wintie

! Casinos use deck sizes ranging from 4 to 8 decks, but 6 decks is the typical size used.

Vaidyanathan 5

hand are discarded. If there is about a deck left in the shoe®, the cards are reshuffled (along with
the discarded stack of cards), after which wagers may be placed.

Below is a chart to properly describe how wagers are played out:

Dealer Plays
[A
Players Score Piayer Score >
ATMost 21 21

I
[] |

Dealer Score >
24

Player Score »
Dealer Score

Dealer Score >
Player Score

Piayer Wins

House Wins

As visible above, once the dealer reaches at least 17, the player and dealer compare cards.
The house wins if either:

— The player goes above 21.

— The dealer has a score higher than the player.

The player wins if he maintains a score of at most 21 and cither:

— The dealer goes above 21.

—> The player has a score higher than the dealer.

% The “shoe”is a gaming device that holds the large stack of cards from which cards are drawn.

Vaidyanathan 6

If the scores are the same, the hand is a “Push” and the player keeps his original wager.
Cards are assigned a value equivalent to their numbers, with the face cards (King, Queen, and
Jack) having a value of 10 as well. An Ace has the unique position of having values of 11 or 1,
whichever gives the highest score without overshooting 21.

A player has the option to play four different moves during his turn:
1) Hit - A'piayer can “hit”, or add another card from the shoe to his hand if he thinks that that
adding another card will keep him below 21 and give him a higher chance of winning. The
player’s turn is not over after a hit, unless the hit results in a “bust™.
2) Stay - A player can “stay” if he is satisfied with his hand. This means that the player does not
want to add anymore cards from the deck and believes that the addition of another card will
result in him busting. The player’s turn is over after he stays.
3) Split - A player may “split” if there are two identical cards only in the hand. Splitting a hand
will result in the cards being placed in two separate hands, with an additional card from the shoe
added to each hand. The amount of the wager on the initial hand is added to the second hand, and
each hand is treated separately as a brand new hand. The player’s turn is not over after a split,
4) Double - A player may “double down™"" if he thinks he is likely to win with one additional
card and thus would like to double the wager. The player doubles the amount of the initial wager,
adds exactly one more card, and then stays. The player may double down only if it is his first
turn with the hand, and his turn is over afterwards.

Below is a chart to properly describe player decisions:

°A player "busts” if he has a score above 21.
" When a player seeks to “double”, the proper terminology is "the player wants to double down” or “the
player doubles down”.

Vaidyanathan 7

Y Player Declslon =
No Bust l
((First Play? 2 ldeniicat Cards Only?
L]
u Hit Stay Double Sptit et

Bust

l J
|

I\ Have ali hands
been played?

T
Yes
i

Dealer Hits Untit
17

This is the standard gameplay of Blackjack. In addition to these base rules, these
simulations will be incorporating some other rules. First, the dealer has to stay if he reaches a
“Soft 177. Namely, if the dealer has a score of 17 or 7 (because an Ace is involved), he must
stay. In comparison, some casinos enforce a “Hard 177, where if the dealer has a score of 17 or
7, it is considered a 7 and the dealer must hit again'',

In addition, the simulations will assume that a blackjack pays 3 to 2 odds. In most
casinos, if a player gets a blackjack (achieves a score of 21 on the two cards he is dealt without
adding any extras - the player must have an Ace and either a face card or a 10), he wins 1.5 times
the amount he bets'%, However, this is conditional on the house not having a blackjack. If they

both have blackjacks, the hand could be a Push and the player won’t make any money. Because

" Kenneth Smith. "Casino Blackjack: Rules of the Game." Blackjackinfo.com {accessed May 21, 2014),
?zvaiiable from http://www.blackjackinfo.com/blackjack-rules.php.
Smith

Vaidyanathan 8

of this, dealers often offer players “Even Odds”. A player will take even odds if he thinks that the
dealer might have a blackjack (based on the one card he can see). The result of this is that the
player just wins the amount he bets without gaining the extra 50% because of his blackjack. In
these simulations, it will be assumed that a player takes the even odds whenever he is offered it.

Furthermore, the simulations will not allow players to take insurance. If a dealer’s upcard
is an Ace, a player might have the option to insure against the dealer having a Blackjack. The
player puts in a side wager equal to half of the player’s original bet. In case the dealer has a
Blackjack, the player does not lose any money, since insurance pays twice of the side bet, which
cancels out the loss of the initial wager'’.

Finally, the simulations will not aliow non-alike face cards to be split. In blackjack, the
player has the ability to split two of a kind into separate hands. Then, the player adds one card to
each of those hands, adds the same money on his previous hand to the new hand, and treats both
hands as completely new (and separate) hands. However, some casinos play a rule that if you
have two dissimilar face cards or a 10 and a face card, you can split the cards since they have the
same value, This rule grants an advantage to players, especially those who are counting cards'®,
This simulation will not be incorporating this caveat, and thus only allows identical cards to be
split.

Now that the rules have been covered, the next important component of Blackjack is
Basic Strategy. Contrary to popular belief, there exist a number of Basic Strategies when playing
Blackjack. A Basic Strategy (BS) is a list of decisions that are intended for a player to make

when playing a hand of Blackjack. It must provide a list of optimal decisions for every possible

'3 Smith
4 See section titled “Counting Cards”.

Vaidyanathan 9

hand that a player has against every possible upcard for the dealer. For any given set of
Blackjack rules, there is only one correct BS",

How does one go about discovering a Basic Strategy given the set of rules provided?
There exist two main methods. The first is called the Combinatorial Approach. The
Combinatorial Approach is based on calculating statistical probabilities and expectations for
different decisions'®, Depending on whether the player chooses to hit, stand, split, or double
down, the combinatorial approach should provide different expected values. The correct decision
is the one that yields the highest expectation. For example, if the player were to get a hand of
(5,5), the combinatorial method should provide the probabilities of adding any possible card and
the respective expected value of hitting, splitting the cards (and the individual probabilities for
each hand), the expected value of staying, and the expected value of doubling down. Often the
calculation of these individual hands could be irrelevant because of the statistical unlikelihood of
the hands, but a strong program should take all these hands into account'”,

Below is the basic outline of how a Combinatorial Approach would proceed'®:

18 Hoyte Blackjack Labs. "The Derivation of a Basic Strategy." Hoyte Blackjack Labs: The Derivation of a
Basic Strategy (accessed May 21, 2014); available from hitp://iwww.hcsw . org/hbjl/deriv.html.

'® Hoyte Blackjack Labs

7 Hoyte Blackjack Labs

'8 Image courtesy of Hoyte Blackjack Labs.

Vaidyanathan 10

How Basic Strategy Is Determined - Combinatorics

Comptie ulnst
| _dealer's probabilifies

Probrability ¥ | Expectation
of drawing a 2 fot Hand+2

“Probabity | [Expectation
of drawing a A

for Hand+ A

(C) 2004
Hoyte Blackjack Labs

In each case, the probability of adding each available card in the deck is calculated. This,
in turn, derives the expected value of each remaining card to be drawn, as does the overall
expected value of hitting. Then the expected value of the dealer’s hand (and additional
probabilities) is calculated and set to the expected value of staying. After this, the option of
hitting versus staying is compared and whichever provides a higher expected value is the
selected decision. Ultimately these probabilities are extended over numerous simulations and
different hands, which result in a Basic Strategy for a player, given the specific set of house
rules.

This method is mathematically intensive and accurate but ultimately requires high
computability to provide accurate outputs. This is one of two main approaches that can be used
to create a Basic Strategy. The other method is called the Simulation Approach. Itis a

methodology similar to the Simulation approach that will serve as an integral component of this

paper.

Vaidyanathan 11

Introduction to Monte Carlo

The Monte Carlo Method is aptly named after the city in Monaco, given the prevalence
of casinos in the area'®. Dating back to 1944, the method refers to a broad group of experiments
that are dependent on repeated statistical sampling to provide approximate solutions®®. The name
comes from the resemblance to playing and recording results in a real casino. Through repeated
results in different simulated scenarios, one is able to determine an ideal decision when presented
with a particular situation.

There are three main uses of the Monte Carlo Method: Integration, Optimization, and
Inverse. The MC integration method refers to numerically computing a definite integral using
random numbers. Although deterministic integration is useful when there are few dimensions,
the Monte Carlo integration method is useful when the integration has many variables
(multidimensional)?', The MC optimization method involves minimizing or maximizing the
optimal paths or solutions based on available data®, One runs a series of simulated paths and
eventually selects the path of decisions that provides the optimal solution, The MC inverse
method refers to defining a probability distribution that combines prior information and new
information through the use of some definable data®’. Because of the broad class of algorithms
that exist within these Monte Carlo methods, the applications are endless, stretching from

biology to artificial intelligence, and from engineering to finance and business.

19 Metropolis, p. 127.

2 Metropolis, p. 128.

2! Helmut Katzgraber. "lntroduction to Monte Carlo Methods.” Diss. Texas A&M U, 2011, p. 3.

22 Gilles Guillot. Monte Carlo Optimization Methods. Technical University of Denmark (accessed May 22,
2014); available from hitp://iwww2.imm.dtu.difcoursesf02443/slides2014/optim_HO.pdf.

2 Klaus Mosegaard and Malcolm Sambridge. "Monte Carlo Analysis of Inverse Problems.” Inverse
Problems 18.3 (2002): R29-54.

Vaidyanathan 12

In the case of Blackjack, the Monte Carlo methods do not apply independently of one
another. It could be considered an optimization problem, but the issue is that the game tree is
highly extensive and volatile®. Attempting to narrow down a solution would require extensive
computing power. It could be considered a probability distribution problem, but there is no
collection of pre-existing models to add the probability distribution to, since the simulations are
generated from a clean slate. As a result, the Blackjack problem is best considered a hybrid
between an optimization problem and an inverse problem. The simulation will try to optimize the
player’s payoffs, for a set of available decisions, by amending the probability matrix with
incoming data from completed hands. This will thus create an optimal Basic Strategy matrix.

So will the Monte Carlo simulations be similar to how typical simulations in blackjack

are run? This is how simulations are typically used to determine a Basic Strategy™:

How Basic Strategy Is Determined - Simulation

|smn|

-/
Generate | | Deal Make Play oufl_| Rf_*»icord ngt
Random Shoe Hand Decision hand guain resulting
from this decision

P Repeal many, (
s many fimes

s

When finished, the decisions
with the highest average gains are
‘probably’ the correct ones

(C) 2004
2 Hoyte Blackjack Labs

** A game tree refers to a list of decisions available in a non-cooperative game. it specifies the moves
available to each player, the players' knowledge during each move, and the players’ payoffs after
completing their decisions.

25 Image courtesy of Hoyte Blackjack Labs.

Vaidyanathan 13

Instead of calculating statistical probabilities like the Combinatorial Approach, this
methodology involves more randomness, It takes into account the fact that no two hands are
alike because of the randomness of the shoe, as well as the dealer’s hand, and thus calculates
likelihood rather than expected values. After repeating the simulations numerous times, the
decision that yields the highest chance of victory is “probably” the correct one.

The incorporated methodology in this paper varies from the basic simulation approach.
Rather than generating a random decision and recording the results, the decisions made by the
player will depend on a probability matrix created from past decisions. By amending this matrix
in real-time rather than analyzing randomized results, the simulation program will be quicker and
more accurate in reaching Basic Strategy. It is this updating of the probability matrix that
replicates the inverse method. At the same time, the programs will be running repeated
simulations to reach an optimal decision matrix, similar to the Optimization Method.
Furthermore, the simulations will incorporate elements of the regular simulation, thus
incorporating a weighted randomness into the methodology. The details of this Monte Carlo
methodology, along with the other types of simulations, will be explored in the Simulations
section.

Simulations

As described earlier, there are four different simulations, The simulations will replicate a
beginner gambler, an experienced gambler playing Basic Strategy, a gambler who can perfectly
count cards, and finally a gambler who can learn from experience over time. The convenient
thing about these different simulations is that they are all organized in a very similar manner, As
a result, the paper will first cover concepts and functionality that remains similar throughout all

of the simulations.

Vaidyanathan 14

The best way to fully explain these simulations is to walk through them step by step.
First, each simulation will generate a random shoe of cards to play blackjack with. Most casinos
play with 6 decks (or 24 suits) so the deck will generate the list of cards and then use a shuffle
function to incorporate randomness. The result is a randomly shuffled deck. Every time the
player or dealer wants to add a card, the first element of the shoe is popped off the deci: and
added to the player, Every time the deck has a certain threshold of cards remaining (about 1 deck
left), it is reshuffled, to simulate protocol in a real casino.

There exists a list of the strategies used by a player during each hand. For example, if'a
player chooses to hit twice and then stay given a certain set of cards, then the list of strategies
will say “Hit”, “Hit”, and “Stay™. Ultimately it is the last strategy used by the dealer that is
recorded as part of the results, but each hand’s total strategy is temporarily recorded. If a player
were to split his cards into two separate hands, each hand is treated individually and the
strategies are then split into two. After the round is over, i.e. the dealer has played his hand, the
last strategy used by the player is recorded and the rest of the previous decisions are discarded.

The results of every hand after every decision is recorded in the following format: (Player
score, Dealer Score, Net Gain by Player, Strategy Employed). If a player busts on a hand, the
playet’s score prior to the additional card is recorded, the net gain is -1 (based on the standard
wager of 1 dollar), and the strategy employed is hit. As later employed by the MC strategy, this
methodology is very convenient in terms of updating a probability matrix.

Each program will incorporate a score-calculating function, a deal function, a hit
function, a split function, and a stay function. In the case of a split, additional cards are added to
each hand, and the hands are dealt with sequentially. After all simulations have been run, the

program calculates out the total number of hands played (splits count as 2 hands), the net gain,

Vaidyanathan 15

the percentage of hands won, and the net gain percentage. It is by this format that all simulations
have been created to ensure regularity.

Simple Strategy

The first simulation is designed to replicate a novice Blackjack player, similar to the
beginner state of the Monte Carlo simulations. This player will need to have tendencies similar to
that of an inexperienced gambler. For starters, beginner gamblers have a tendency to play with
the cards they have, rather than playing against the dealer”. For example, players will have a
tendency to stay when they have 16, even though they see that the dealer is showing an Ace (in
this case, the proper strategy is to hit). Or players will split when they have two 10s and they see
that the dealer has a 6, with the hopes of winning two separate hands (in this case, the proper
strategy is to stay). It becomes clear that beginner blackjack players play with significant
randomness attached to their strategy. As a result, the strategy incorporated into the simulation
includes one of randomness.

The full code for the Simple Strategy simulation can be found in Appendix 1. The
simulation follows the pattern explained in the “Simulation” section, and displays its uniqueness
in the function reg_sim. All blackjack players know to hit on a score of 11 or lower. It is almost
always the case the players choose to stay on a score of 18 or higher. The simulations reflect this
strategy for beginner players as well. However, from the range of 12 to 17, blackjack players do
not always have a right strategy. While beginners do play with randomness, it is definitely more
likely for a beginner to hit on a 12, than to hit on a 17. As a result, the decisions for beginner

players are weighed accordingly. The best way to attribute some weighted randomness is by

% MitOrSplit.com. "Top Ten Most Common Blackjack Mistakes That Cost You Money." HitOrSplit.com
{(accessed May, 21 2014); availabte from
hitp:/Awww . hitorsplit.com/articles/Top_Ten Most Common_ Blackjack_Mistakes. himl.

Vaidyanathan 16

creating a list of possible plays, with more likely plays added multiple times to the list, and then
randomly selecting one. This is the methodology pursued in the Simple Strategy case.

To start, the player checks if the hand can be split. 1f the hand can be split, this option is
added to the list of possible plays. Then the player checks if the score is above 17 or less than 12,
If the player’s score qualifies as either, the list of strategies adds the respective move and
randomly select from the list (either one or two options). This methodology is intended to
replicate the idea that a beginner player might split even if he has a clear-cut win in hand, with
the hopes of winning multiple hands.

If the player’s score sits in the range of 12 to 17, then the player scraps the list of player
decisions and starts over. If the player’s score is in this range and the player can split, then the
option of splitting is added 3 times to the list of plays. Then, the simulations subtract the player’s
score from 18 and add that number of “hit” options to the list. They does the same for the option
to “stay”, except it subtracts 11 from the player’s score and add that number of “stay” options to
the list, As long as the player’s score sits between 12 and 17, there are 10 options in the list itself.
Through this method, the simulation creates a 30% chance of splitting the hand, but also creates
a weighted distribution for “hits” and “stays” for the player. This is intended to replicate the
skewed randomness that novice blackjack players tend to display.

If the player’s score is in the range of 12 to 17 and the player cannot split, then the only
options are to hit or split, which are weighed accordingly. The breakout is as follows: A player
with a score of 12 hits about 90% of the time, a score of 13 hits about 70% of the time, a score of
14 hits about 60% of the time, a score of 15 hits about 40% of the time, a score of 16 hits about

30% of the time, and a score of 17 hits about 10% of the time. Although these numbers may not

Vaidyanathan 17

provide an exact replication, it allows one to conceptualize how randomly novice blackjack
players are capable of playing.

After this, the simulation creates randomly generated hands and runs them against the
Simple Strategy. After running a large number of simulations (in this case 10,000), the program
adds up the net gains and losses to calculate the gain percentage. Then, in order to provide an
accurate distribution of what the gain percentage can look like, the program runs 1,000 more sets
of these 10,000 simulations, giving a series of gain percentages. This data creates a frequency

distribution curve for the simulations, which can be found below.

R AR e A T

.80 %

- 101 £ TS U T S I B WS I S
Galn Percentage from Simple Strategy (In %)

117 -114 -1

¢

-124 -123 12

R

Ultimately, the results give a distribution with the mean at around -9.73% (blue line) and
a standard deviation of .94, If this were a perfect Gaussian distribution®, the average gain
percentage for a novice gambler playing a “Simple Strategy” would sit between -11.6% and -
7.6% about 95% of the time. Although this is not a perfect distribution, it is clear that this is

somewhat reflected by the graph above.

#T A Gaussian distribution is also informally known as a bell curve.

Vaidyanathan 18

This replication of a novice gambler makes it apparent that this strategy is not
sustainable. With an average loss of 10%, the expectation is that the Monte Carlo Method’s gain
percentage will significantly exceed that of the Simple Strategy.

Basic Strategy

This simulation is designed to replicate the strategy of an experienced gambler familiar
with Basic Strategy. As discussed earlier, each set of Blackjack house rules implies that for every
situation faced, there is an ideal Basic Strategy. For example, some casinos play regular odds for
Blackjack, a “Hard 17" requirement for the dealer, and allow the splitting of non-alike face
cards. As discussed earlier, the casinos in these simulations provide a 3:2 odds for a Blackjack
(and non-dealer Blackjack), a “Soft 17” requirement, and do not allow the splitting of non-alike

face cards. For these house rules, this is the Basic Strategy:

Vaidyanathan 19

“Hard Total -7 5 Dealer’s Score
Player's Total{ 2| 314|561 7] 8] 8{10] 4
c1zte20 - sts|s|s]|5(5|5]5| 5[5
e SIS S| S[S [HIHIH| H | B
i ASsisfs|5|5|RIHIR[K|H
ASIS[S|S[S[HIHIR|[H|H
SIS|S|S|5|H|H|{H|H|H
CIHERES|S|S|H{HIH| H[H
| DIOID|(D|D|D|D|D| D |H
Aeioip|D|D|D|DID|[H|H
B (Hvioio DD HIH|H[H|H
C5teg | riH R [H|R[H]R{H] H]H
“8oft-Total 00 Dealer's Seore
Player's Total [2]| 31415161 2]8|9|10[A
193008815 5|515]5]5]|5 (8
A SiDID|D|DES{S|{H|H[H
HiDID|D|DIH{H|H|H |H
JHI{HIDID|DIH|H|H| K |H
SIHIHIHIDIDIR|H|H| H |H
“Palesc] i Dealer's Score
Player's Total | 2{31 4] 5] 6] 7|88 |10| A
AR E Bp SplSpiSplSpiSp[Sp[Sp] Sp [Sp
10 5]Sisi5|5[5]|5]/515
SplSpiSpiSp] S [SplSpl 5 |5
SplSpisSpiSpisp|Sp|5p] Sp |5
SplspiSpiSpiSp|H| K| H [H
SpispiSpiSp]H|H|H| H [H
D|D{DID{D|D|D|H{H
H|HSpiSalH|H|H| H R
SplSpispiSpiSp[H|H|{ H | H
SplSpispiSplSp[H|H|{ R {H

As presented above, the strategy for this Basic Strategy implies that the player has the
option to hit (H), split (Sp), stay (S), or double down (D). For example, if a player’s hand has a
hard total of 14, he should stay if the dealer’s card is below 7 and hit otherwise, Or in case a
player has an 11, he should double his wager unless the dealer is showing an Ace, in which case
his optimal strategy is to just hit. The hope is to replicate this veteran playet’s strategy.

In some casinos, players are not given the option to double down. In the case of the
Monte Carlo Method (run later), it will be clear that it is very hard to accurately randomize when
a player should double down versus just hitting, This particular Monte Carlo simulation,

therefore, does not allow players to double down. Despite the prominence of the “double down”

Vaidyanathan 20

rule, Basic Strategy needs to be modified to this new rule into account. Therefore, the variant

Blackjack Strategy will be as below:

Hard Total | = Dealer’s Score =
Player's Total| 2[3] 4] 5 6] 78] 9]10] A
- 171020 15|5|S|s[S[s|sisis (s

AS|5{S|{S|S5|HIHIH]H |H
As[5|s|S|S|HIH{H]{H|H
15(5|5]5|5[HIHIH{H |H

$|5|5|S(5[H{H{H]{H|H
AH|H|S|S|5|H{H{H]H |H
AH|H[H{H|IB|H{H{H{H[H
JHIH|R|H|[H|H]{H{H]{H |H
SAHIH|H|{H{H|H{HIH|{ H |H

HIH(H|H[H[H]H|{H{H K

suizriDealer’s Score

2l3]4]516]7|8)2|10{A
A58 |5({5|5[5{5i5]5 |5
AS(S5|51S15|5{SiH{H{H
AHH|H|H|H|H{HIHIH |H
HHIH|H{H|{H|HIHIH]H |H
SHIH(HIHIHIH{HIH]{H [H

S Palrs o] Dealer's Score
mayers Total [2] 34 5]6] 7] 8l ol10]a
ARG SpISp(5p|Sp|Sp|Sp|SpiSp| 5b [Sp
A0 G S5(5]515iS[515|5 1S

g9 spien(sp(spispl 5 [Splsp| 5 |5

28,8 50 |spisp|Sp|SplSplsp|Selsp| Sp ISP

S A Ee Sp|Sp|SpiSpiSp|H | H| H [H
SplSp|Sp{SpiH|HIH| H [H
HIH|H|H{HR|H|H[H]|H
H|H|5pi{SpiH [H|H|H [H
SplSplSpiSpisp|H |H| H [H
SplSplSplsplsel A [H | H [H

Because of the sin;ilarity between the two strategies, these strategies will be labeled
separately, as Basic Strategy | (no doubling) and Basic Strategy 11. Both strategies are built in a
nearly identical manner (with the only difference being the option to double). The gain
percentage with the option to doubling down is about 1.6% higher than the option without™. As a
result, we would expect Basic Strategy I1 to have a higher gain percentage than Basic Strategy 1.

The simulations for both strategies can be found in the Appendix. Rather than attempt to list the

% Grifin, p. 19.

Vaidyanathan 21

results together, it would be better to list the results of these simulations separately and explain
them.

Basic Strategy [

With the Basic Strategy I simulation, the program runs a methodology similar to the
Simple Strategy simulations. It generates 10,000 simulations per gain percentage calculated, and
then runs that 1,000 times to produce a distribution curve. The results of the repeated simulation

can be found below.

i

H

i
R il

A7 -4 o481 <38 435 232 .29 426 23 -2 -1 -4 bR 0805 02 02 04 0 113
Gain Percentage from Basic Strategy i (in %4}

The results give a distribution with the mean gain percentage at around -2.28% (blue line)
and a standard deviation of 1. If this were a perfect Gaussian distribution, the average gain
percentage for a gambler playing Basic Strategy 1 would sit between -4.28% and -0.28% about
95% of the time. Similar to the Simple Strategy simulations, the data somewhat reflects these

expectations.

Vaidyanathan 22

The gain percentage of the Monte Carlo Strategy should exceed the gain percentage of
Simple Strategy as presented earlier, and is expected to approach but not exceed the gain
percentage of the Basic Strategy .

Basic Strategy [1

With an identical methodology to that used in the Basic Strategy I simulation, the results

of the Basic Strategy I1 simulation are below:

R Gk

asprsectuder

b
R

1 N ﬁ;z ; ,
5653 5 AY-A4-L1-38-35-32-25-26-23 2 1) 1A-L1-0E-0502 03 04 07 L 13 16 19 2.2 25 28

Gain Percentage from Basle Strategy I {in %}

The results give a distribution with the mean at around -0.84% (blue line) and a standard
deviation of 1.17. A perfect Gaussian distribution would entail the average gain percentage for a
gambler playing Basic Strategy II to sit between -3.18% and 1.50% about 95% of the time.

As mentioned above, it is expected that the Monte Carlo Strategy would somewhat
approach this strategy, but it is not likely to exceed the gain percentage of the Basic Strategy L.
As a result, the gain percentage of Basic Strategy 11 exceeded the gain percentage of Basic
Strategy 1 by about 1.4% (although expected to be 1.6%), but is expected to remain under the

gain percentage of card counting.

Vaidyanathan 23

Counting Cards

Edward Thorp, an American mathematician, first developed the concept of counting
cards™. Using computers, he began to examine whether keeping track of the cards could be
advantageous to a player, Eventually, he made the discovery that with some mental mathematical
dexterity, it was possible to gain an advantage over the dealer™. The key component behind
counting cards is the wager. If a player is likely to be advantageous in a certain scenario, then he
should bet more money. Thorp used a methodology called the Ten-Count (later renamed the
Thorp Ten-Count), where a player would select 16 and 36, multiply each by the number of decks
being played with, and count backwards by dividing by the number of tens left in the deck to
determine the advantage for the player’' . He published a book titled “Beat the Dealer”, starting
the craze to beat the odds of Blackjack.

Eventually, other people took to the idea of keeping track of cards in different ways such
as the KO Strategy, the Zen Count, the Omega 11, etc. The MIT Blackjack team (operating from
1979 until the early 2000s) was famous for its group counting strategy, where players would
count together to coordinate high-wagering gamblers®.. Counting cards, although not cheating, is
seriously frowned upon in current casinos (because it allows players an advantage over casinos),
and those who get caught often get banned from the casino. However, it provides an interesting
mathematical comparison to Basic Strategy and the Monte Carlo Method.

The methodology employed in this paper is known as the Hi-Lo strategy. The Hi-Lo

strategy is the most basic card counting strategy, and is contingent on players counting high and

2% Ofton, Loudon. "The History of Blackjack.” Blackjack Apprenticeship (accessed May 21, 2104);
available from hitp:fiwww.blackjackapprenticeship.com/resources/history-of-blackjack/.

% Ofton

3 Ofton

*2 Griffin, p. 60.

Vaidyanathan 24

fow cards as they land on the table. By keeping a count of the cards being dealt during a hand, a
playet can adjust his bets accordingly to increase the expected payoff for each hand. By
extending this logic to the series of hands a player faces, he can increase the expectation for the
duration he is at the table™.

The strategy itself is straightforward. For each card dealt, if the value of the card is
between 2 and 6, then the count for the card is +1. If the card is a 7, 8, or 9, the count for the card
is -+0, Otherwise, for cards 10 through A, the count is -1. The player then adds the count for all
the cards to form the running count. The running count starts at 0 and is maintained between
rounds (but is reset if the shoe is reshuffled)®. A positive count means that a higher number of
small cards have been played, and that the deck possesses higher cards than Jower cards,

The running count is used 99% of the time, but is not the final value to gauge a player’s
wager. The player needs to convert the running count into the frue count. The true count is
determined by dividing the running count by the estimated number of decks left to be played™.
The true count thus gives the relative proportion of high value cards®® within the deck. Used in
conjunction with Basic Strategy, a higher true count entails that a player should be wagering
more,

In the case of this simulation, a true count above -+2 will give a wager that is 2 times the
standard wager before the next hand is played. Similarly, a true count above +4 will give 3 times

the original wager, a true count above +6 will give 4 times the wager, and a true count above +8

3 ariell Zimran, Anna Klis, Alejandra Fuster, and Christopher Rivelli. The Game of Blackjack and Analysis
of Counting Cards. University of Texas (accessed May 21, 2014}, available from
hitp://www.annaklis.com/uptoads/8/4/7/2/6472295/zimran klis fuster_rivelli.gametheory blackjack.pdf.
34 5

Zimran et al.
% Shackleford
% High value cards are 10, J, Q, K, and A.

Vaidyanathan 25

will give 5 times the wager, The simulation then allows the player to play the randomized hand
in accordance with Basic Strategy (in this case, Basic Strategy II).

However, the true count is not only used in the wager. In some cases, the true count
might affect how an individual should play his hand. Called the Ilustrious 18, these are a series
of scenarios during which a player should play against Basic Strategy’s recommendation. The

1Hustrious 18 is presented below®

o 0 strions 1B i
wplay <] Trup Count | oAbove | Below s
Insurance +3 Take No
16 Vs. 10 40 Split/Stay Hit
15Ys, 10 +4 Stay Hit
10,10 Vs. 5 +5 Spfit Stoy
13,10 Vs. 6 +4 Spit Stay
10Vs, 10 +4 Dauble Hit
12Vs. 3 +2 Split/Stay Hit
12Vs. 2 +3 Split/Stay Hit
11Vs A +1 Double Hit
Vs, 2 +1 Double Hit
10Vs. A +4 Dauble Hit
avs, 7 +3 Double Hit
laVs. 5 45 Split/Stay Hit
13¥s, 2 -1 Stay Hit
12 Vs, 4 +{) SphitfStay Hit
12 Vs, 5 -2 Split/Stay Hit
12Vs. 6 -1 Sphit/Stay Hit
13, 3 -2 Seay Hit

Since the rules for these simulations do not aliow players to take Insurance, it is not an
option. Other than that, some of these plays are counter-intuitive, and against Basic Strategy. For
example, Basic Strategy recommends that players never split 10s. However, if the true count is
above +4 and the dealer is showing a 6, then it is in the player’s best interest to split the [0s.

Using the true count for wagers, the [llustrious 18, and Basic Strategy 11, the simulations

generated a series of gain percentages, the results of which are displayed below:

% Shackieford

Vaidyanathan 26

§

R R R B R e !
r‘.d ril |v’| ~;IC:}\".'I§'<? OOy Oy ek s wed

- £

il
Hli

i, 24

Galn Percentage from Counting Cards (In %}

The results of these simulations give a distribution with the mean at around -0.07% (blue
line) and a standard deviation of 1.99. A perfect bell curve would entail the average gain
percentage for a gambler who is accurately counting cards to sit between -4,05% and 3.91%
about 95% of the time. Unlike the previous simulations where the standard deviations were
narrower, the wide range (and thicker bell curve) provides evidence that the gain percentage
from counting cards is significantly less predictable when compared to the other strategies.

One would not expect the Monte Carlo Strategy to approach this strategy, since this is the
most optimal strategy in Blackjack for this set of rules. However, it is interesting to note that
although the mean gain percentage through this simulation is practically 0%, alternative
literature suggests that counting cards can often render a higher advantage®. The most obvious
reason for this variation is the difference in house rules used by this simulation compared to

other simulations.

% Griffin, p. 19.

Vaidyanathan 27

Now that all comparative simulations have been covered (namely Simple Strategy, Basic
Strategy I and 1, and Counting Cards), the final simulation remaining utilizes the Monte Carlo
Method,

Monte Carlo Method

As discussed earlier, the Monte Carlo Method employed in this simulation utilizes a
combination of the Optimization and Inverse methods. The repeated simulations attempt to
optimize a clean-slated probability distribution. By amending the distribution in real time, rather
than waiting for the end of every round, the strategy matrix will be improved quickly and more
accurately compared to simulation approach that is typically employed.

So how does this simulation work? As discussed earlier, the option to double down will
not be included for the player. This leaves three options for the player, namely to split, stay, or
hit given a particular hand. However, accounting for the option to split is unique because it is not
always available for a given scenario (it requires both cards to be identical). Hence, the ideal
strategy for splitting will be taken from Basic Strategy 1. This leaves two options for the player,
the option to hit and the option to stay. These two options will be weighed against each other to
determine which is optimal given a particular scenario.

The simulation starts by creating two 18 (4-21 for player) by 10 (2-11 for dealer)
matrices, The first matrix will serve as the total times a player faces a scenario (referred to as the
total matrix), while the second matrix will serve as the total times a player successfully hits
within a scenario (referred to the hit matrix). The future decisions that the player makes will be
based on the ratio between the two matrices.

Because matrices statt with index 0, the player’s score minus 4 and the dealer’s score

minus 2 will give the correct cell location. The matrix will operate as follows.

Vaidyanathan 28

Given the player’s score (prior to a hit) is m and the dealer’s score is m:

—s If the player hits but does not bust, then the (m-4, n-2) coordinates for both the total
and hit matrices will increase by I.

~» If the player hits and busts, then the (m-4, n-2) coordinate for the total matrix will
increase by 1.

—s If the player stays and wins, then the (m-4, n-2) coordinate for the total matrix will
increase by 1,

— If the player stays and loses, then the (m-4, n-2) coordinates for both the total and hit
matrices will increase by 1.

Doing this ensures that a positive outcome from “staying” during a particuiar scenario
increases the future likelihood of staying and decreases the future likelihood of hitting. By
extending the logic to include positive and negative outcomes for both hitting and staying, this
creates a balanced ratio where the outcome of a hand is able to directly influence future
scenarios.

The simulation starts by testing whether it is ideal (and if possible) to split the hand. If the
hand should be split, it is, with each hand treated individually. Then, if the player’s score is
below 12, the player chooses to hit. If the player’s score is above 17, the player stays. If neither
of these scenarios fit, then the simulation determines whether the situation has been played
before, i.e. whether the player and dealer have both had their particular scores. If the situation
has not been played, then the simulation randomly chooses between staying and hitting, If the
situation has been played, the simulation takes the ratio between the (m-4, n-2) cells of the hit

and total matrices, giving a decimal between 0 and [(labeled). The simulation then generates a

Vaidyanathan 29

random decimal, x. If x < 7, then the simulation allows the player to hit. Otherwise, the player
stays. The simulations continue, continually updating the matrix.

By running a significant number of simulations, this continually updates the matrix until
it reaches an optimal equilibrium. To run a methodology similar to the previous examples, it runs
10,000 simulations per set, and run 1,000 sets to create a frequency distribution. The results of

the distribution are below.

i3

Hi Hinh
i LbEERE E’ %EE % 1 i E.§ %E% §£3 é Eibh t{ﬁ:’? [T R

b e I D— i oA BB R R, BB R R R,) S S
G5 6.2 -9 -56 -53 -5 L7 -4 -A% .38 435 -3F 28 26 <23 -2 -17 <14 1 08 .05 02 01 Q4
Galn Percentage from Monte Cario Method {in %)

The results of these simulations give a distribution with the mean at around -3.22% (blue
line) and a standard deviation of 1, A perfect Gaussian distribution curve would expect the
average gain percentage for a gambler who is accurately counting cards to sit between -5.22%
and -1.22% about 95% of the time.

As visible from the previous examples, the mean gain percentage from the Monte Carlo
Method sits well above the Simple Strategy, and approaches the mean gain percentage from the
Basic Strategy | simulation. However, because the frequency distributions between the two

simulations overlap, it is difficult to make an accurate comparison between the means. The

Vaidyanathan 30

comparisons between the Monte Carlo and the Basic Strategy 1 simulation can be found in the
Results section.
Results
The comparison between the Monte Carlo Method and Basic Strategy can be done in two
ways: through the difference in strategy and the overall outcomes. One of the outputs of the
Monte Carlo method is the ratio matrix, which provides the more optimal outcome between
hitting and staying given a particular hand. For example, in case the playet’s score isa 17:
Player Score =17

T

- oa
Ea
£ Stay
& Hit

A0%

20%

0%

Dealer Scare

As visible from the graph, the player is better off staying if the dealer is showing below
an & and better off hitting otherwise. This strategy is different from Basic Strategy, because
Basic Strategy suggests that a player always stays with a 17 if they have a hard total, and always
hits if they are playing with a soft total. One of the main reasons for this difference is that under
Basic Strategy, there is a different strategy between hard and soft totals. The Monte Carlo
simulations do not differentiate between soft and hard totals. Inclusion of this differentiation
would be ideal, but the incorporation of two additional matrices would result in a doubling of

runtime (at least), as well as a definite decrease in accuracy for the matrices.

Vaidyanathan 31

The exact charts for each player’s score can be found in the Appendix. When comparing
the Monte Carlo strategy to Basic Strategy I, the preferred strategies are those that are more than

50% likely. As a result, below is the strategy layout for the Monte Carlo Strategy:

| Hard Total '}~ Dealer'sScore
Player's Total | 2 [34| 5{6|7[8][9]10]A
At R S| S SIS |5|S5|5] 5|8
S | S 8155 (8ES|SIH([H
: iS55 i515|SIS|H|H|H
iS55 {S|S|SIH[H{H|H
SIH|H|[H|H|H|HIH|HIH [
HH|{H[H{HIHIRIH|H]H R
TH(H[H|{HIHIHIR K] H[H
JH|H[H|HIH{RIH|H]H |H
AH|H|H|H{H[HiH|H|{H|H
AR|R[HIH]{B|HIHIH]H M
SOPH[H|H|BIH{HIR[B| B H
codigeer VR EH | R R HHIHIH R R
5t 85 THIB|H|H|HB{HIHIH| H |H
‘Soft Total o] - “Dealer's Score
Player's Total{2] 3| 2} 5:| 6| 7{8]9[10] 4
a8 S S| S5 5[515] 5|8
el) SISES |5 |S|S|5]S|H|H
o858 1S 55|55 {H|H[H
g P 8 1818|858 |8|H|{H|H|H
CrAE3E s HIHEH|[H|H|H[H[HIH |H
33| Hi{HIH|H|H|H|H[HTH [K

The actions in bold are those that are different from Basic Strategy. In comparing the
strategies, a majority remains the same. Almost all modifications to the strategy in one table
remain unchanged in the other, For example, in the case of 17, the optimal strategy is to always
hit with a soft total and never hit with a hard total. In the case of the Monte Carlo Method, it is
optimat to hit if the dealer is showing above an 8, and to stay otherwise. It is this merging of
strategies that ultimately results in the variation. The only exception to this is the case of a player
having a 19. In this case, Basic Strategy recommends that a player always stay while the Monte
Carlo Method suggests a player should hit if the dealer is showing a 10 or an Ace.

Now that the strategies have been compared, it is time to turn towards the overall

outcomes. The overall outcomes have been discussed above in the individual sections, but it

Vaidyanathan 32

would be ideal to make a comparison between the two. With only the data available, both the
true means and the true standard deviations are unknown. As a result, the way to understand the

compare the two means is by the formula®:

Signal T — Ty
puisiuand .]' " jrunnd ; =
Noise st N 2

\ ni g

The X, and X, values represent the means of the data set, s; and s, represent the standard
deviations, and n| and n;, refers to the sample sizes (1,000 in all samples). The formula gives the
output 4, the t-statistic, which can be used to calculate the statistical significance. The statistical
significant allows one to distinguish the means of two data sets. The calculations of the t-

statistics can be found below:

Dataset 1 Dataset 2 X % 5, 53 n n; 1tl
Simple Strategy | Monte Carlg -9,73 -3.22 0.94 1 1000 1500 149,63
Simple Strategy | Basic Strategy | -9.73 -2.28 0.94 1 1000 14660 171.3
Simple Strategy | Basic Strategy |l -9.73 -0.84 £.94 1.17 1000 1000 186.9
Simple Strategy | Counting Cards -9.73 -0.07 0.94 1.9 1000 1660 138.49

Morite Carlo | Basic Strategy | -3.22 -2.28 1 1 1000 1000 20.86
Monte Carlo | Basic Strategy | -3.22 -0.84 1 117 1000 1000 48.66
Monte Carip | Counting Cards -3.22 -0.07 1 1.8 1000 1000 44,55
Basic Strategy | | Basic Strategy H -2.28 -0.84 1 1.17 1000 1000 28,52
Basic Strategy | | Counting Cards -2.28 0.07 1 1.98 1000 1000 31.33
Basic Strategy Il | Counting Cards -0.84 -0.07 1,17 1.9% 1000 1000 10,55

In the case of simulations where the number of observations exceeds 120, _the absolute

value of the t-statistic needs to exceed about 2,58 to be considered statistically significant at the
1% level. Every test performed above is statistically significant, meaning that the results can be
interpreted as follows: the difference between the means of any two strategies is statistically

significant at the 1% level.

* Daniel Katzman, Jessica Moreno, Jason Noelanders, and Mark Winston-Galant. Comparisons of Two
Means. University of Michigan (accessed on May 21, 2014); available from
hitps:/fcontrols.engin.umich.edu/wikifindex.php/Comparisons_of two means.

Vaidyanathan 33

The t-values are highest for comparisons to the Simple Strategy, which makes sense
because its mean was significantly further away from the rest of the simuiations. The difference
between the Monte Carlo Method and Basic Strategy 1 is statistically significant, but even more
significant is the difference between the two Basic Strategies themselves.

Conclusion

By the end of this paper, it becomes evident that the usage of the Monte Carlo Method
does provide a close replication to a gambler learning to play blackjack over time. Because of the
methodology that mandates a choice between hitting and staying, this simulation was able to get
close to Basic Strategy. The Monte Carlo Method’s mean gain percentage of -3.22% approaches
but does not reach the Basic Strategy I's -2.28% mean gain percentage.

Although the simulations were able to accurately live up to this paper’s goals, there are a
few caveats to this paper’s changes that could have improved the experimentation, and thus
increased the gain percentage. As mentioned earlier, a significant improvement to the project
would be to treat hard and soft totals separately. It would guarantee more accuracy in the
simulation and would likely result in a higher gain percentage. The issue with this is that it would
not only double the runtime of each simulation, but it would also increase the number of
simulations necessary to reach an equilibrium state. With the tradeoff between accuracy and
efficiency, these simulations were chosen to have a reasonable balance.

Another improvement to this simulation could have been the additional options to split
and double. It would allow the direct comparison of the Monte Carlo method to Basic Strategy
11, without the need of a non-doubling version of Basic Strategy. Each additional option provides
its own set of problems. First, it could be difficult to determine if splitting a hand results in a

positive outcome. If both hands win or lose, then it is clear whether the strategy should be played

Vaidyanathan 34

again. If one hand wins while the other hand loses, then it becomes unclear whether splitting was
the optimal strategy. In the case of doubling, it is a two-fold strategy, with a combination of
hitting and then staying. In this case, it would be much casier to determine whether hitting is
ideal given a particular scenario, and if staying is ideal given the following scenario.

Ultimately the creation of these simulations provides a realistic understanding of how
Blackjack players learn optimal strategy over time. The usage of the Monte Carlo Method serves
the role of a learning algorithm that approaches Basic Strategy. With the gains from Blackjack
for casinos decreasing over time, it would be interesting to study how long Blackjack remains a
prominent gambling game before casinos decide to further modify the rules to increase their

advantage.

Vaidyanathan 35

Bibliography
Griffin, Peter A. The Theory of Blackjack: The Compleat Card Counter's Guide to the Casfno
Game of 21. Las Vegas, NV: Huntington, 1999,
Guillot, Gilles. Monte Carlo Optimization Methods. Technical University of Denmark. Accessed
May 22, 2014. Available from

http://www2. imm.dtu.dk/courses/02443/slides2014/optim HO,pdf.

HitOrSplit.com. "Top Ten Most Common Blackjack Mistakes That Cost You Money."
HitOrSplit.com. Accessed May, 21 2014, Available from

http://www.hitorsplit.com/articles/Top Ten Most Common Blackjack Mistakes.html,

Hoyte Blackjack Labs, "The Derivation of a Basic Strategy." Hoyte Blackjack Labs: The
Derivation of a Basic Strategy. Accessed May 21, 2014. Available from

hitp://www . hesw.org/hbil/deriv.himl.

Katzgraber, Helmut, "Introduction to Monte Carlo Methods." Diss. Texas A&M U, 2011.
Katzman, Daniel, Jessica Moreno, Jason Noelanders, and Mark Winston-Galant. Comparisons of
Two Means. University of Michigan, Accessed on May 21, 2014. Available from

https://controls.engin.umich.edu/wiki/index.php/Comparisons of two means.

Metropolis, Nicholas. "The Beginning of the Monte Carlo Method." Los Alamos Science Special
Issue (1987): 125-30.

Metropolis, Nicholas, and Stanislaw Ulam. "The Monte Carlo Method.” Journal of the American
Statistical Association 44.247 (1949): 335-341.

Mosegaard, Klaus, and Malcolm Sambridge. "Monte Carlo Analysis of Inverse

Problems." Inverse Problems 18.3 (2002); R29-54.

Vaidyanathan 36

Ofton, Loudon. "The History of Blackjack." Blackjack Apprenticeship. Accessed May 21, 2104,

Available from http://www.blackiackapprenticeship.com/resources/history-of-blackjack/.

Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, B.P., Numerical
Recipes.: The Art of Scientific Computing, Third Edition (New York: Cambridge
University Press, 2007).

Shackleford, Michael. “Blackjack - FAQ." The Wizard of Odds. Accessed May 21, 2014,

Available from http://wizardofodds.com/ask-the-wizard/blackjack/.

Smith, Kenneth. "Casino Blackjack: Rules of the Game." Blackjackinfo.com. Accessed May 21,

2014, Available from http://www.blackjackinfo.com/blackjack-rules.php.

Wintle, Simon, and Adam Wintle. "History of Blackjack." The World of Playing Cards.
Accessed May 21, 2014, Available from
http://www.wopc.co.uk/history/blackjack/blackjack.html.

Zimran, Ariell, Anna Klis, Alejandra Fuster, and Christopher Rivelli. The Game of Blackjack
and Analysis of Counting Cards. University of Texas. Accessed May 21, 2014. Available
from

htep://Awww.annaklis.com/uploads/6/4/7/2/6472295/zimran_klis_fuster rivelli.gametheor

y.blackjack.pdf.

l. Simple Strategy Code

Il. Basic Strategy | Code

IIl. Basic Strategy Il Code

V. Counting Cards Code

V. Monte Carlo Code

VI. Monte Carlo Simulation Charts

Appendix

CiUsers\d34575k\Downloads\simple_strategy.py Friday, May 23, 2014 2:05 PM

4 Appendix T
simple _strategy.ny
This file serves ag the file by which we run Simple Strategy simulations.

import random

global s

global k

global plaverZ
global strategy
global results
global tot_hands
global total_deck

def new deck():
del total_deckls:]
one_deck=[2,3,4,5,6,7,8,9,10,"J","Q", "K', "A"]
qg=0
while g < 24: # append 24 suits or 6 decks
for i in one_deck:
total_deck.append (i)
g +=1
random.shuffle{total deck)

def init_hit(hand):
cardl = total_deck.pop(d)

#adds cards to hand
hand.append{cardl)

def game():
glokal s
global k
global player?2
global strategy
global bust
global tot_hands

k = False # Stay counter
s = False # Split counter
bust = False # Bust counter

firstbust = False
secondbust = False

player=[l
player2={[]
dealer=[]
strategy=1]

init_hit{player) # Deals players lst card
init_hit(player) # Deals players 2nd card

R

Ci\Users\d34575k\Downloadsisimple_strategy.py Friday, May 23, 2014 3:05 PM

init_hit(dealer) f Deals computers lst card
init_hit(dealer) #f Deals computers 2nd card
while k == False and bust == False: # Run non-split option until "Stay®

counter
reg_gsim{player)
if k == PFalse and bust == Falge: # If mid-play and no stay/bust
runi = [score({playerf:~1]),score([dealer[01]},0,strategy[~111]
results.append(runl)

if k == Palse and bust == True: # IF first hand busts
runl = [score(player[:-1]1},score{{dealer{0]]),-1,strategy[-11]]
results,append(runl)
firstbust = True

tot_hands += 1

k = False # Resef "Stay" counter
bust = False # Reset "Bust" counter
if s == True:

tot_hands += 1

while g == True and k == False and bust == False: # Run non-split opticen for
gecond if split happened until "Stay" counter
reg_sim(player?)
if k == False and bust == False:
runl = [score(player2[:-11),score({[dealer[(]]),(0,strategy[-1]]
results,append{runl)

if ¢ == True and k == False and bust == True:
runl = [acore({playver2[:-1]),score{l[dealeri0]]l),~1,strategyl-11]
results.append(runl)
secondbust = True

run_dealer(dealer} # Run dealer
if firsthust == False:
points = score_check(player,dealer) # Calculate Win, Loss, or Push

runl = [score(player[:-1]1),score(ldealerf0]]),points,strategy{-1]11]
results.append(runl)

if secondbust == False and s == Truse:
points?2 = score_check(player2,dealer)
runZ = [score(playver2[:-11}),score{[dealer[0]]),points2,strategy[-11]
results.append{run2)

def hit(hand}:
strategy.append{‘Hit")
card = total_deck.pop(0)

Adds card to hand
hand.append{card)

2-

C:Users\d34575kK\Downloadsisimple_strategy.py

Friday, May 23, 2014 3:05 PM

def score{hand)}:
global bust

total = 0
a=0
for cards in hand:

if cards == "J" orx card

total+= 10
elif cards == "A":
total+= 11

a+m=l
elaea:
total += cards

while a>0 aand total > 21:
total ~= 10
a -= 1

if total » 21:
bust = True

return total

def split(hand}:
global s
global plaver?
strategy.append('split')
g = True
hand.pop{1)
player2.append(hand[0]}

hit (hand}
hit{player2)

def stay(hand):
global ¥
strategy.append{' Stay')
k = True

def reg_sim{hand):
plays = [1
g = Falsge
yet

1f (hand[0]==hand[1])} and ¢ == False:

i}
It

Hie R
FATRA

== "(" or cards

If ace(s), subtracts 10 for each ace until below 21

Indicates that a split has occured
Popg off second card
Assigns second card toe second hand

Split hasn't occured

Run split opbion is possible

plays.append(split (hand)}

q = True
if scorelhand) > 17:

plays.append{gtay{hand))

elif score{hand) < 12:

plays.append{hit{(hand)})

else:

Split option is possible

C:\Users\d34575kiDownloads\simple_strategy.py

Friday, May 23, 2074 3:05 PM

if ¢ == True:
plays =
score (hand)
else;

- 11)

if scoref{hand} == 123
plays = [hit(hand)]
elif score(hand) == 13:
plays = [hit{hand)]
elif score(hand) == 14:
plays = [hit{(hand)]
elif gcorelhand) == 15:
plays = [hit(hand)]
elif score(hand) == 16:
[hit(hand)]
@lif score(hand) == 17:
plays = [hit{(hand)]

random.sample(plays, 1)

plays =

def mun_dealer {comp):
while score{comp) < 17:
init_hit{comp)

def score_check{hand,comp):
if score{hand) > 21:

return -1

elif scoref(hand) == 21 and len(hand) == Z:
if score(hand) == score(comp} and len{comp) ==
return 1
else:

%]

return 1.

[split(hand)}} *

+ [hit(hand)] *

+ [stay(hand)]

+ [stay(hand}]

+ [stay(hand)}]

+ [stay(hand}]

+ [stay(hand)]

4+ [stay(hand)]

elif gcore(hand} > score(comp):
retuxrn 1
elif score(comp} > 21:
return 1
elif score(hand} == score(comp):
return 0
else:
return -1
gsim = 0
totals=[]
n = int{raw_input("How many sinelaticns?: ")}

while sim < 1000:
tot_hands = 0
results = []

total_deck = []

(1l8~gcore(hand}) + [stay(hand)} * (

*
[

by

C:\Usersid34575k\Downloadsisimple_strategy.py

Friday, May 23, 2014 3:05 PM

0
0

losses

0
while i < n:

if len(total_deck)<b3:
new_deck()

lossesl

ties

game ()
1 4= 1

0
while m < len{results):
if results[m][2] < O

m

losses +=
lossesl += 1
elif results[m][2] > O:
wins 4= results[m] [2]
wingl += 1
else:
ties += 1
m += 1

net_gain wing-losses

net_gainl

wingl-lossest

gain =

totals.append{gain)

sim += 1
print "Toral Hands: Y, tot_hands
print “Yobal Wins: *, wins
print "Total Losses: ", losses
print "Total Ties / Mid-Play
print "Net Gain: ", net_galin
print "Winning Hands Percentage:
1 Q‘C i
print "Total Galn Percentage: .,
print totals

(Digoounted) : M,

(-1*results[m]}[2])

round(100*float{(net_gain))/float{(tot_hands)},i)

ties
“, round{100*float{({net_gainl))/float{(winsl+lossesl)),2),

round (100*float {(net_gain))/filoat({tot_hands)},2}, %"

-5-

C:\Users\d34575k\Downloads\basic_strategy_i.py

Friday, May 23, 2014 3:06 PM

4 Appendix TX

hasic_strategy_ _i.py

This file serves as the file by which we run Basgsic Strategy I gsimulations.

import random

global resgsults
global total_deck
global tot_hands

def

def

def

def

def

new_deck() :
del total_deck[:]

one#suit=[2,3,4, 5' 6,7,8;9, 10' uJu' aQu ’ " u' "Z‘."]

=0
while g < 24:
for i in one_suit:
total_deck.append{i)
g +=1
random.shuffle{total_deck)

init_hit(hand):
card = [total_deck.pop(0)]

#adds cards to hand
hand.append{card[0])

no_record_hit (hand):
card = [total_deck.pop(0)]

#Adds cards to hand
hand.append{card[(])

wager () :
return 1

game{)

global s

global k

global player?2
global strategy
global bust
global tot_hands

k = Falge

g = False

bust = False
firgstbust = False
secondbust = False

player=[]

Append 24 suits or 6 decks

For dealer's second card (unseen)

Stay counter
$ Split counter
Bust counter

irst hand has been busted

Second hand hag been busted

-

C:iAUsers\d34575k\Downloadstbasic_strategy_i.py Friday, May 23, 2014 3:06 PM

playeri=[]
dealer=[]
strategy=[}

init_hit{player) # hits players lst card

init_hit(player)} # hits plavers 2nd card

init_hit(dealer) ¥ hits computers lst card

no_record_hit(dealer) # hitg computers 2nd card (Doesn't affect running count)
while k == False and bust == False: # Run non-split option

until “"Stay" counter
counting_ strategy(plaver,dealer)
if k == False and bust == False: # If mid-play and no stay/bust
runl = [score(player[:-1]),score([dealer[C]1]},0,strategyi-11]
results.append(runl)

if k == False and bust == True: # IF first hand busts
runl = [score(player[:-l]),score([dealer[O]]),—l*wager(),strategy{—l]]
results.append(runli)
firstbust = True

k = False # Resel "Stay" counter
bust = False # Regef "Bust'" counter
tot_hands #+= 1

if 5§ == True:
tot _hands += 1

while s == True and k == Falsge and bust == False: f Run non-gplit option for
gecond if split happened until "Stay" counter
counting strategy{player2,dealer)
if k == False and bust == False:
runl = [score(player2[:-11),score(ldealeril]l]),0,strategyi-111]
results.append(runl)

if g == True and k == False and bust == True:
runl = [score(playerZ[:~l]),score([dealer[O}]),-1*wager(),stratng[-I}]
results.append{runl)
secondbust = True

run_dealer(dealer) # Run dealer

if firstbust == False:
points = score_check(player,dealer} # Calculate Win, Losgs, or Push
runl = [score(player[:—l]),score([dealer[O]]),points*wager(),strategy[—l}]

resultsg.append{runl}

if secondbust == False and s == True:
points? = score_check{player2,dealer)
run? = [score(player2[:-1]),scorel{ldealer[0]]),points2*wager(},strategyl[~11]
results.append{runl)

R

C:\WUsers\d34575k\Downloads\basic_strategy_ipy Friday, May 23, 2014 3:06 PM
def hit{hand}:

strategy.append{ 'Hit")

init_hit {(hand)

def score(hand):
global bust
global hardtotal

total = 0
hardtotal = True
a=()
for cards in hand:
if cards == "J" or cards == "(" or cards == "K'

total+= 10
elif cards == “"A":
totai+= 11
at=1
hardtotal = False
else:

total += cards

while a>0 and total » 21: # If ace{sg), subtracts 10 for each ace until below 21
total =-= 10
a == 1

if a == 0
hardtotal = True

i€ total » 21:
bust = False

return total

def gplit(hand):
global s
strategy.append('8plit’)
5 = True # Indicates that a split has occured
hand.pop(1) # Pops off second card
player2.append(hand[{}) # Asgigns second card to second hand

hit (hand}
hit(player2}

def stay(hand):
global k
strategy.append{' Stay*)
k = True

def split_strategy(playl,hitl}:
if playl[0]l==playi[l] and s == False:
if playl[0]l=="A"2
return 1

elif playl[0]==8:

3

Ci\Users\d34575k\Downloads\basic_strategy_i.py

Friday, May 23, 2014 3:06 PM

return 1

elif (playl[0]==2 ox
return 1

elif playl[0]l==6 and
return 1

elif playl[0]==9% and
return 1
elif playl[0]l==4 and
return 1
else:
return 0
def counting_ strategy(pl,dl):
if split_strategy(pl,dl)
split(pl)
elif hardtotal
if score(pl) < 18:
hit{(pl}
elif score{pl)
hit(pl)
elese:
stay{pl}
elif hardtotal
if score{pl} < 12:
hit({pl)

Falsge:

18

True:

playl[0]l==3 or playl[0l==7) and score(lhitl1[0]1]) < 8:

score{[hitl[01]1) < 7:

score{[hit1[01]} < 10 and score([hitl1[01]} 71

score(ihit1[031]) < 7 and score{[hitl[0]]1) > 4:

Bagic Strategy (Splits)

Basic Strategy (Soft Totals)

and score([d1[0]11) » 8:

Basic Strategy {(Hard Totalsg)

elif score(pl) < 17 and score([dl[0]1) > 6:

hit(pl)
elif score(pl)

hit(pl)
else:

stay{pl)

== 12

def run_dealer (comp):

while score{comp} < 17:
init_hit{(comp)

def score_check(hand, comp):

if score(hand) > 21:
return -1

alif score(hand)
1f score(hand)

return 1

else:

&)

return 1.
elif gcore(hand)
return 1
elif score(comp) 21
return 1
elif score(hand)
return 0

else:
return -1

== 21 and len(hand)
== gcore{conp) and len(comp)

and score([dl1[0]1]) < 4:

== H
<]

It

gscore{comp)

== gcore({comp):

4

C:\isers\d34575k\Downloadsibasic_strategy_i.py

Friday, May 23, 2014 3:06 PM

sim =

0

totals=1[]
n = int{raw_input{"How many simulations?: "))
while sim < 1000:

tot__hands

regults
total_deck =

i

= 0

wing = 0

wingl =

logses =

logsesgl

ties = 0

0

= 0

0
0

while i < n:
1€ len{total_deck)<i3:
new_deck()

m

game ()

i +=

= (

1

while m < len{results):
if results[ml[2] < 0:

losses += (~l*resultsim][2])

lossesl += 1

elif resultsfm][2] > O:
wing += results[m][2]
wingl += 1

else:
ties += 1

m += 1

net_gain = wins~losses
net_gainl = winsl-lossesl

gain = round(i00*float({net_gain))}/floatb((tot_hands)},i)

totals.append(gain)
gim += 1

print *Total Hands: “, tot_hands

{Digeounted) : ¥, ties

, round(100*float{{net_gainl))/float{(winsl+lossesl)),2},

round{100*float ({net_gain))/float{(tot_hands)),2)," %"

print "Total Wing: ®, wins

print "Total Losses: ", losses
print “Total Tiles / Mid-Play
print "Net Gain: ", nef_gain
print "Winning Hands Percentage: "
ok

print "Total Gain Percentage: °,
print totals

5.

Ci\Users\di4575k\Downloadsibasic_strategy_ii.py Friday, May 23, 2014 3:06 PM

Appendix IIZ
4 basgsic_strategy_ii.py
4} This file serves as the file by which we run Basic Strategy Il simulations.

import random

global results
global total_deck
global tot_ hands

def new_deck():
del total_deck:]
one_suit=[2,3,4,5,6,7,8,9,10,"J%,"Q","K","A"]
=0
while g < 24: # Append 24 suits or 6 decks
for i in one_suit:
total_deck.append{i)
q +=1
random.shuffle(total deck)

def init_hit(hand):
card = [total_deck.pop(0)]

#adds cards to hand
hand.append(card{G])}

def no_record_hit(hand}: f For dealer's second card (unseen)
card = [total_deck.pop(0)]

#Adds cards to hand
hand.append{card[0]}

def wager():
return 1

def game():
global s
global k
global player:2
global strategy
global bust
global tot_hands
global double

double = 1 # Doubling weight

k = False # Stay counter

s = False # Split counter

bust = False # Bust counter

firstbust = False # First hand has been busted

secondbust = False # Second hand has been bhusted

-

Ci\Users\d34575kK\Downloadst\basic_strategy_ii.py Friday, May 23, 2014 3:06 PM

player=[]
player2=[]
dealer=[]
strategy=1{]

init_hit(player) # hits players lst card

init_hit({player) # hivs plavers 2nd card

init_hit{dealexr)} hits computers lst card

no_record_hit (dealer) # hiteg computers 2nd card (Doesn't affect running count)
while k == False and bust == False: # Run non-gsplit option

until "Stay" counter
counting_strategy(playver,dealer)
if k == False and bust == False: # If mid-play and no stay/bust
runl = [score{playerl[:-11),score([dealer[0]]},0,strategy[-1]1]
results.append{runl)

if k == False and bust == True:; # IF first hand busts
runl = [score{playerl:-11},score([dealer[0]1]),-1*double*wager(),strategyl[-1}]
results.append(runl)
firstbust = True

k = PFalse # Reset "Stay" counter
bust = False # Reget "Bust" counter
tot_hands += 1

if g == True:
tot_hands += 1

while s == True and k == False and bust == False: # Run non-split option for
second 1f split happened until "Stay" counter
counting_strategy(player2,dealer)
if k == False and bust == False:
runl = [score(plaver2{:-11),score([dealer[0]]1),0,strategy[~1]]
results.append (runl})

if 5 == True and k == False and bust == True:
runl = [score{player2[:-11),score(l[dealer[0]]),~1*double*wager{),strategyl~1]]
results.append{runl)
secondbust = True

run_dealer{dealer) # Run dealer
if firstbust == False:
points = score_check(player,dealer} # Calculate Win, Loss, or Push
runl = [score(playerl[:-11),score(l[dealer[0]]),points*double*wager(),strategyl[-1]]

results.append{runl}

if gsecondbust == False and == True:
points2 = score_check(player2,dealer)
run? = [score(player2[:-11),score([dealer[(}]),points2*double*wager(),strategy[-11]
results.,append(run2)

2.

Ci\Users\d34575k\Downloads\basic_strategy_ii.py

Friday, May 23, 2014 3:06 P\

def hit{hand):
strategy.append('Hit'}
init_hit{(hand)

def zscore(hand):

global bust

gleobal hardtotal

total = 0
hardtotal = True
a={)

for cards in hand:

if cards == "J" ox cards
total+= 10
elif cards == "A":
total+= 11
at=1
hardtotal = False
elsa:

total += cards

while a>0 and total > 21:
total -= 10
a ~= 1

f a

== (0

hardtotal =

e

True

if total > 21:
bust = False
return total

def split{hand):

global s

strategy.append('Split')

g = True

hand.pop{l}

plaver2.append(hand[0])

hit (hand)
hit(player2)
def stay(hand):
global k
strategy.append(Stay’')
k = True

def split_strategy(playl,hitl):

oxr cards == "K":

" g‘j i

If ace(s)}, subtracts 10 for each ace until below 21

Indicates that a split has occured
Pops off second card
ff Assigns second card to second hand

if playl[Cl==playl{l] and s == False:

if playl[C]=="A":

C:AUsers\d34575K\Downloads\basic_strategy_ii.py

Friday, May 23, 2014 3:06 PM

def

return 1
elif plavl[0]==8:
return 1

elif (playl[0]==2 or playll0]l==3 or playl[0]==7) and score{[hitl[01]1) < 8:

return 1

elif playl[0]l==6 and score([hit1[0]]) < 7:

return 1

elif playl{0]l==9 and score([hitli01]) < 10 and score([hitl{0]]) '= 7:

return 1

elif playli0]l==4 and score([hit1(0]1]) < 7 and score{[hitl[0]]) > 4:

return 1

elge:

return (

counting_strategy(pl,dl):
global double
if split_strategy{pl,dl)}

split{pl)

elif hardtotal == False:

1 # Baslc Strategy (Splits)

Bagic Strategy (Soft Totals)

if score(pl) == 13 and score{[dl1[0]1]) > 4 and score{[dl[0]]) < 7:

double #= 2
hit({pl)
stay(pl)

elif scorel(pl) == 14
double *= 2
hit({pl)
stay{pl)

elif score(pl) == 15
double %= 2
hit{pl)
stay(pl}

elif score(pl) == 16
double %= 2
hit{pl)
gtay(pl)

elif score(pl) == 17
double *= 2
hit({pl)
stay(pl)

elif score(pl) == 18
double *= 2
hit({pl)
stay(pl)

elif score(pl) < 18:
hig{pl}

elif score(pl) == 18
hit{pl}

else:
stay(pl)

elif hardtotal == True:

and

and

and

and

and

and

score([d1{0]11}

V
i

and score{[d1[01]) < 7:

v
L

score{[d11011) and score([d1[01]) < 7:

and score([d1[0]]) < 7:

v
i

score([d1[0]17})

score([dl1{0]11)

v
B

and score{[di[0]]) < 7T

v
b2

score([d1[0]1]1) and score([dL[01]) < 7:

score({d1[0]1])

v
<o
I

Bagic Strategy {Hard Totals)

if score(pl) == 9 and score([d1{0]]) » 2 and score([d1[0]]} < 7:

double #*= 2

4

C:\Users\d34575k\Downloadsibasic_strategy_li.py Friday, May 23, 2014 3:06 PM

hit(pl}
stay(pl)

elif score(pl) == 10 and score([d1[011) < 10:
double %= 2
hit{pl)
stay(pl)

elif score(pl) == 11 and score([d1[01]) < 1li:
double *= 2
hit{pl)
gtay(pl)

elif scoref{pl) < 12:
hit({pl)

elif score{pl) < 17 and score({dl[0]]) > &:
hit(pl)

elif score(pl) == 12 and score([dl[0]]) < 4:
hit(pl)

elase;
stay(pl)

def run_dealer(comp):
while score(comp) < 17:
init_hit(comp)

def score_check{hand,comp):
if scoref{hand) » 21:
return -1

elif score(hand) == 21 and len(hand) == 2
if scorefhand) == score(comp) and len(comp) == 2:
return 1
else:

return 1.5
elif score(hand) » score({comp):
return 1
elif score{comp) » 21:
return 1
elif score(hand) == score{comp}:
return 0
else:
return -1

gim = 0
totals=[]
n = int{raw_input{'How many simalations?: "))
while gim < 10003
tot_hands = 0

results = []
total_deck = [1]

5

C:\Users\d34575k\Downloads\basic_strateay_ii.py

Friday, May 23, 2014 3:06 PM

9
= 0

losses
lossesl
= 0
while i < n:
if len{total_deck})<5H3:
new_deck(}

ties

game ()
1 4= 1
m = 0

while m < len{results):
if results[m] [2] < O:
losses +=
iogssesl += 1
elif results[m]{2] » 0O:
wing += results[m] [2]
winsl += 1

else:
ties += 1
m += 1
net_gain = wing-losses

net_gainl wingl-lossesl

gain

totalg.append{gain)

gim += 1
print "Total Hands: ¢, tot_hands
print "Total Wins: ", wins
print "Total Losses: ¥, losses
print "Total Ties / Mid-Play
print "Net Gain: *, net_gain
print "Winning Hands Percentage:
Wi
print "Total Galin Percentage:
print totals

(Discounted}: *,

(-1*results[m] [2])

round{100%float({net_gain})/£fleat{{tot_hands})),1)

ties

“, round{100*float{(net_gainl))/float({winsl+lossesl)},2),

“, round{100*float{(net_gain)}/fleoat({tot_hands}),2), %"

C:\Wsers\d34575k\Downloads\counting_cards.py

Friday, May 23, 2014 3:07 PM

Appendix TV
counting_ cards.py

This file serves ag the file by which we run Counting Cards simulations,

import random

glecbhal results
global total_deck
global true_count
global tot_hands

def new deck():
global running count

del total_deckl:]

one_sult=[2,3,4,5,6,7,8,9,10,"J","Q", "K*","A"]

g={
while g < 24:
for i in one_suit:
total_deck,append{i}
g +=1
random,.shuffle{total deck)

running_count = §

def get run_count{card0l):

global true_count
global running_count

if score(cardl) < 7:
running count += 1
elif score(card0) < 10:
running_count += 0
else:

running count -= 1

true_count = running count/int(len(total_deck}/52}

true count

def init hit(hand):
card = [total_deck.pop({)]
get_run_count (card}

#Aadds cards to hand
hand.append{card{(])

def no _record _hit(hand)s
card = [total deck.pop(0)]

#Aadds cards to hand
hand.append{(card[0])

Append 24 guits or 6 decks

Resetting the running count after a shuffle

generate running count

CGenerates an integer-valued

Por dealer's second card (unseen)

P

Ci\Users\d34575k\Downloads\counting_cards.py

def

def

Friday, May 23, 2014 3:07 PM

wager{}):

if prehand_count >= 83
val = 5

elif prehand_count >= 63
val = 4

elif prehand_count »>= 4;:

val = 3

elif prehand_count >= 23
val = 2

else:
val = 1

return val

game() s
global s
global k
global
global
global
global
global
global

plaver2
strategy
bust
prehand_count
tot_hands
double

double = 1
K o=
s = False
bust =
firstbust =
gecondbust =

False

False
False
False

player=[]
player2=[1}
dealer=[]
strategy=11]

init_hit{player)
init_hit{player)
init_hit {(dealer)
no_record _hit{dealer)

prehand_count = true_count
while k False and bust
until counter

"Stay*®

Stay counter

Split counter
Bust counter
First hand has been busted
Second hand has been busted

hits players 1st card
hitg players 2nd card
hits computers lst card
hits computers 2nd card (Doesn't affect running count)

False: # Run non-split option

counting_strategy{player,dealer)

if
runl =

if k == False and bust ==
runl =

results,append{runl)

k == Palge and bust == False:
[score{player[:=1]1),score({dealer[0]1])},0,strategy[-11]
rasults.append(runl)

True:
[score({player[:-1]),score{[dealer{0]]}),~1*double*wager(},strategy[-1]]

If mid-play and no stay/bust

IF first hand busts

2

C:\Users\d34575k\Downioads\counting_cards.py Friday, May 23, 2014 3:07 PM

firstbhust = True

k = False # Reset "Stay™ counter
bust = PFalse # Reset "Bugt?® counter
tot_hands += 1

if g == True:
tot_hands += 1

while s == True and k == False and bust == False: # Run non-gplit option for
second if gplit happened until "Stay" counter
counting_strategy(playver?,dealer)
if k == False and bust == PFalse:
runl = [score(player2[:-1]),score{[dealer[01])},0C,strategy[~1]]
results.append(runl}

if s == True and k == False and bust == True:
runl = [score(plaver2[:~11),score{[dealer[0]]1),~1*double*wager(),strategy[-111
results.append (runl)
secondbust = True

run_dealer{dealer)} # Run dealer
if firstbust == Falge:
points = gcore_check(player,dealer) # Calculate Win, Loss, or Push
runli = [gcore{player[:~11),score([dealer[0]]),points*double*wager(),strategy{-11]

results.append(runl)

if secondbust == False and s == True:
points2 = score_check(player2,dealer)
run2 = [scorel{player2[:-1}},score{ldealer[0]]),points2*double*wager(),strategy[-111]
results.append(run2)

def hit{(hand):
strategy.append(‘Hit)
init_hit(hand)

def gscore(hand}:
global bugt
glokal hardtotal

total = 0
hardtotal = True
a=0
for cards in hand:
if cards == *J" or cards == "(" or cards == "K":
total+= 10
elif cards == "A":
total+= 11
a+=1
hardtotal = False
else:

CiUsers\d34575k\Downloadsi\counting_cards.py

Friday, May 23, 2014 3:07 PM

def

def

def

def

total += cards

while a>0 and total > 21:
total ~= 10
a -= 1

if a == 01
hardtotal = True

if total » 21:
bust = ¥alse

return total

split(hand):

gichal s
strategy.append(' Split')
g = True '
hand.pop(1)
player2,append(hand[0])

hit (hand)
hit({player?)

stay(hand) s

global k
strategy.append('Stay’)
k = True

If acel{s), subtracts 10 for each ace until below 21

Indicates that a split has occured
Pops off second card
Assigns second card to second hand

split _strategvi{playl,hitl):
if playilCl==playl[]l] and s == False:

if playl[0]=="A";
return 1

elif playl[0l==8:
raturn 1

elif (playl[0]}==2 or
return 1

elif playl[0}==6 and
return 1

elif playl{0]==9 and
return 1

elif playlil]l==4 and
return 1

alse:
return 0

counting strategy(pl,dl):

global double

playl[0l1==3 or playl[0}==7) and score([hitl[0]]) < 8:

score({hitl1[0]1) < 7:

score{[hitl[011) < 10 and score([hit1{0]1]}) != 7:

score{[hit1[011)} < 7 and score{[hit1[0]11) > 4:

if score(pl) == 16 and score([dl[C]])} == 10: # 16 vs. 10 {(True Count 0}

if true count > O:

if split_strategy(pl,dl) == 1l:

gplit(pl)
else:

-4

C:\Users\d34575K\Downloads\counting_cards .py Friday, May 23, 2014 3:07 PM

stay(pl)
else:
hit(pl}
elif score(pl) == 15 and score([dl[0]1}) == 103 # 15 vs. 10 (True Count 4}
if true_count »>= 4:
if split_strategy{pl,dl) == 1:
split(pl)
else:
stay{pl)
else:
hit{pl)
elif pll0l==pl[l] and score{[pll[01])
== Hy # 10 and 10 vs. 5
if true_count »>= 5:
split(pl)
alge:
stay(pl)
elif pl[0]==plll] and score{[pi[011)
== 63 # 10 and 10 vs. 6
if true_count >= 4:
split(pl}
else:
stay(pl)
alif score{pl) == 10 and score([dl{0]}])
if true count >= 43
double *= 2
hit{pl)
stay(pl)
else;
hit{pl}
elif score(pl) == 12 and score([dl[0]]1}
if true_count »>= 23

It
1}
u
]

10 and score{iplilll) 10 and score({d1[011])

10 and score([pl[111) 10 and score([d1{01])

i
1

103 # 10 vs. 10 (True Count 4}

1]
4]
(2
.

¥ 12 ve. 3 {(True Count 2)

if split strategy(pl,dl} == 1:
split(pl)

else:
stay(pl)

else:
hit(pl)
elif score(pl) == 12 and score{[d1[0]1])
if true_count »>= 3:

12 vs. 2 {(True Count 3)

It
It
)
.

if split_strategy(pl,dl) == 1:
split(pl)
elsa:
stay(pl)
elae:
hit{pi)
elif score(pl) == 11 and sgcore([di{0]1])
if true count »>= 13
double *= 2
hit{pl}
stay({pl)
elge:

1!
I
[y
IS

11 vs. A (True Count 1)

-5-

Cilsers\d34575k\Downloads\counting_cards.py

Friday, May 23, 2014 3:07 PM

hit{pl}
elif score(pl) == 9 and score([dl[0]}) == 2:
if true_count »= 1:
double *= 2
hit{pl}
stay(pl)
else:
hit({pl)
elif score(pl) == 10 and score([dl[0]]1) == 11:
if true_count >= 43
double *= 2
hit({pl)
stay(pl)
else:
hit(pl}
elif score(pl) == 9 and score([d1[0]1) == 7
if true_count »= 3:
double *= 2
hit(pl)
stay(pl)
else:
hit({pl)
elif score(pl) == 16 and score{[d1[0]]}) == 9:
if true_count »>= 5@
if split_strategy(pl,dl) == 1:
split{pl)
alae:
stay(pl)

elae:
hit(pl)
elif score{pl} == 13 and score([dl1[0]]) == 2:
if true_count »= -1:
if split_strategy(pl,dl) == 1:
split{pl}
else:
stay(pl)
else:
hit{pl}
alif score(pl) == 12 and score({[d1{0]]) == 4:
if true count »>= Q1
if split_strategy(pl,dl) == 13
split{pl)
else:
stay(pl)
else:
hit{pl)
elif score(pl) == 12 and score([dl[0]]}) == 5:
if true _count »= -1
if split_strategy(pl,dl) == 1:
gplit{pl}
aelse:
stay(pl)

9 vg., 2 (True Count 1)

4 10 vs., A (True Count 4)

9 vs., 7 {True Count 3}

16 vs. 9 (True Count 5)

13 vs, 2 {irvue Count -1)

12 vs. 4 (Running Count 0}

12 vs. 5 (True Count -2}

C:Users\d34575k\Downtoadsicounting_cards.py

Friday, May 23, 2014 3:07 PM

else:
hit{pl)
elif score(pl}
if true_count >= -l

if gplit_strategy{pl,dl}

split(pl)
alse:
stay(pl)
elae:
hit(pl)
elif score(pl)
if true_count »>= =-2:

if split_strategy{pl,dl) ==

split(pl)
else:
stay{pl}
else:
hit{pl)

== 12 and score{[d1[0]})

== 13 and score([dl[01])

n
n

1s

It
I

1s

elif split_strategy{pl,dl) == 1:

split(pl)
elif hardtotal == False:

if scorel(pl)
double *= 2
hitc({pl)
stay(pl)

elif score(pl) ==
double *= 1
hit(pl}
stay(pl)

elif score(pl)
double *= 2
hit{pl)
stay(pl)

elif score(pl)
double *= 2
hit(pl}
stay(pl)

elif score(pl)
double *= 2
hit{pl)
stay (pl)

elif score{pl)
double *= 12
hit{pl)
stay(pl)

elif score(pl) < 18:
hit{pl)

elif score(pl) ==
hit(pl}

else:;
stay(pl)

elif hardtotal

== 15

17

18

== True:

and

and

and

and

and

and

13 and score([dLl{0]1) >

score([d1[01]1)

score([dLI0]])

score([d1[01])

gcore{[d1I0]1)

score({d1[011)

score{{di{011)

and score({d1{0]]1} < 7:

and

and

and

and

and

12 vs., 6

13 vs. 3

Basic Strategy

Basic Strategy

score([dl[011}

A

score{[d1[0]11])

A

score([d1[0]1)

A

score(fd1i011)

A

score({[d1[0]1])

A

Basic Strategy

(True Count

-1)

{True Counbt -2}

(Spiits)

{Soft Totals)

{(Hard Totals)

7-

Ci\Users\d34575k\Downloadsicounting_cards.py Friday, May 23, 2014 3:@2@1

if score(pl) == 9 and score([d1[0]]) > 2 and score([dll01]) < 73
double ¥= 2
hit{pl}
stay(pl)

elif score(pl) == 10 and score([d1[0]]) < 10:
double #*= Z
hit(pl)
stay(pl)

elif sgcore(pl) == 11 and score({dl{0]]) < 11z
double ¥*= 2
hit(pl)
stay(pl)

elif score(pl) < 12z
hit{pl}

elif score{pl) < 17 and score([dLl[01]1) > 6:
hit{pl}

elif score{pl) == 12 and score([d1l[0]]1)}) < 4:
hit{pl)

else:

stay(pl)

def run_dealer{comp):
while score(comp) < 17:
init_hit (comp}

def score_check{hand, comp):
if score(hand) » 213
return -1

elif score(hand) == 21 and len(hand) == 21
if score(hand) == score{comp} and len{comp) == 2:
return 1
else:
return 1.5

aelif scorelhand}

v

score{comp) :
return 1

elif score(comp)} > Zl:
return 1

elif score(hand) == score(conp}:
return 0

else:

return -1

gim = 0
totals=[]
n = int{raw_input("How many simulations?: "})
while sim < 1000:
tot_hands = 0

results = []
total_deck = [}
true_count = (
running count = 0

8-

C:Users\d34575k\Downloads\counting_cards.py Friday, May 23, 2014 3:07 PM

i=290

wins = 0

winsl =

losses = O

lossesl = 0

ties = 0

while i < n:
if len(total_deck)<753

new_deck{)

game ()
1 4= 1

m = 0
while m < len{results):
if results[ml{2] < O
losses += (=l*resultsim] [2])
lossesl += 1
elif results[m] {2] > O:
wing += results[m][2]
wingl += 1
else:
ties += 1
m += 1

net_gain = wins-losses
net_gainl = winsl-lossesl
gain = round(lo0*float({{net_gain))/float{(tot_hands)),1)

totals.append{gain)
gim += 1

print "Total Hands: ", tot_hands
print "Total Wing: *, wins
print "Tobtal Losses: ", losses

print "Total Ties / Mid-Play {Discounted): ", ties

print "Net Gain: ', net_gain
print "wWinning Hands Percentage: ", round{100*float((net_gainl))/float((winsl+lossesl)},2),

wdioe
Ry

print "Total Gain Percentage: ", round(1l00*float{(net_gain})/fleat((tot_hands}),Z),"%"

print totals

9.

C:\Users\d34575\Downloads\monte_carlo.py) Friday, May 23, 2014 3:07 PM

Appendix V
monte_carlo.py
ft This file serves as the file by which we run Monte Carle Method simulations.

impert random

global s

global k

global h

global player?
global strategy
global results
global total_deck
global hits_used
global total_used
glokal tot_hands

def new deck():
del total deck[:]
one_suit=[02,3,4,5,6,7,8,9,10,°0", 0", *K", "A"]
g =0
while g < 24: # Append 24 suits or 6 decks
for 1 in one_suit:
total_deck.append(i)
g +=1
random,shuffle(total_deck)

def init_hit({hand):
card = [total_deck.pop{()]

#Aadds cards to hand
hand.append(card[0])}

def game():
global s
global k
global h
global plaver?2
global strategy
global bust
global total_used
global hits_used
global tot hands

k = False # Stay counter
s = Palse # Split counter
h = False # Hit counter
bust = False # Bust counter

firstbust = False
secondbust = Falge

-1-

Ci\Users\d34575k\Downloads\monte_carlo.py Friday, May 23, 2014 3:07 PM

points = 0
player = []
player? = {]
dealer = []
strategy = []

init_hit{player) # hits players lst card

init_hit(player) # hits playvers 2nd card

init_hit{dealer) # hitg computers lset card

init_hit(dealer) # hits computers 2nd card

while k == False and bust == False: # Run non-split opticn until "Stay"
counter

pick play(player,dealer}
bust_check{player)
if k == False and bust == False and h == True: # I1f mid-play and no
stay/bust
runl = [score(plaver[:-11},score{[dealer[0]1]1),0,strategy[-1]]
results.append(runl)
change_matrices (player,dealer,1,1)
h = False

if k == False and bust == True and h == True: # IF first hand busts
runl = [score(player[:-1]1)},score([dealer{0l]),-1,strategy[~1]11
results.append(runl)
change_matrices(player,dealer,1,0)}
firgtbust = True

h = False # Resmet "hit" counter
k = False # Reset *Stay" counter
bust = False # Resget "Bust" counter

tot_hands += 1

if 5 == 1:
tot_hands += 1

while s == True and k == False and bust == False: # Run non-split option for
second if split happened until "Stay" counter
pick_play{player2,dealer)
bust_check({player?)
if 5 == True and k s= False and bust == False and h == True:
runl = I[score(player2[:-1]1),score([dealer[0]}1),0,strategyl[~111]
results.append{runl)
change_matrices(player?,dealer,1,1)
h = False

if 5 == True and k == False and bust == True and h == True:
runl = [score{player2[:-1]),score{ldealer[0}]),-1,strategy[-11]
results.append(runl})
change_matrices(player2,dealer,1,0)
secondbust = True

run_dealer (dealer) # Run dealer

R

C:\Users\d34575k\Downloads\monte_carlo.py Friday, May 23, 2014 3:07 PM

def

def

def

def

if firstbust == False:
points = score_check{player,dealer) # Calculate Win, Loss, or Push
runl = [score(player[:-11),score{[dealer[01]},points,strategy[~111]
regsultsg.append{runl)
if pointg == 1:
change_stay_matrices{player,dealer,1,(}
elif points == -1
change_stay_matrices{player,dealer,1,1)

if secondbust == False and s == Trua:
points2 = score_check(player2,dealer)
run2 = [score(player2[:-11},score({[dealer[0]]),points2,strategyl[-1]]
results.append{run2}
if points2 == 1:
change_stay _matrices(player?2,dealer,1,0)
elif pointsg2 == -1
change_stay matrices(player?,dealer,1,1)

hit{(hand):

global h
strategy.append('Hit')
h = True
init_hit{(hand)

change_stay_matrices(playl, deall, pl, p2}:
global total_used
global hits_used

1

TOW score{playl}-4

col score([deall[0]])~2

Ll

total_used[row] [col] += pl
hits used[row] [col] += p2

change_matrices(playl, deall, pl, p2}:
global total_used)
global hits_used

H

gscore(playl[:-11)-4
gcore([dealif]])-2

row

col

total_usedl[row] [col]l += pl
hits_used[row] [coll += p2

gscore{hand) :
global bust

total = 0
a=0
for cards in hand:

[}

Eh) L{{ i :

if cards == "J* or cards == "(" or cards =

3.

Ci\Users\d34575k\Downloads\monte_carlo.py Friday, May 23, 2014 3:07 PM

total+= 10
elif cards == °"A":
total+= 11

a+=1
else:

total += cards

while a»0 and total > 21 # If ace(g), subtracts 10 for each ace until helow 21
total =-= 10
a == 1

if total > 21:
bust = True

return total

def gplit(hand):
global =
strategy.append{‘Split')
s = True # Indicates that a split has occurred
hand.pop (1)
player?.append{hand[0]} ¥ assigns second card to gecond hand

hit(hand)
hit(player2)

def gtay(hand}:
global k
strategy.append(’Stay ")
k = True

def bust_check(hand):
global bust
global k

if score(hand) » 21:
bust = True
k = False

def split_strategy(playl,hitl):
if playl[0]l==playl[l] and s == False:

if playl[0l=="4a%:
return 1

elif playl[0]l==8:
return 1

elif (playl[0l==2 or playl[0]==3 or playl[0l==7) amd score([hiti[0]]) < 8:
return 1

elif playi[0i==6 and score{[hitl1[0]]1) < 71
return 1

elif playl[0]==9 and score([hitl{0]1]) < 10 and score([hitl[0]]} != 7:
return 1

elif playl[0]==4 and score([hitl[0]]) < 7 and gcore{[hit1[0]J]) > 4:

A

C:Users\d34575k\Downloadsimonte_carlo.py Friday, May 23, 2014 3:07 PM

retuxrn 1
alse:

retuxn 0

def pick_ play(pi,di):
global total_used
global hits_used
global bust

if split_strategy{pl,dl) == 1:
split{pl)}

tot = total usedlscore{pl)-4]1[gcore([d1{011)-2] # gets total value of cell in matrix

if score{pl} > 17:
stay(pl)
elif score(pl) < 12:
hit(pl}
else:
if tot < 1:
random.choice([stay(pl) hit(pl)])}
elses
dnd = hits_used[score(pl) -4} [score([dl{0]]1}-2]
float{dnd)/float{tot)
x random.random(}
if x < re
hit{pl)
else:
stay(pl)

f

r

It

def run_dealer(comp):
while score{comp) < 173
init_hit {comp)

def score check(hand, comp}:
if scorethand} > 21:
return -1
elif score(hand) == 21:
if score(hand) == gcore{comp):
return 1
else:

[*)

return 1.

v

elif score(comp) 21

return 1

v

elif score(hand} score{comp) :
return 1

elif score(hand) == score(comp}:
return 0

else:

return -1

gim = 0

Ci\Users\d34575k\Downloads\monte_carlo.py

Friday, May 23, 2014 3:07 PM

totalg=[]}
n int {raw_input{"How many simulations?:
while sim < 1060:

tot_hands = 0
results = []
total_deck = [1
hits used = [[]1]
total used = [[]]

ratio_used=[[]]

hits_used = [[0,0,0,0,0,0,0,0,0,071,[9,0
0,0,0,0,0,01,100,0,0,0,0,0,0,0,0,01,1[0,0
0,0,0,0,0,01,0[90,0,0,0,0,0,0,0,0,031,10,0
0,0,0,0,0,01,10,0,0,0,0,0,0,0,0,01,10,0
0,0,0,0,0,01,1[0,0,0,0,0,0,0,0,0,01,10,0
total_used = [[0,0,0,0,0,0,0,0,0,01,10,
.0,0,0,0,0,0},10,0,0,0,0,0,0,0,0,0],1{0,
0,0,0,06,0,01,10,0,0,0,0,0,0,0,0,01,10,
.0,0,0,0,0,01,1[0,0,0,0,0,0,0,0,0,01,10,
.0,0,0,0,0,01,10,0,0,0,0,0,0,0,0,0]1,10,
ratio_used¢ = [[0,0,0,0,0,0,0,0,0,0],{0,
(0,0,0,6,0,01,10,0,0,0,0,0,0,0,0,0],10,
(0,0,0,0,0,01,10,0,0,0,0,0,0,0,0,0],10,
¢ 0,0,0,06,0,01,10,0,0,0,0,0,06,90,0,0],10,
.0,0,0,0,0,01,10,0,0,0,0,0,0,0,0,01,10,
i=20

wing = 0

wingsl = 0

losses =

lossesl = 0

ties = 0

while i < n:
if len(total_deck}<53:
new_deck()

game ()
i+=1
m= 0

while m < len{results}:
if resultsImi[2] < 0:
(~1*results[m] [2])
lossesl += 1
elif results[m] [2] > O:
wins += results[ml}[2]

logses +=

winsl += 1

elsea:
ties += 1
m+= 1
net_gain = wins-losses

))

£0,01,10,0,0,0,
0,01,100,0,0,0,
£0,01,10,0,0,0,
$0,01,00,0,0,0,

(01,100,0,0,0,0,0,0,0,0,0]1,10,0,0,0
(01,00,0,0,0,0,0,0,0,0,0],100,0,0,0
.01,10,0,0,0,0,6,0,0,0,0]1,[0,0,0,0

0,01,100,0,0,0
0,01,10,0,0,0
0,01,[0C,0,0,0
£0,0,01,00,0,0,0

O,
O,
O,

C:\Users\d34575k\Downloads\monte_carlo.py Friday, May 23, 2014 3:07 PM

net_gainl = wingl-lossesl

7z = (
while 2 < 18:
=0

while % < 10:
if float(total_usedizlI[x]) > 0O:
ratio_usedl[z] [x] = round(float(hits_usediz][x])/float(total_usedlz][x1).,2)
else:

1
fay

ratcio_usediz] [x]
X 4= 1
Z = 1

gain = round(1l00*float ({net_gain})/float({tot_hands)},1)

totals.append{gain)
sim += 1

print "Total Hands: *, tot_hands

print "Total Wins: ", winsg

print "Total Losses: ", losses

print “Total Ties / Mid-Play (Discounted): ", ties

print “Net CGain: ", net_gain

print "winning Hands Percentage: °, round(100*float{(net_gainil})/float({winsl+lossesl)),2},
n (}U 1

print *Total Gain Percentage: ", round(1l00*fleoat({net_gain})/float{(tot_hands})},2),"%"

print totals
print ratio_used

7-

Appendix VI:

100%

100%

§ § B

100%

s § 888 ¢

Player Score =4
“Stay
| & Hit
P EN
Dealer Score
Player Score = 6

| Stay
i) WHit
2 3% 4 5 6 7 §® H W 1N

Dealer Score

Player Score = 8

-sm
& Hit
2 3 L} 5] 7 8 9 10 11

Dealer Score

Player Score = 10

i ! “ Stay
EHit
2 3 - a 5 6 7 g 35 10 1

Dealer Score

100%

100%

A0%

100%

100%

A%

0%

Player Score =5

I

20%

10 1
Dealer Score

Player Score =7

2 3 Ll 5 3 i/ 8 9 10 1

Dealer Score

Player Score =9

2 3 4 5 6 7 8§ 9 10 1

Dealer Score

Player Score = 11

2 3 4 5 6 7 8 9 10 11
Oealer Score

EHit

35“-'
EHit

“ Stay
 Hit

“ Stey
& Hit

s § 3§88 ¢

§8§ ¢

100%

100%

Player Score = 12

it

Dealer Score

Dealer Score

Player Score = 16

2 3 4 5 & 1 8 9

Dealer Score

Player Score = 18

i | | 3 t k i L\ 3 = =0
= Stay
_ & it

2 3 L 5 L] 7 -] 9 10

Dealer Score

! “ Stay
EHit
10 1

Player Score = 14

2 ER | 5 & 7 8 9

“ Stay

W Hit
10 11

-sm

S Hit
0 1

11

100%

A0%

20%

100%

100%

100%

0%

20%

Player Score = 13

2 3 4 5 6 7 8 9 10 11

Dealer Score

Player Score = 15

2 3 a4 5 6 T 8 & 1 1

Dealer Score

Player Score = 17

3 4 5 6 ? g8 9 10

Dealer Score

Player Score = 19

l4I||IJI
3 4 5 6 7

Dealer Score

9 0

1

1

-s“y
SHt

& Hit

“Stey
“Hit

= Stay
EHit

| Player Score = 20

“ Stay
“Hit

5 6 7 8 9 10 11
Dealer Score

Player Score = 21

“ Stay
S Hit

Dealer Score

